

Windows
PowerShell™ v1.0:

TFM™

Don Jones and Jeffery Hicks

S E C O N D II E D I T I O N

3212 Jefferson St #288
Napa, CA 94558

www.SAPIENPress.com

Publisher
Ferdinand Rios

Associate Publisher
Don Jones

Copy Editor
Amy Tipton

Indexer
Julie Bess

copyright 2007 SAPIEN Technologies, Inc.
All rights reserved.
No part of this book shall be reprduced,
stored in a retrieval system, or transmitted by
any means, electronic, mechanical, phtocopy-
ing, reording, or otherwise, without written
permission from the publisher. No patent
liability is assumed with respect to the use
of information contained herein. Although
every precaution has been taken in the
preparation of this book, the publisher and
author(s) assume no responsibility for errors
or omissions. Nor is any liability assumed
for damages resulting from the use of the
information contain herein.

Windows PowerShell v1.0: TFM
2nd Edition

by Don Jones and Jeffery Hicks

ISBN: 0-9776597-6-3
Printed in the United States of America
First printing: November 2007
10 9 8 7 6 5 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. SAPIEN Press
cannot attest to the accuracy of this information. Use of a term in
this book should not be regarded as affecting the validity of any
trademark or service mark. All marks remain the property of their
respective owner(s) and are used herein only for reference.

Warning and Disclaimer
Every effort has been made to make this book as complete and as ac-
curate as possible, but no warranty or fitness is implied. The informa-
tion provided is on an “as is” basis. The author(s) and the publisher
shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information
contained in thi book.

Get More... Online!
Access downloads, technical support, and other resources for this
book at www.SAPIENPress.com. Discussion forums related to this
book’s content may be maintained at www.ScriptingAnswers.com, or
on the author(s)’ private Web sites.

If You’re Legal... We Thank You
If you legally purchased this book, in either electronic or print for-
mat, both the publisher and the author(s) would like to extend their
sincere gratitude. Publishers and authors earn their income from the
sale of their books; that income enables them to pay for their homes,
feed and support their families, and remain financially solvent. By
legally purchasing this book, you are encourging technical authors
everywhere to continue writing books that deliver the information
you need. Thank you.

Available in Print and Electronic Editions
This book is available in electronic format exclusively from
www.ScriptingOutpost.com. Print editions are available from all
major booksellers and from www.ScriptingOutpost.com.

Windows PowerShell: TFM • 2nd Edition

iii

For Christopher… now, as always.
—Don

For Beth, who makes all my dreams come true.

—Jeffery

iv

Windows PowerShell: TFM • 2nd Edition

Foreword

My co-author and I are incredibly proud of this second edition of our PowerShell book. It’s more than
one-quarter larger than the original edition (in content, not just physical size), and contains probably
more than 60% new material—and even the remaining 40% has been thoroughly re-visited and revised
where necessary. It’s a testament to the power of a “small” publishing firm like SAPIEN Press than we
could release this second edition less than a year after the first edition launched. It’s also a testament to
the popularity of Windows PowerShell itself, since it’s that popularity that has led so many administra-
tors into the intermediate and advanced topics that we’re covering in this edition for the first time.

We’ve been fortunate to receive a lot of feedback—both constructive and sometimes not-so-construc-
tive—from the first edition, and we’ve taken it all to heart. In addition to the new material we’ve created
for this edition, we’ve also rewritten major sections of this book to provide clearer explanations of core
concepts, and we’ve vastly expanded our explanations of other areas of Windows PowerShell that we
didn’t originally realize would be so interesting to Windows administrators. We’ve made a tremendous
effort to make sure this book includes everything you might need, now and well into your PowerShell
future.

Writing any book of this size is a labor of love. In the case of Windows PowerShell, it has to be, because
so little in the way of formal documentation is available anywhere. Many things—such as PowerShell’s
custom formatting and type extensions—are either poorly documented, or completely undocumented
by Microsoft (at least at the time we wrote this). So, we had to reverse-engineer a lot of these things in
order to explain how they work and provide some practical examples for you. But we were happy to do
it, because we know there are folks out there who will really utilize those features, using our examples as
a jumping-off point for their own experimentation.

We’re delighted that you’ve chosen our book for your Windows PowerShell learning needs. We hope
you’ll take advantage of our blog, at http://blog.sapien.com, and our discussion forums, at http://www.
ScriptingAnswers.com, for any follow-up questions, comments, or suggestions you may have. We also
invite you to one of the many conferences we speak at, most of which we mention in our blog from time
to time. Most important, we don’t want to be faceless entities, floating out in space somewhere writing
books and magazine articles; we want to work with you to find answers to questions, and to find ways to
put Windows PowerShell to practical uses in every Windows-based environment. Let this book be the
beginning of your PowerShell career, but don’t let it be the end. Drop by and say “hi.”

Don Jones,
Series Editor, SAPIEN Press
June, 2007

Windows PowerShell: TFM • 2nd Edition

v

About the Authors

Don Jones has been in the Information Technology industry for more than a decade, and has writ-
ten more than thirty published books on IT topics. Today, he’s a Windows PowerShell MVP Award
recipient, an in-demand speaker at international conferences, and the Director of Projects and Services
for SAPIEN Technologies. Don is a columnist for Microsoft TechNet Magazine and in the past has
written for Windows IT Pro and REDMOND magazines, among other publications. He founded
ScriptingAnswers.com and continues to be one of the industry’s leading advocates and experts for
Windows administrative scripting and automation.

Jeffery Hicks is a Scripting Guru for SAPIEN Technologies and a Windows PowerShell MVP Award
recipient. He is the author of WSH and VBSCript Core:TFM (SAPIEN Press 2007) and the co-author
of Advanced VBScript for Microsoft Windows Administrators (Microsoft Press 2006) and Windows
PowerShell:TFM (SAPIEN Press 2007). He is also the author of several training videos on administra-
tive scripting. He is currently a columnist and contributing editor for REDMOND Magazine, where he
writes the popular “Mr. Roboto” column and Powershell-oriented column for MCPMag.com. Jeff is a
frequent contributor to several online IT community web sites as well as an invited speaker at computer
conferences and seminars. Jeff has been an IT professional for 16 years, much of it spent as a profes-
sional consultant. Throughout his entire career, Jeff has leveraged the available tools and techniques for
automating Windows administration. His experience with a wide range of organizations and technolo-
gies provides a wealth of knowledge he is eager to share through speaking, teaching, writing, community
participation, and mentoring.

vi

Windows PowerShell: TFM • 2nd Edition

Acknowledgements

We’d like to express our sincere gratitude to everyone who purchased the first edition of this book and
took the time to send us their questions, comments, suggestions, and even the odd correction. Whether
you contacted us via e-mail at errata@sapien.com (an address you’re still welcome to use) or in the
forums on ScriptingAnswers.com, we appreciate it, and we want you to know that everything you
brought to our attention has in some way been incorporated into this new edition.

We’d also like to specifically thank the team at SAPIEN Technologies who have supported the
SAPIEN Press brand and this revised edition of the brand’s first book: CEO Ferdinand Rios and CTO
Alex Riedel, along with Christopher Gannon, Margaret Pratt, Stephen Poon, and Maricela Soria.

We’d also like to thank the folks who provided such useful feedback during our Table of Contents
review, including Marco Shaw, Michel Klomp, Bruno Guerpillon, Adam Ball, Hector Hernandez,
Mark Ingalls, and especially Matthew Grogan, Greg Milner, and Jamie Bradford, who all provided very
detailed feedback that directly resulted in many of the things you’ll find in this book.

The following folks also deserve thanks for their help in reviewing the draft chapters (but they deserve
no blame for any mistakes you may find—those belong to use): Fellow MVP Marco Shaw, Andy Bidlen,
Michel Klomp, Colin Halford, Jamie Bradford, Shane Dovers, Alan Finn, and Adam Ball.

Finally, we’d like to thank our families and co-workers for their patience and understanding as we
worked long hours on this project.

Windows PowerShell: TFM • 2nd Edition

vii

Contents

Foreword .iv
About the Authors .v
Acknowledgements .vi
Windows PowerShell Seven-Step Speed Start .17

1. Installing Windows PowerShell . 17
Framework First . 17
Download and Install the Shell . 18

2. Customizing the Shell . 19
3. Performing Some Familiar Tasks in the New Shell . 19
4. Working with More Drives than C: . 19
5. Finding Help at Your Fingertips . 20
6. Performing Real Administrative Tasks Without Scripting . 20
7. Taking a Peek at the Pipeline . 21
Ready for More? . 22

Windows PowerShell Architecture and Overview .25
What Is PowerShell, and Why Should I Care? . 25
How Do I Use PowerShell? . 26
Parameters . 27
Aliases . 27
Backward-Compatible . 29
Navigation . 29
Scripting . 29
Variables . 30
Built-in Help . 30
Object Oriented . 31
Danger! Danger! Danger! . 33
Bottom Line: Do I Need to Know All This? . 34
Is PowerShell a Good Investment of My Time? . 34
Where Do I Go from Here? . 34
Help and Additional Resources . 35

PowerShell Drives .37
Navigating a Hierarchical Object Store . 37
More Stores than Just the File System . 38
Mapping Drives . 39
More Providers!. 39
PSDrives = Ease of Use . 40

Key Cmdlets for Windows Administration .41
Cmdlets for Navigating Your System . 41

Listing Child Items . 41
Changing Location . 44

Cmdlets for Working with Items . 45
Cmdlets for Working with Text Data . 47
Cmdlets for Working with Windows . 48
Cmdlets for Working with PowerShell . 51

viii

Windows PowerShell: TFM • 2nd Edition

Creating Output . 51
Clearing the Console . 53
Accepting Input . 54
Working with Variables . 54
Working with Commands . 55
Working with Command-Line History . 56
Working with PSDrives. 56

The PowerShell Pipeline .57
Piping Objects from Cmdlet to Cmdlet . 58
Finding Cmdlets That Accept Pipeline Input . 59
The Pipeline Enables Powerful One-Liners . 60
The Pipeline Enables Simple Output Redirection . 62
The End of the (Pipe)line . 62

Cmdlets to Group, Sort, Format, Export, and More .63
Formatting . 63

Format-List . 64
Format-Table . 65
Format-Wide . 68
Format-Custom . 69
Formatting Rules Overview: When Does PowerShell Use a List or Table? 70
GroupBy . 71

Sort-Object: Sorting Objects . 73
Where-Object: Filtering Objects . 76
ForEach-Object: Performing Actions Against Each Object . 77
Select-Object: Choosing Specific Object Properties . 78
Exporting . 79

Export-CSV . 79
Export-CliXML . 81
ConvertTo-HTML . 82

Comparing Objects and Collections . 84

Practical Tips and Tricks .89
Using the Command Line . 89

Command History . 89
Line Editing . 90
Copy and Paste . 90
Tab Completion . 90
Instant Expressions . 91

Pausing a Script. 92
Displaying a Progress Meter . 92
Keeping a Transcript . 94

PowerShell Command-Line Parsing .95
Quotation Marks . 95
Parsing Modes . 97
Line Termination . 97

Working with the PowerShell Host .99
Culture Clash . 100
Using the UI and RawUI . 101

Reading Lines and Keys . 101

Windows PowerShell: TFM • 2nd Edition

ix

Changing the Window Title . 103
Changing Colors . 104
Changing Window Size and Buffer . 104

Nested Prompts . 105
Quitting PowerShell . 106
Prompting the User to Make a Choice . 106

Security Features .109
Why Won’t My Scripts Run? . 109

When Scripts Don’t Run . 109
Digital Signatures . 110
Trusted Scripts . 111
Execution Policies . 112
Signing Scripts . 112

Alternate Credentials . 113
Is PowerShell Dangerous? . 114

Safer Scripts from the Internet . 115
Passwords and Secure Strings . 116

The Microsoft .NET Framework:An Overview for PowerShell Users 119
Microsoft .NET Framework Essentials . 119

Reflection . 120
Assemblies . 121
Classes . 121

Variables as Objects. 122
Variable Types . 123
Variable Precautions . 126
.NET Conclusion . 127

Using WMI in Windows PowerShell .129
WMI Fundamentals . 129

WMI Architecture . 129
WMI Documentation . 130
Working with WMI Classes . 131
Remote Computers, Security, and WMI . 131
Using Wbemtest . 132
So What Can You Do with WMI? . 133

Retrieving WMI Objects . 133
Working with WMI Objects . 136
Working Directly with Classes . 138

Using ADSI in Windows PowerShell .141
ADSI Fundamentals . 142

ADSI Queries . 142
Using ADSI Objects . 143

Retrieving ADSI Objects . 143
Searching for ADSI Objects . 148
Working with ADSI Objects . 150

Scripting Overview .155
Script Files . 155
Profiles . 156
Scripting Basics . 156

x

Windows PowerShell: TFM • 2nd Edition

Scope . 157

Variables, Arrays, and Escape Characters .161
Variables . 161

Get-Variable . 163
Set-Variable . 165
New-Variable . 167
Clear-Variable . 167
Remove-Variable . 169

Environment Variables . 169
Variable Types . 170

Variable Precautions . 173
Arrays . 174

$OFS . 178
Associative Arrays . 179

Creating an Associative Array . 179
Using an Associative Array . 180
Programmatically Modifying and Enumerating an Associative Array 183

Escape Characters . 184

Objects .187
Properties . 187
Methods . 187
Variables as Objects. 190

Operators .193
Assignment Operators . 193
Arithmetic Operators . 196

Precedence . 197
Variables . 197
Unary Operators . 198

Logical Operators . 199
Bitwise Operators . 200
Special Operators . 200

Replace Operator . 200
Type . 202
Range Operator (..) . 203
Call Operators (&) . 204
Format Operator (-f) . 205

Comparison Operators . 208

Regular Expressions .213
Writing Regular Expressions . 214
Select-String . 220
Regex Object . 222
Regular Expression Examples . 226

E-mail Address . 226
String with No Spaces . 228
Domain Credential . 229
Telephone Number . 230
IP Address . 230

Regular Expression Reference . 232

Windows PowerShell: TFM • 2nd Edition

xi

Loops and Decision-Making Constructs .233
If . 234
Switch . 237
For . 239
While . 240

Do While . 241
Do Until . 241

ForEach. 242
Break . 244
Continue . 244

Script Blocks, Functions, and Filters .247
Script Blocks . 247
Functions . 249

Input Arguments . 250
Returning a Value . 251
Piping to Functions . 253
Function Phases . 254

Filters . 256
Functions vs. Filters . 256

Cmdlets and Snap-ins . 258
Modularization Tricks . 259

Error Handling .261
Error Actions . 262
Trapping Errors. 262
Trap Scope . 263
Throwing Your Own Exceptions . 264
Tips for Error Trapping . 265

The PowerShell Debugger and Debugging Techniques267
The Debugging Process . 267
Debug Mode and Tracing . 269
Debugging Techniques . 274

Writing Verbose Information . 275
Writing Debugging Information . 276
Using Nested Prompts . 277

PowerShell for VBScript, Cmd.exe, and *nix Users .281
If You’re Used to VBScript… . 281

Variables . 282
COM Objects . 282
Comments . 284
Loops and Constructs . 284
Type Conversion . 285
Operators and Special Values. 285
Functions and Subs . 285
Error Handling . 286
Windows Management Instrumentation . 286
Active Directory Services Interface . 288
Common Tasks in VBScript . 288
PowerShell Paradigm Change . 288

xii

Windows PowerShell: TFM • 2nd Edition

If You’re Used to Cmd.exe . 290
For . 291
Working with Environment Variables . 292
 “If ” Comparisons . 292

If You’re Used to *nix . 293

Best Practices for Scripting .297
Script Formatting . 297
Comments . 298
Script and Function Naming. 298
Parameter Declaration . 300
Functions vs. Filters . 301
Variable Naming . 301
Use Source Control . 302

Managing Files and Folders .307
Creating Text Files . 307
Reading Text Files . 308
Parsing Text Files . 308

Parsing IIS Log Files . 309
Parsing INI Files . 310

Copying Files . 313
Deleting Files . 314
Renaming Files . 315
File Attributes and Properties . 315
Working with Paths . 318

Test-Path . 319
Convert-Path . 319
Split-Path . 319
Resolve-Path . 320
Join-Path . 321

Creating Directories . 322
Listing Directories . 323
Deleting Directories . 323

Managing Systems by Using WMI .325
Retrieving Basic Information . 325
Listing Available Classes . 326
Listing Properties of a Class . 327
Examining Existing Values . 328
Remote Management . 329
The [WMI] Type . 331
The [WMISearcher] Type . 333
Practical Examples . 334
WMI Events and PowerShell . 336

Managing Services .343
Listing Services . 343
Starting Services . 343
Stopping Services . 344
Suspending and Resuming Services . 344
Restarting-Services . 345

Windows PowerShell: TFM • 2nd Edition

xiii

Managing Services . 345
Get Service Information with Get-WmiObject . 346
Change Service Logon Account . 347
Controlling Services on Remote Computers . 348
Change Service Logon Account Password . 349

Managing Permissions .351
Viewing Permissions . 351
Viewing Permissions for an Entire Object Hierarchy . 353
Changing Permissions . 353
Automating Cacls.exe to Change Permissions . 355
Complex Permissions in PowerShell . 357

Get Owner . 357
Set Owner . 358
Retrieving Access Control . 358
Removing a rule . 361

Managing Event Logs .363
Working with Remote Event Logs . 367
Event Log Information . 369
Backup Event Logs . 370
Clearing Event Logs . 372

Managing Processes .375
Starting a Process . 376
Stopping Local Processes . 377
Process Tasks . 377

Find Top 10 Processes by CPU Usage . 377
Find Top 10 Processes by Memory Usage . 378
Find Top 10 Longest Running Processes . 378
Find Process Details . 379
Find Process Owners . 379

Remote Processes . 380
Creating a Remote Process . 383
Stopping Remote Process . 383

Managing the Registry .385
Creating Registry Items . 389
Removing Registry Items . 390
Searching the Registry . 390
Working with Remote Registries . 392

Enumerating Keys . 393
Enumerating Values . 394
Searching the Registry . 396
Modifying the Registry . 398

Managing Directory Services .401
Working with the Directory via WMI . 402
Working with Users by Using the [ADSI] Type Accelerator . 403
Getting Password Age . 405
Deleting Users . 406
Bulk-Creating Users . 406
Working with Computers . 408

xiv

Windows PowerShell: TFM • 2nd Edition

Delete Computer Accounts . 409
Working with Groups . 409
Moving Objects . 411
WinNT:// Provider . 411
Searching for Users . 411

Scope in Windows PowerShell .417
Types of Scope . 417
Scope-Aware Elements . 418
Scope Rules . 418
Specifying Scope . 420
Best Practices for Scope . 421
Dot Sourcing . 422
Nested Prompts . 423
Tracing Complicated Nested Scopes. 423

Working with COM Objects .425
Practical Examples of Using COM . 426

Mapping Network Drives and Printers . 426
Accessing Local Domain, Site, Forest, and Logon Information 427
Automating Internet Explorer . 427
Controlling an Interactive Character . 427
Making Your Computer Talk. 428

Issues with COM in PowerShell . 428

Working with XML Documents .429
What PowerShell Does with XML . 429
Basic XML Manipulation . 430
A Practical Example . 433

The PowerShell Extensible Type System .439
The Basic Type Extension File . 440
Creating Type Extensions . 440

AliasProperty . 441
ScriptProperty . 441
NoteProperty . 442
ScriptMethod . 442
Default Property Set . 443

Importing Your Type Extensions . 443
A Practical Example . 444

Creating Custom Objects .447
Custom Object Creation . 448
Using Custom Objects . 448
A Practical Example . 451

Object Serialization .453
Why Export Objects to XML? . 455

Creating Serialization Directives . 455
Serializing as a String . 456
Specifying a String Source . 457
Controlling Serialization Depth . 459
Serializing Only Specific Properties . 459

Windows PowerShell: TFM • 2nd Edition

xv

Controlling the Inheritance of Serialization Directives . 460
Serialization: Now and Tomorrow . 463

Creating Custom Formats .465
Examining the Formatting Format . 465
Constructing Your Own Format . 467

Wide Views . 468
List Views . 469
Table Views . 470
Custom Views . 472

Importing Your Format . 476
Formatting Rules . 477

The PowerShell Ecosystem: Third-Party Extensions .479
PowerGagdets . 480
PrimalScript . 480
PowerShell Community Extensions . 481
SAPIEN Extensions for Windows PowerShell . 482
SAPIEN’s PowerShell Help . 483
CodePlex . 483
Quest PowerGUI . 483
Quest Cmdlets for Active Directory Management . 485
Full Armor . 488
SDM Software . 488
/n Software . 491

The .NET Framework for Windows Administrators .493
What is the Framework? . 493
PowerShell’s Framework Adaptation . 494
Adaptation Details . 495
Using Framework Objects Directly . 498

Loading Assemblies into PowerShell . 498
Using a Framework Class . 498

Fun (and Useful) Tricks With the .NET Framework . 499
Sending E-Mail . 499
Resolving Names by Using DNS . 500
Accessing Remote Event Logs . 501
Making a Notification Icon . 501

Reading and Writing Information in Databases .503
Connecting to a Database . 503
Building a Command . 504
Executing the Command and Working with the Results . 505
The SQL Server Difference. 506
A Practical Example . 506

Working with Windows Forms .511
Caveats, Restrictions, and Can’t-Dos . 511

Introducing Events . 511
PowerShell and Events . 512
But First…You Need to Read the Docs . 512

Creating a Form . 512
Adding Controls . 514

xvi

Windows PowerShell: TFM • 2nd Edition

Creating Event Handlers . 515
Useful Control Events and Properties . 516

Forms . 516
Labels . 517
Buttons . 517
Text Boxes . 518
Check Boxes . 518
Radio Buttons . 518
List Boxes . 519
Combo Boxes . 520

Displaying Forms . 520
A Practical Example . 520
Working with Event Arguments . 526

Working with the Web .529
Retrieving Data from the Web . 529
A Simple Request . 530
Working with XML Data from the Web . 530
Using a Proxy Server for Web Connections . 533
Working with “Real” Web Services . 534
A Practical Example . 534

Creating PowerShell Cmdlets and Snap-Ins .537
Some Terminology and the Basic Process . 537
Getting Started: You Need an Environment . 538
Creating a New Snap-In . 538
Creating a New Cmdlet . 539

Naming Your Cmdlet . 539
Creating Cmdlet Parameters . 540
Input Validation in Parameters . 541
Pipeline Parameters . 542
Overriding an Input Processing Method . 542
Coding the Cmdlet . 543
Compiling the Snap-In . 544
Registering the Snap-In . 544
Adding the Snap-In . 544
Removing the Snap-In . 545
Using the New Cmdlet . 545
Debugging Cmdlets . 545
Making Help . 546

It’s All in the Framework . 547
A Practical Example . 547

Automatic Variables in PowerShell .553
Common .NET Framework Data Types .555
Regular Expression Syntax .563
Reading PowerShell’s Help .565
Index .569

Seven-Step Speed Start

17

Ground Zero
Windows PowerShell Seven-Step Speed Start

You’ve picked up a new book on Windows PowerShell and you’re ready to get started! You want to see
PowerShell in action! You want to see what it can do! You want to see if the authors will end every sen-
tence with an exclamation point! That’s what this chapter is all about: Putting PowerShell through its
paces. We won’t be explaining a lot as we go, since the goal here is just to show off some of PowerShell’s
capabilities. In fact, if you’ve already been tinkering with PowerShell, you might want to just skim this
chapter and move right on to the next one, which is where the meaty stuff starts. Oh, and no, we won’t
use very many exclamation points from here on out.

1. Installing Windows PowerShell
The first thing you need to do is install Windows PowerShell. Exactly how you do that depends a bit on
the operating system you’re running, and we have to caution you: While this information was accurate
at the time we wrote the book, it may change a bit, since Microsoft may add PowerShell to the base
Windows operating system in more versions of Windows.

You need to be running Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008,
or a later version of Windows in order to install PowerShell. It will not install on Windows 2000 or any-
thing older.

Framework First
First, you need to make sure you have v2.0 (or v3.0) of the .NET Framework installed. Some versions of
Windows, like Windows Vista and Windows Server 2008, may already have it installed. Look in your
Windows folder (usually C:\Windows), and then under the Microsoft.NET folder. Under there, you’ll

18

Windows PowerShell: TFM • 2nd Edition

either see a folder named Framework, or something similar—it has a different name on 32- and 64-bit
systems. Under there, you’re looking for the v2.0.xxxx folder. If it exists, you’re good to go. If not, go to
http://www.Microsoft.com/download and download the .NET Framework runtime for v2.0 or v3.0
(v3.0 will actually install v2.0 as well). You’ll probably need to be a local administrator on your computer
in order to do this. You might also be able to use the Windows Update or Microsoft Update feature of
Windows to install the Framework; it’ll be listed under Optional Components.

Download and Install the Shell
With the Framework installed, see if Windows PowerShell is already installed—usually, you’ll find it
right on your Start menu if it is. If not, you can also look for its installation folder: On 32-bit systems,
it’s in Windows\System32\
WindowsPowerShell\v1.0. On 64-bit systems, it’s more or less than same path, just usually under
System64 instead of System32.

If you don’t have PowerShell installed, go to http://www.Microsoft.com/PowerShell. From there, you’ll
find links to download it. Be sure to download the right build! A different build is available for each differ-
ent version of Windows, and there’s a different build for 32- or 64-bit editions, also.

Don’t See a Download for Your Version of Windows?
If you go to the download page and don’t see a build for your operating system, then either (a) your
operating system isn’t supported (that’s the case for Windows 2000 and earlier), or (b) your operat-
ing system comes with Windows PowerShell as an optional installation component (as is the case
for Windows Server 2008, which was code-named “Longhorn”). In the latter situation, you’ll need
to install Windows PowerShell by using Windows Setup, Add/Remove Windows Components, or
whatever other functionality is provided by the operating system itself to add components that are
included on the Windows Setup disc.

Once you’ve downloaded the installer, just double-click it. As with the Framework, you’ll probably need
to be an administrator in order to complete the installation properly. The installer will install not only
PowerShell itself, but also the documentation provided by Microsoft. It’ll create Start Menu items for
the shell and for the documentation. We like to pin the PowerShell icon to the Start Menu so it’s easier
to find.

Updates!
If you downloaded PowerShell, then you’ll probably also have to download any new versions which
are released. As of this writing, at least, Microsoft hadn’t decided if PowerShell updates would
be pushed down through the Windows/Microsoft Update Service. If PowerShell came with your
version of Windows (as an optional installation component), then updated will be pushed down
through the Windows/Microsoft Update Service, either as “hotfixes” or in service packs.

Seven-Step Speed Start

19

2. Customizing the Shell
By default, the shell uses a blue background and white text. By clicking the control box (in the upper-
left corner of the window), you can select Properties to modify the font, the colors, and even the window
size. For the window size, you can control the physical size—that is, how many lines tall and how many
columns wide the window is. You can also control the buffer, which is how many lines and columns actu-
ally exist. For example, if you configure the shell to use a 100-column window with a 200-column buffer,
you’ll see a horizontal scroll bar. Take a moment to tweak the shell to meet your liking—the wider the
window, the better!

3. Performing Some Familiar Tasks in the New Shell
PowerShell works a lot like the shell you may have used before: Windows’ Cmd.exe shell. For example,
try these quick tasks:

Enter • Cd \ to change to the root folder of your drive.

Enter • Cd /Windows to change into the Windows folder. Notice that you can use forward or back-
ward slashes in paths!

Enter • Cd .. to go back up one folder level. Notice that you do need a space between “Cd” and
“..”—that’s a difference in PowerShell. PowerShell isn’t case-sensitive, though: “CD,” “Cd,” and
“cd” work equally well.

Enter • Dir to see a directory listing.

Press Up Arrow or Down Arrow to cycle through previously-entered commands, known as the •
command history.

Many of the other commands you’re familiar with will work, too: Ren, Copy, Del, MkDir, RmDir, and
so forth. Commands like Type and More also work fine.

You can also run the external command-line utilities you’re accustomed to. For example, Ping and
TraceRt work perfectly, as does Net, Nbtstat, Netsh, and many others. Try a few now to convince your-
self. You’ll even have access to some advanced commands, like Ps for a process list or Kill to terminate a
process.

If you’ve used UNIX before, and prefer to use commands like Ls or Man, you’ll find that those work,
too.

4. Working with More Drives than C:
Now try this:

PS C:\> cd hkcu:

Then type:

PS C:\> cd software
PS C:\> dir

Cool, huh? PowerShell exposes your registry, your certificate store, and other forms of storage as if they
were disks. You can use all the familiar disk commands to change keys, delete keys, and so forth. You
can see a list of all available “drives” by entering Get-PSDrive. And yes, you can map a network drive in
PowerShell, too: Use New-PSDrive.

20

Windows PowerShell: TFM • 2nd Edition

5. Finding Help at Your Fingertips
PowerShell has a built-in help facility. Just run Help command (or, as we mentioned, Man command) to
get help on any command. For example:

PS C:\> Help dir

Displays help on using the Dir command. You’ll notice that it’s a bit different from the old Cmd.exe
version of Dir. For example, you can’t use /s to include subdirectories. Instead, you’d run Dir -recurse.
When asking for help, the default screen is pretty concise. You can get more extensive help by running
something like this:

PS C:\> Help dir -detailed

Or, for even more help:

PS C:\> Help dir -full

You can even ask for some examples of the command in use:

PS C:\> Help dir -example

The cool part about the Help command is that it’ll show you what help is available. For example, to see
a list of everything it knows about:

PS C:\> Help *

Or, if you’d like to see what help is available for working with Windows services, run this:

PS C:\> Help *service*

Wildcards like * can be used with many PowerShell commands, and in this case they’re a great way to
discover what PowerShell has to offer.

6. Performing Real Administrative Tasks Without Scripting
Try these quick tasks, which go far beyond what Cmd.exe could do:

Get-Service•	 will show a list of running services. Stop-Service and Start-Service provide control
over those services.

Get-Process•	 and Stop-Process provide functionality similar to the Resource Kit tools Plist.exe
and Kill.exe.

Get-ACL C:\Windows•	 will show you who has permissions to the Windows folder (note that if
you’re running on Windows Vista with User Account Control enabled, this may not work—try
right-clicking the PowerShell shortcut to run it as Administrator, and then try again, or try a dif-
ferent folder).

Get-EventLog System•	 will get your System event log. Yes, it will probably take a few minutes to
finish running! Try Get-EventLog System | Select -first 10 to just see the first ten entries. Or,

Seven-Step Speed Start

21

press Ctrl+C if you’re tired of waiting for it to finish.

Run just • Notepad to open a new instance of Notepad. Then run Kill -name Notepad to kill the
process.

Leverage What You’ve Learned
Don’t be afraid to try something new. Not sure what Get-EventLog does? Use Help to find out.
Wondering what other things you can do with event logs? Try Help *event* and see if anything
comes up. Running a script and want to stop? We just showed you Ctrl+C, which will stop a script
as well as a command like Get-EventLog. Many of the things we’ll show you in this book can be
used elsewhere in PowerShell, too—don’t be afraid to try using things that we’ve shown you in dif-
ferent combinations.

PowerShell has a lot of built-in commands that perform useful tasks. For example, try running Help
service to see what commands are available for working with services—you may be pleasantly sur-
prised! Always remember to use Help to discover more about what PowerShell can do, and to learn how
a particular command works.

7. Taking a Peek at the Pipeline
PowerShell’s commands—they’re technically called cmdlets (pronounced, “command-lets”)—don’t actu-
ally produce text lists, although so far it seems like they do. Instead, they work with rich, fully-functional
objects. PowerShell’s pipeline lets you pass (or “pipe”) objects from one cmdlet to another. For example,
try this to get a list of all running services:

PS C:\> Get-Service | Where { $_.Status -eq "Running" } | Format-Wide

Hey, I Still Got a List!
At the end of every pipeline, PowerShell automatically takes whatever’s left and makes a text list or
table out of it. In this case, we specifically told it to make a wide list, so that’s what it did.

We got a collection of all the services by using Get-Service, and then piped those to Where. The
Where command passed along all those with a Status of Running, and dropped everything else. Finally,
Format-Wide reformatted the results into a wide list of just the service names.

Want to see which processes on your computer have the largest memory working set?

PS C:\> ps | sort workingset -desc | select name,workingset | format-table -auto

Ps got a bunch of processes, and Sort ordered them by their working set in descending order (so the
biggest users would be at the top of the list). We then asked Select to just grab the name and working
set information, and then used Format-Table to format the information into an automatically-sized set
of columns—a table, in other words.

We’ll spend lots of time on the pipeline, later—but for right now you can see that it enables some pretty
powerful tasks, and it doesn’t require you to use a bit of scripting.

22

Windows PowerShell: TFM • 2nd Edition

Ready for More?
There’s so much to learn in Windows PowerShell! Hopefully, these few pages have given you a peek at
what you can do with this new shell, and the entire rest of this book will be devoted to expanding upon
and explaining those capabilities.

In Part I of this book, we’ll be focused on using PowerShell interactively—that is, just running com-
mands, not writing scripts. You’ll be amazed at how much you can accomplish that way! We’ll look at
a lot of PowerShell’s major cmdlets so that you can understand what the shell can do (and don’t forget
that products like Exchange Server 2007 and System Center all add more capabilities to the shell).

Part II is all about scripting, although most of these topics can also be used directly from the command
line. We’ll look at PowerShell’s scripting language, dive more deeply into variables, and so forth. We’ll
even provide some information on debugging!

Part III is a collection of real-world administrative examples for various tasks. In this Part, we’ll look at
how PowerShell can be used to accomplish some straightforward tasks, along with a few more complex
tasks.

Finally, Part IV dives into more advanced topics, like working directly with the .NET Framework, work-
ing with databases, building a graphical user interface, and more. You don’t need any of these things to
use PowerShell effectively, but as you become more experienced and proficient in the new shell, you may
want to explore some of these additional options.

Let’s get started!

IUsing Windows PowerShell Interactively
Part I

Windows PowerShell Architecture and Overview

25

Chapter 1
Windows PowerShell Architecture and Overview

Windows PowerShell occupies a fairly unique place in the Microsoft world. Never before has Microsoft
really created a command-line shell: The original MS-DOS of the 1980s wasn’t a shell; it was the entire
operating system. The original Windows was a graphical shell on top of MS-DOS, but when Windows
NT came out the operating system was a graphical environment; the Cmd.exe “shell” that we’re accus-
tomed to is really just a Windows console application; it doesn’t actually “wrap around” the operating
system in the way that a UNIX shell, like Bash, does. PowerShell, however, is a true shell that is
uniquely designed for the complex Windows operating system and the various server products—such as
Exchange Server and the System Center family—that we all use every day.

What Is PowerShell, and Why Should I Care?
Administrators of UNIX and Linux systems (collectively referred to as “*nix” throughout this book)
have always had the luxury of administrative scripting. In fact, most *nix operating systems are built on
a command-line interface (CLI). The graphical operating environment of *nix systems—often the “X
Windows” environment—is itself a type of shell; the operating system is fully-functional without this
graphical interface. This presents a powerful combination: Because the operating system is typically built
from the command line, there’s nothing you can’t do, from an administrative sense, from the command
line. That’s why *nix administrators are so fond of scripting languages like Python and Perl: They can
accomplish real administration tasks with them.

Windows, however, has always been different. When a Microsoft product group sat down to develop
a new feature—say, the Windows DNS Server software—they had certain tasks that were simply
required. First and foremost, of course, was the actual product functionality—such as the DNS Server
service, the bit of the software that actually performs as a DNS server. Some form of management inter-

26

Windows PowerShell: TFM • 2nd Edition

face was also required, and the Windows Common Engineering Criteria specified that the minimum
management interface was a Microsoft Management Console (MMC) snap-in—that is, a graphical
administrative interface. If they had extra time, the product team might create a Windows Management
Instrumentation (WMI) provider, “connecting” their product to WMI, or they might develop a few
command-line utilities or Component Object Model (COM) objects, allowing for some scriptable
administrative capability. Rarely did the WMI or COM interfaces fully duplicate all the functionality
available in the graphical console; this often meant that some administrative tasks could be accomplished
via the command line or a language like VBScript, but you couldn’t do everything that way. You’d always
be back in the graphical console for something, at some point.

Not that graphical interfaces are bad, mind you. After all, they’re how Microsoft has made billions from
the Windows operating system. But clicking buttons and checkboxes can only go so fast, and with com-
monly performed tasks like creating new users, manual button-clicking is not only tedious, it’s prone
to mistakes and inconsistencies. Administrators of *nix systems have spent the better part of a decade
laughing at Windows’ pitiable administrative automation, and third parties have done very well creating
tools like AutoIt or KiXtart to help fill in the gaps for Windows’ automation capabilities.

That’s no longer the case, though. Windows PowerShell is now a part of the Windows Common
Engineering Criteria, and it occupies a similar position of importance with product groups outside the
Windows operating system. Now, administrative functionality is built in Windows PowerShell first. Any
other form of administration, including graphical consoles, utilizes the Windows PowerShell-based
functionality. Essentially, graphical consoles are merely “script wizards” that run PowerShell commands
in the background to accomplish whatever they’re doing. Exchange Server 2007 is the first example of
this: The graphical console simply runs PowerShell commands to do whatever corresponds to the but-
tons you click (the console even helpfully displays the commands it’s running, so you can use those as
examples to learn from). In fact, that graphical console only exposes roughly 80% of the product’s total
functionality: For everything else, you have to use the PowerShell command line. PowerShell is now the
single source for administrative functionality; as it is a command-line interface, that means every piece of
functionality can potentially be scripted or automated!

Of course, only new Microsoft products conform to this vision. Even Windows Server 2008 doesn’t,
since its development—under the code-name “Longhorn”—began prior to PowerShell’s availability.
But the next version of Windows will have to be built on PowerShell. It’s a huge step, and it’s a major
change for the way administrators work with Windows. A change, we might add, that we feel is defi-
nitely for the better.

How Do I Use PowerShell?
When you open a new PowerShell window, you’re actually running a program called PowerShell.exe. It’s
a small application—just about 300 kilobytes, in fact. Its job is to fire up the real PowerShell, what we
call the “PowerShell engine,” an application written in C# and housed in a DLL file. PowerShell.exe—
called a hosting application—is what provides you with the command-line interface to issue instructions
to the PowerShell engine, and provides you with a means of reviewing the results that the engine
generates.

You operate PowerShell primarily by running cmdlets (pronounced, “command-lets”). These are special
mini-applications written in a .NET language, such as C# or Visual Basic. They’re designed to run
exclusively within PowerShell, and they form the basis of PowerShell’s functionality. Cmdlets are named
according to a consistent, documented standard created by Microsoft. All cmdlet names are constructed
of a verb, such as get or set, and a noun, such as service or process. Nouns are always singular; even though
Get-Process returns all running processes, the noun is still the singular process.

PowerShell comes with about 130 cmdlets built-in, including ones that work with services, permissions,

Windows PowerShell Architecture and Overview

27

processes, WMI, and more. More cmdlets can be “snapped in” to PowerShell. Exchange Server 2007,
for example, snaps in about 300 or so additional cmdlets, which handle Exchange administration tasks.
Most cmdlets provide instant gratification: Open PowerShell, type Get-Service, and press Enter, and
you’ll see a list of services installed on your computer. But that’s really just scratching the surface: These
cmdlets can, as you’ll learn, do much more.

Parameters
Like the command-line utilities you may have used in the past, PowerShell cmdlets often support a
number of parameters. Unlike the old command-line utilities, however, PowerShell’s cmdlet parameters
use a consistent naming pattern, which makes the parameters easier to learn. For example, both the
Get-Content and Set-Content cmdlets allow you to specify a path—such as a file path—and so both
use the same parameter name, -path, for that parameter.

PowerShell uses spaces as parameter delimiters. For example:

PS C:\> Get-Content -path C:\Content.txt

If a parameter value contains spaces, then the value must be enclosed in either single or double quota-
tion marks:

PS C:\> Get-Content -path "C:\Test Files\content.txt"

Typically, the most commonly-used parameter for any given cmdlet is positional, meaning you don’t even
have to specify the parameter name. Therefore, the following is also valid:

PS C:\> Get-Content C:\Content.txt

What’s more, when you do need to type a parameter name, you need to type only as much of the name
as necessary to distinguish the parameter from others. For example, here’s a command that will retrieve
operating system information from a remote computer, passing along a previously created set of alter-
nate credentials:

PS C:\> Get-Wmiobject win32_operatingsystem -computer Server02 -credential $cred

The following, however, would also be valid, because the parameter -credential can be abbreviated
to just a couple of letters and no other parameter begins with cr. The computer parameter can also be
abbreviated:

PS C:\> Get-Wmiobject win32_operatingsystem -co Server02 -cr $cred

Parameters allow you to customize the way cmdlets behave. For example, when retrieving a list of files
from a folder, you can specify a parameter that causes the cmdlet to recurse subfolders.

Aliases
We’ve already described how aliases are a sort of nickname for cmdlets. After all, it’s certainly easier
to type Dir than to type Get-ChildItem all the time! PowerShell comes with a number of predefined
aliases that can make typing faster. For a complete list, simply run Get-Alias, and you’ll see a list of all
aliases, as well as the cmdlets they point to.

28

Windows PowerShell: TFM • 2nd Edition

You can make your own aliases, too. For example, we like to occasionally pop up Windows Notepad to
jot down a few notes as we’re working in the shell, and simply typing Notepad over and over takes too
long. Instead, we prefer the shorter alias, Np, which we created by running this:

PS C:\>new-alias np notepad

Notice that we didn’t even have to type the parameter names, since with this cmdlet both of the required
parameters—alias name and command name—are positional, and don’t need to be specifically named.
Also notice that we aliased an external command! Notepad isn’t a PowerShell cmdlet, but it is something
you can run in PowerShell. Therefore, you can create an alias for it. Of course, our alias will “go away”
the minute we close the shell session, and so we added it to our profile script and now the alias is added
each time we run PowerShell. We’ll cover profile scripting in “Scripting Overview.”

Aliases have some downsides. For one, while they’re certainly easier to type, they can be harder to read.
Consider this:

ps | ? { $_.CPU -gt 50 } | % { $_.Name }

Yikes. Even punctuation marks like ? and % get into the act with aliases! This is a lot easier to figure out
when full cmdlet names are used:

Get-Process | '
 Where-Object { $_.CPU -gt 50 } | '
 ForEach-Object { $_.Name }

This command retrieves all currently running processes, selects those instances that have CPU utiliza-
tion greater than 50, and then for each of those instances, just displays the process name. We’re getting
ahead of ourselves with the functionality, but you can probably see how the full cmdlet names make this
easier to follow than the aliases.

In the first version of PowerShell, aliases are limited to providing a shorter, alternate name. You cannot
create an alias for an expression that includes a parameter:

PS C:\ > new-alias -name os -value get-wmiobject win32_operatingsystem
New-Alias : A parameter cannot be found that matches parameter name 'win32_operatingsystem'.
At line:1 char:10
+ new-alias <<<< -name os -value get-wmiobject win32_operatingsystem

This is not to say you can’t create a shortcut for something like the above expression. You’ll have to cre-
ate a function or use a script block, which we cover later in the book, not an alias. You can only create an
alias for a cmdlet name:

PS C:\ > new-alias -name wmi -value get-wmiobject

Another downside to aliases is that, unless you stick to the aliases predefined in PowerShell itself, any
scripts you write won’t run on another computer unless you first take the time to define your custom
aliases on that computer.

When it comes to writing scripts, you can work around both of these downsides by using a script edi-
tor like SAPIEN PrimalScript (www.primalscript.com). Type all the aliases you want—after all, they
are faster—and then go to PrimalScript’s Edit menu. Open the Convert submenu, and select Alias to
Cmdlet to have PrimalScript expand all of your aliases into their full cmdlet names. You’ll get instant

Windows PowerShell Architecture and Overview

29

readability and portability!

There are a couple of other cmdlets that you can use to work with aliases. Remove-Alias, for example,
does exactly what its name suggests: It deletes an alias from your system. Export-Alias exports your
aliases into a special export file, allowing you to import those aliases on another system using Import-
Alias. The Set-Alias cmdlet lets you change an existing alias. Remember, you can read more about using
these cmdlets by asking PowerShell for help—read on, and we’ll tell you how.

Backward-Compatible
PowerShell doesn’t require you to give up all the external command-line utilities you’ve become
accustomed to over the years. With few exceptions, utilities like Nslookup.exe, Ping.exe, Tracert.exe,
Pathping.exe, and nearly any other will still run from within PowerShell—meaning you don’t need to
maintain two separate shells. These older command-line utilities are used in more or less the same way
that they always have been; sometimes, you’ll run into situations where you need to enclose command-
line parameters in quotes from within PowerShell, but that’s about the only major difference. You’ll also
notice that most of your batch files and VBScript files should also run from within PowerShell. If you
run into something that just won’t run under PowerShell, you can always resort to calling CMD:

PS C:\ > cmd /c c:\scripts\myoldscript.bat

When we speak at conferences we’re often asked, “Can PowerShell also run graphical applications?”
We’re glad you asked, although, really, you should just try it and see! After all, what’s the worst that
could happen? In fact, if you open PowerShell and run Calc or Notepad or even MSPaint, you’ll find
that the graphical application pops right up, exactly as it would if you ran those applications from
Cmd.exe or even Windows’ “Run” dialog box. So, there aren’t many reasons to keep Cmd.exe around,
Consider deleting its shortcuts from your Start menu or wherever else and replacing those with short-
cuts to PowerShell!

Navigation
Much like the Cmd.exe interface, PowerShell allows you to quickly and easily navigate the file system
on your computer. Commands like Dir, Cd, Del, Mkdir, and others work almost flawlessly. We say
almost because these are in fact not PowerShell commands or cmdlets. Instead, they’re aliases, or nick-
names, to built-in PowerShell cmdlets. For example, Dir is an alias to the Get-ChildItem cmdlet,
which retrieves a list of child items for a given object. Since a folder’s “children” are its files and subfold-
ers, Get-ChildItem has the same practical use as the old Dir command. However, when using Dir
in Cmd.exe, you’d type something like Dir /s to see a list of files and folders and to recurse through
subfolders. In PowerShell the same command line would be Dir -recurse, because -recurse is the equiv-
alent parameter of Get-ChildItem.

Interestingly, cmdlets can have more than one alias. For example, Get-ChildItem is aliased to Dir, but
also to Ls, the *nix equivalent to Dir. This lets folks with some *nix experience quickly jump in and start
navigating. For the same reason, PowerShell will accept both backslashes and slashes in file paths, help-
ing to bridge the gap between the MS-DOS world and the *nix world.

Scripting
PowerShell scripts are simple text files with a .PS1 filename extension. Inside each file is a list of
PowerShell command lines exactly as you might type them interactively in the command-line window. There
is no difference in functionality between using the shell interactively and running a script. Essentially,

30

Windows PowerShell: TFM • 2nd Edition

you can type commands interactively until they do what you want and then paste them into a script for
long-term use. PowerShell does have some scripting-specific language elements, which we explore in
Part II of this book, but these elements can also be used interactively at the shell’s command line—you
don’t have to “save” them for a PS1 file.

As we’ll cover in “Security Features,” PowerShell scripts are also capable of being fully secured, much
more so than prior Microsoft scripting languages like KiXtart, VBScript, or JScript.

Variables
Like any good scripting environment, PowerShell supports the use of variables (which we’ll discuss in
full detail in “Variables, Arrays, and Escape Characters”). However, as we already mentioned, there’s no
strict difference in functionality between using the shell interactively and writing a script. Therefore, you
can use variables interactively! For example, the following will retrieve a list of services that are installed
on the remote computer Server2:

PS C:\> Get-WmiObject Win32_Service -computerName Server2

The results will simply be listed on your screen. However, you could save those results into a variable:

PS C:\> $wmi = Get-WmiObject Win32_Service -computerName Server2

The variable $wmi is easy to spot: Variable names always begin with a dollar sign. Once the variable
contains the results of the Get-WmiObject cmdlet, you can display those results simply by typing the
variable name and pressing Enter:

PS C:\> $wmi

You can, of course, expect more than one service to be installed on that remote computer, and $wmi
would contain them all. To view just the first service—something it’s tougher to do by just using Get-
WmiObject alone—you could do something like this:

PS C:\> $wmi[0]

Of course, we’re getting a bit ahead of ourselves, but this does illustrate how powerful and flexible the
shell is without ever needing to use a script.

Built-in Help
Microsoft ships PowerShell with extensive help for all of the built-in cmdlets. To ask for help, simply
type the keyword Help (which is actually a special, built-in function that utilizes the Get-Help cmdlet),
followed by whatever you want help on:

PS C:\> Help Get-WmiObject

If all you know is an alias name, you can use that, too:

PS C:\> Help Dir

Windows PowerShell Architecture and Overview

31

If you’re not even sure what you need help on, try using wildcards. For example, to see everything
PowerShell can do with services, try this:

PS C:\> Help *service*

The default help display is fairly concise, designed to fit on a single screen. Use parameters like -full,
-detailed, or -example to get full help, moderately detailed help, or command examples, when available.
To see Get-ACL in action, for example:

PS C:\> Help Get-ACL -example

This help functionality makes PowerShell’s capabilities easier to discover.

In addition to cmdlet help, PowerShell includes a number of topic-oriented help files. Want to know
more about associative arrays? Run this:

PS C:\ > help about_associative_array

You’ll get a useful summary with examples. If you want to see a listing of all the available topics, run:

PS C:\ > help about*

Of course, sometimes it can be a distraction to have to refer to help while you’re trying to work out a
command line, and sometimes you don’t want to have to page through the information the way the
Help function does. If you’d prefer an on-screen, electronic cmdlet reference, there are several options
available. We suggest that you go to www.PrimalScript.com/freetools and download the free PowerShell
Help tool. It provides a nicely formatted version of help in a graphical window that you can have up and
running alongside your PowerShell console, giving you access to the built-in help without distracting
you from the command you’re trying to construct.

Object Oriented
Perhaps the most important part of Windows PowerShell—and for us, the toughest concept to grasp
when we first started—is that PowerShell is completely object oriented. If you’re an old hand at *nix,
this object orientation is a big conceptual leap; PowerShell looks and feels so much like a *nix shell (such
as Bash, which provided a lot of PowerShell’s inspiration), that it’s easy to think of PowerShell as a text-
based shell. But it isn’t.

Almost all PowerShell cmdlets deal with objects. This is perhaps easiest to see with a cmdlet like Get-
Service.

PS C:\> $services = Get-Service
PS C:\> $services[0]
PS C:\> $services[0].Name
PS C:\> $services[0].Pause()

The first line retrieves all installed services and stores the result in the variable $services. The “result,” in
this case, is a collection of service objects. That is, for each service installed on your computer, Windows
produces a unique software component to represent the service. That component can do all the things a
service can do, such as starting or stopping. The component also contains all the properties, or attributes,
that service has, such as a name and description and start mode.

32

Windows PowerShell: TFM • 2nd Edition

The second line displays the first service in the collection. Collections are zero-based, so the first item
has an index of zero, the second and index of one, and so forth. Placing the index in square brackets just
retrieves that particular item. The third line is still working with the first service, but now PowerShell
will just display the contents of that service’s Name property.

Finally, the last line grabs the first service and executes its Pause() method. A method is essentially a
command, telling the object—in this case, a service—to do something, such as pause itself.

The thing to remember is that even when you’re looking at a text list in PowerShell—such as the list you
see when you run Get-Service—what really happened under the hood is that a cmdlet produced one
or more objects. Having nothing else to do with those objects, PowerShell selected certain properties
of those objects and used those properties to construct a text list. That doesn’t mean the Get-Process
cmdlet creates a list of processes. The cmdlet assembles a collection of process objects. It’s PowerShell
that selected key properties of those objects to create that text list. PowerShell will only create a text list
when you haven’t given it something else to do with those objects. “The PowerShell Pipeline” will show
you what else you can have it do.

Objects are a software way of representing complex computer functionality. For example, the objects
returned by Get-Service represent services and all the things a service can do; the objects returned by
Get-Process are quite different, since processes have different attributes and capabilities than a service.
Even strings of text are, to PowerShell’s way of thinking, a kind of object:

PS C:\> "this is a string".ToUpper()
THIS IS A STRING

The string of characters, “this is a string” is enclosed in double quotation marks, identifying them to
PowerShell as a single unit. That single unit is an object of the String type; that is, the object is a string
of characters. PowerShell knows how to do certain things with strings, including displaying an all-
uppercase version of them. That particular capability is accessed via the ToUpper() method of the String
object, as shown in the example. The object itself is followed by a period, which indicates that you’re
ready to type a property or method name, then the method name, ToUpper() (methods always have
parentheses after their name).

This example illustrates that anything, even a literal string, can be treated as an object. If the string were
in a variable, as we did with our earlier example on pausing a service, things would work exactly the
same:

PS C:\> $var = "this is a string"
PS C:\> $var.ToUpper()
THIS IS A STRING

In this case, we put the string of characters into a variable, $var. At that point, $var represents that string
of characters and has the same capabilities. In programmer-speak, then, $var is a String variable, with all
the capabilities of any String, including the ToUpper() method.

Curious about the capabilities a particular object might have? PowerShell has a cmdlet, Get-Member,
which displays the properties and methods of any object. To use Get-Member, simply pipe the object
you’re curious about to Get-Member:

PS C:\> $var = 5
PS C:\> $var | get-member

 TypeName: System.Int32

Windows PowerShell Architecture and Overview

33

Name MemberType Definition
---- ---------- ----------
CompareTo Method System.Int3...
Equals Method System.Bool...
GetHashCode Method System.Int3...
GetType Method System.Type...
GetTypeCode Method System.Type...
ToString Method System.Stri...

PS C:\>

In this example, we put the number 5 into $var and piped it to Get-Member. The results, as you can see,
indicate that $var represents an Int32 type of variable—that is, an integer—and that the Int32 type as
six methods we could use. Try putting the results of Get-Process into a variable, and then piping that
variable to Get-Member. What can you do with a process object, once you have one?

We’ll spend a lot more time on objects, variables, and piping in upcoming chapters, so if this didn’t
make a lot of sense right now, don’t worry. We’ll have more elaborate examples later to help make things
clearer.

Danger! Danger! Danger!
We’re often asked, “Is PowerShell dangerous?” To which we always answer, “Of course it is!” After all,
PowerShell is an administrative tool, capable of doing the same amount of damage as any such tool.
Imagine, for example, what you could do in Active Directory Users & Computers with an injudicious
mouse click and the Delete key on your keyboard!

But PowerShell does try and offer you some protection through two common parameters, -whatIf
and-confirm. Supported by almost any cmdlet that has the potential to do something damaging or
irreversible, these parameters give you an opportunity to see what the cmdlet would do, without actually
doing it, and a chance for you to change your mind. To see how they work, consider this:

Caution: Please don’t actually run this in PowerShell until you’ve read this entire section. Seriously.

PS C:\> Get-Process | Stop-Process

The first cmdlet there retrieves all running process, and then pipes, or sends, them to the second cmdlet,
which will stop them all one at a time. The result is that your computer crashes. Whoops. Now consider
this safer alternative:

PS C:\> Get-Process | Stop-Process -whatif

You can run the above safely because it won’t do anything. Instead, Stop-Process simply shows you what
it would have done, if you’d let it. This is an excellent way of testing a command line to see what would
happen, without actually letting anything happen that might get you into trouble with the boss. As a
next step, you might try this:

PS C:\> Get-Process | Stop-Process -confirm

Now, Stop-Process will stop before every process and ask you what you want to do. You’ll have the

34

Windows PowerShell: TFM • 2nd Edition

option to stop each process, one at a time, or skip ones that you’ve changed your mind about. This is
essentially the same as the “Are you sure?” dialog boxes you’d find in a graphical user interface, and it’s a
good way to help avoid potentially damaging situations. Remember, shells don’t’ damage systems, people
damage systems: By using -whatif and -confirm appropriately, you’ll help yourself avoid any unintended
damage to your computers.

Bottom Line: Do I Need to Know All This?
Yes. Look, we acknowledge that graphical user interfaces are easier to use than esoteric command-line
utilities. Hopefully, though, PowerShell’s consistent naming and architecture make its utilities less eso-
teric and easier to use. But, in the end, it’s all about the command line. A Windows administrator who
operates from the command line can create a hundred new users in the time it takes to create just one in
the graphical user interface. That’s an efficiency savings managers just can’t ignore. PowerShell lets you
perform tasks en masse that can’t be done at all with the GUI, like updating the password a particular
service uses to log on across dozens of computers.

If you’ve been with Windows since the NT 4.0 days, you may remember a time when earning your
Microsoft Certified Systems Engineer (MCSE) certification was not only a way to differentiate yourself
from the rest of the administrators out there, it was also a ticket to a $20,000 or more pay raise. Those
days, of course, are gone; today, management is looking at production-applicable skills to differentiate
the highly-paid administrators from the entry-level ones. And before long, PowerShell is going to be
the skill management is after. As an industry, we know it, because we’ve seen it: Try finding an IT man-
ager who’ll pay top dollar for a *nix administrator who can’t script in Perl, or Python, or some similar
language. Before long, Windows managers will have figured it out, too: A PowerShell-savvy administra-
tor can do more work, in less time and with fewer mistakes, than an administrator who doesn’t know
PowerShell. That’s the type of bottom-line, dollars-and-cents criteria that any smart manager can under-
stand. So, yes, you will need to know this stuff. Better to learn it now, when PowerShell is version 1.0.
Wait a few years and there will be even more to learn, and it’ll become increasingly difficult for someone
starting from scratch.

Is PowerShell a Good Investment of My Time?
Absolutely. That can be tough to believe, given all the scripting technologies Microsoft has inflicted on
the world in the past and then quickly abandoned: KiXtart, VBScript, batch files, JScript, and more—
the list goes on. But PowerShell’s different. First of all, PowerShell is currently in version 1.0 (and that’s
the version this book covers). But there will be a v2.0, and a v3.0… so while today’s PowerShell is far
from perfect, it’s pretty darn good, and in almost all ways it’s already better than any similar technology
we’ve had in the past.

But, as we already described, PowerShell is here to stay. Microsoft’s not going to be able to walk away
from PowerShell as easily as they did VBScript, primarily because so many products are being built on
top of PowerShell. With PowerShell embedded in Exchange Server 2007, the System Center family, and
future versions of Windows, well, it’s a safe bet that we’re going to be working with PowerShell for a
decade or more, at least. In computer time that’s about a century, so it’s definitely a good investment.

Where Do I Go from Here?
PowerShell is ready to use right out of the box; you don’t need to start writing scripts. The remainder of
Part I of this book, in fact, focuses on using the shell interactively to perform real administrative tasks.
What’s more, Part I introduces you to the core functionality of PowerShell that you’ll use if you ever
do venture into scripting. Part II gets into script, including all of the advanced things you can do with

Windows PowerShell Architecture and Overview

35

PowerShell’s simple, yet powerful scripting keywords and concepts. Part III of this book is more of a
“cookbook,” providing some simple, real-life examples of PowerShell scripts that perform real adminis-
trative tasks. We work from simpler to more complex, and show you how to work with various aspects of
Windows, such as files and folders, services, permissions, and more. Finally, Part IV of this book focuses
on intermediate and advanced topics, like working with databases, creating a graphical user interface by
using Windows Forms, and ways to extend PowerShell’s functionality.

Help and Additional Resources
If you ever get stuck, please know that www.ScriptingAnswers.com is available to help. It’s a free
online community for Windows scripting, which we’re on almost daily. We have a dedicated forum for
PowerShell questions, and we encourage you to post any questions you run across.

If you’re looking for additional training resources, visit www.ScriptingTraining.com, which offers a vari-
ety of instructor-led and self-paced training products related to Windows PowerShell.

Finally, we encourage you to download a trial version of PrimalScript from www.PrimalScript.com. This
all-in-one visual development environment supports Windows PowerShell scripting, as well as cmdlet
development, should you ever venture in that direction. It makes PowerShell scripting vastly easier and
more intuitive, and provides a lot of little tricks to help you construct scripts more quickly and efficiently.

If you’re interested in participating in the larger Windows PowerShell community, start at http://blogs.
msdn.com/powershell, which is the home of the Windows PowerShell Team Blog. There, you’ll find
many members of the Windows PowerShell product team—that’s right, real Microsoft employees—
sharing tips and tricks about their product. Our own blog, at http://blog.sapien.com, is also chock-full
of scripts, tips, techniques, news, and more, and we hope you’ll take a moment to check it out.

So, that’s our introduction! Now, let’s dive in and see how this PowerShell thing ticks.

PowerShell Drives

37

Chapter 2
PowerShell Drives

PowerShell introduces a unique concept called PSDrives, or PowerShell Drives. There’s an interest-
ing philosophy behind these: The team that created PowerShell knew that they’d have an uphill battle
convincing administrators to drop their graphical tools and turn to the command line. They figured the
switch would be easier if they could leverage the relatively small set of command-line skills that most
Windows administrators already had. PowerShell’s cmdlets, with their command-line parameters, are
one example of that. Most admins are already familiar with command-line utilities and switches, and
PowerShell simply expands on that familiarity, adding in better consistency for a shorter learning curve.
The other main skill that the team wanted to leverage was the ability to navigate a complex hierarchical
object store. Bet you didn’t know you had that skill, but you do!

Navigating a Hierarchical Object Store
Suppose you were using an operating system, like Windows that had the ability to store long strings of
text in some sort of container. That container would have various properties, such as a name, its size, and
information about when it was created and last accessed. You’d be able to view those properties at any
time, modify some of them, like the name, and access the contents of the container. Now suppose that
“container” was called a “text file” and you’ll realize that you already know all about them! You probably
even know how to manipulate them, to a degree, from the command line. You probably know how to
use Ren to rename a file, Type to see its contents, and Del to remove it from the storage device. In fact,
PowerShell supports all three of those commands by aliasing them to actual PowerShell cmdlets.

Now suppose your operating system had tens of thousands of files like these. You’d need some way to
organize them, right? Something like the hierarchy of folders and subfolders that you’ve doubtless seen
in Windows Explorer. And you probably know how to work with that hierarchy from the command

38

Windows PowerShell: TFM • 2nd Edition

line, too, using commands like Cd to change into a different folder, Cd .. to move up one level in the
hierarchy, Rmdir to remove a folder, Mkdir to create a new folder, and Dir to see a list of the objects
(files and subfolders) within a folder. And again, PowerShell supports these commands by aliasing them
to the appropriate PowerShell cmdlets.

In other words, you can jump right into PowerShell and navigate a complex, hierarchical, object-based
store, using the same commands and techniques that you’ve probably been using for years in something
like Cmd.exe.

So, why can’t all of Windows’ hierarchical stores be navigated in the same fashion?

More Stores than Just the File System
Windows has several different hierarchical stores aside from the file system. The registry, for example,
looks a lot like the file system, don’t you think? It has folders (registry keys) and files (registry settings),
and the files have contents (the values within settings). The Certificate Store in Windows is similar, too.
So is Active Directory, for that matter.

PowerShell lets you leverage all of these hierarchical stores using the same techniques you use to work
with the file system (well, not all—PowerShell v1.0 doesn’t ship with a way to make Active Directory
look like a file system). Open a PowerShell console and run Get-PSDrive. You’ll see a list of all the
“drives” attached to your PowerShell console, and you’ll see the provider that connects each drive. For
example, you’ll doubtless see drives C: and D:, and perhaps others, using the FileSystem provider—and
these drives are the ones you’re probably already familiar with. But you’ll also see drives HKCU: and
HKLM:, which use the registry provider. You’ll see a CERT: drive for the Certificate Store, and an
ENV: drive for environment variables. Other drives like Function: and Variable: connect to PowerShell’s
own internal storage mechanisms.

Try accessing the HKEY_LOCAL_MACHINE hive of the registry. How? The same way you’d access
your D: drive:

PS C:\> cd hklm:

Simply change to the HKLM: drive and you’re there. Need to see the keys that are available at list level?
Ask for a list:

PS HKLM:\> dir

Want to change into the SOFTWARE key? You can probably guess how that’s done:

PS HKLM:\> cd software
PS HKLM:\Software >

Note that PowerShell isn’t even case sensitive! Want to delete a registry key (be careful)? The Del com-
mand will do it. There is much more that you can do, and we’ll cover working with the registry in more
detail in “Managing the Registry.” But we wanted to demonstrate the flexibility of PSDrives.

PowerShell Drives

39

Mapping Drives
You can create your own drives using whatever providers you have installed. For example, to map your
Z: drive to \\Server\Share, you’d run something like this:

PS C:\> new-psdrive Z -psprovider FileSystem -root \\server1\share

The -Psprovider parameter tells PowerShell exactly which provider you’re using. You can even map to
local folders:

PS C:\> new-psdrive Z -psprovider FileSystem -root C:\test

This maps the Z: drive to the local C:\Test folder. Unfortunately, PowerShell v1.0 doesn’t provide any
means for using the other providers remotely. Mapping to a remote UNC is about your only option, and
that only works with the FileSystem provider. You can’t map to remote registries or certificate stores.
That’d be a useful capability, but it doesn’t exist in v1.0.

Any mappings you create in PowerShell are preserved only for the current session. Once you close
PowerShell, they’re gone. Also, your drive mappings don’t show up in Windows Explorer; they only exist
in PowerShell. If you need to re-create a particular mapping each time you open a PowerShell console,
then add the appropriate New-PSDrive command to a PowerShell profile (more on that in “Scripting
Overview”).

We should call special attention to the fact that PowerShell’s drives exist only within PowerShell itself. For
example, if you map the Z: drive to a UNC, and then try to launch Windows Notepad to open a file on
the Z: drive, it won’t work. That’s because the path is passed to Notepad, which has to ask Windows, not
PowerShell, to get the file. Since Windows doesn’t “have” the Z: drive, the operation will fail.

More Providers!
You’re not limited to the providers supplied by Microsoft. Go to www.codeplex.com and, in the search
box near the top of the page, type powershell and hit Enter. You’ll find a variety of projects that extend
PowerShell’s functionality. Some of these include providers for other hierarchical storage systems, allow-
ing you to “attach” them as PSDrives:

The PowerShell Community Extensions includes a provider for Active Directory.•

A SharePoint Provider connects SharePoint 2003 and 2007 as a PSDrive.•

A BizTalk provider connects BizTalk Server as a file system, including applications, orchestrations, •
and schemas.

The possibilities are endless. Microsoft also releases new providers, as appropriate, with server products,
and it’s currently expected that PowerShell v2.0 will include an officially-supported PSDrive provider
for Active Directory. Imagine being able to delete users using the Del command, or being able to navi-
gate organizational units (OUs) using Cd!

40

Windows PowerShell: TFM • 2nd Edition

PSDrives = Ease of Use
The beauty of the PSDrive model is that any hierarchical store supported by a PSDrive provider looks
like a file system. If Microsoft releases yet another hierarchical storage product in the future, it can be
“snapped” into PowerShell to look like a file system, meaning your investment in file system-manage-
ment commands will last you for a good, long time. You also have to be creative in using PSDrives. For
example, if you know how to write a batch file that copies a bunch of files from one place to another,
then you also know how to write a PowerShell script that copies registry keys from one place to another!
Every skill you already possess for managing files from the command line can now be re-purposed for
many different types of storage—and that’s a real benefit of using PowerShell.

Key Cmdlets for Windows Administration

41

Chapter 3
Key Cmdlets for Windows Administration

Now that you’ve had a quick overview of PowerShell and you know how to navigate your computer’s
various storage systems, it’s time to put PowerShell to use. Understand that the rest of this book will
build on these concepts, and in fact go into more depth on a lot of what we’ll show you right now, but
we want you to be able to do something useful with PowerShell as quickly as possible. Also, don’t think
that this chapter represents the sum total of PowerShell’s capabilities—nothing could be further from
the truth! Our plan right now is to just scratch the surface a little bit and introduce you to some key
cmdlets that you’ll use almost every day in Windows PowerShell. We want to show you how these cmd-
lets relate directly to production administration tasks. Ready to get started?

Cmdlets for Navigating Your System
We reviewed a bunch of these in “Windows PowerShell Architecture and Overview” and “PowerShell
Drives,” but we primarily focused on their aliases—such as Dir, Cd, Ls, MkDir, and so forth. Now, we’d
like to focus on the actual underlying cmdlets. Hey, you’re still welcome to type the aliases, if you prefer
them, but knowing the names for these particular cmdlets gives you some valuable insight into how
PowerShell thinks.

Listing Child Items
First up, remember that PowerShell thinks of everything as an object. A folder on your hard drive, for
example, is an object. Of course, folders have subfolders and files, too, which PowerShell thinks of as
children of the folder. That’s not an uncommon term: Many of us are accustomed to thinking of “parent
folders” and so forth, for example. So, if you’re working with a particular folder, meaning that PowerShell
is “inside” that folder, then the way you’d get a list of child items is simple: Get-ChildItem. Remember,

42

Windows PowerShell: TFM • 2nd Edition

PowerShell cmdlets always use a singular noun, so it’s not “Get-Children” or “Get-ChildItems,” it’s
Get-ChildItem. Typed alone, the cmdlet—or one of its aliases, such as Dir, Ls, or GCI—will return a
list of child items for the current object; that is, the folder the shell is currently “in.” Like this:

PS C:\test> Get-ChildItem

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\test

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 4/9/2007 11:10 AM subfolder
-a--- 3/20/2007 11:37 AM 435 demo1.ps1
-a--- 3/20/2007 11:46 AM 481 demo2.ps1
-a--- 3/20/2007 9:44 AM 354 demo3.ps1
-a--- 3/20/2007 9:44 AM 349 demo4.ps1
-a--- 3/20/2007 11:55 AM 676 scope.ps1
-a--- 3/19/2007 11:15 AM 1825 webcast.zip

By default, this information is displayed in a table format. If you ask for help on Get-ChildItem, how-
ever, you’ll see that it has a lot of additional options, which are exposed via parameters. For example,
one useful parameter is --recurse, which forces the cmdlet to retrieve all child items, even those deeply
nested within subfolders.

You can get the child items for a specific path, too:

PS C:\> gci -path c:\test

Notice that we’ve used the GCI alias, and specified the name of the --path parameter. The online help
indicates that the actual parameter name is optional, in this case, because the first parameter is posi-
tional. Therefore, the following would achieve the same thing:

PS C:\> dir c:\test

Of course, we used a different alias, but it doesn’t matter. The command works the same either way.
Other parameters let you filter the results. For example, consider this:

PS C:\test> dir -exclude *.ps1

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\test

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 4/9/2007 11:10 AM subfolder
-a--- 3/19/2007 11:15 AM 1825 webcast.zip

The -exclude parameter accepts wildcards, such as * and ?, and removes matching items from the result
set. Similarly, the -include parameter filters out everything except those items which match your criteria.
One important thing to remember about -include and -exclude is that they force the cmdlet to retrieve
all of the child items first, and then filter out the items you didn’t want. That can be slow, sometimes,
when a lot of items are involved. An alternate technique is to use the -filter parameter. Its use differs
depending on the PSDrive provider you’re working with, although with the file system it uses the famil-
iar * and ? wildcards, like this:

Key Cmdlets for Windows Administration

43

PS C:\test> dir -filter *.ps1

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\test

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 3/20/2007 11:37 AM 435 demo1.ps1
-a--- 3/20/2007 11:46 AM 481 demo2.ps1
-a--- 3/20/2007 9:44 AM 354 demo3.ps1
-a--- 3/20/2007 9:44 AM 349 demo4.ps1
-a--- 3/20/2007 11:55 AM 676 scope.ps1

Only items matching your criteria are included in the output. If that output contains too much informa-
tion, you can just have the cmdlet return the names of the child items:

PS C:\test> dir -filter *.ps1 -name
demo1.ps1
demo2.ps1
demo3.ps1
demo4.ps1
scope.ps1

Here, by combining the -filter and -name parameters, we’ve generated a very customized list: just the
names of the PowerShell scripts in this folder.

Occasionally, PowerShell can annoy you by attempting to interpret characters in a path as a wildcard.
For example, in the file system, it is used as a single character wild card:

PS C:\temp > dir t?st.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/23/2007 4:40 PM 44194 tast.txt
-a--- 8/23/2007 4:40 PM 44194 test.txt
-a--- 8/23/2007 4:40 PM 44194 tzst.txt
PS C:\temp >

However, within the Windows registry, the question mark character is a legitimate character. To see how
this works temporarily, create some new keys in the registry:

PS HKCU:\software > mkdir Micr?soft
PS HKCU:\software > mkdir Micr?soft\test1\

Now try the following:

PS HKCU:\> dir Micr?soft -recurse

You might be expecting a listing of registry keys underneath the key “Micr?Soft,” but PowerShell inter-
prets the question mark as a wildcard, and will instead search for any key like “MicrzSoft,” “Micr0soft,”
and so forth. If you run into this situation, just use a slightly different technique:

44

Windows PowerShell: TFM • 2nd Edition

PS HKCU:\> dir -literalPath Micr?soft -recurse

Here, the -literalPath parameter tells PowerShell to take the path literally—that is, to not try and inter-
pret any characters as wildcards. Now you should see only the specified key and its children.

Finally, remember that PowerShell is designed to work with a variety of different storage systems. When
you’re working with the CERT: drive—the “disk drive” that’s connected to your local certificate store—
Get-ChildItem supports a parameter named -codeSigningCert. It filters the display of child items to
those which are code-signing certificates rather than other types; this makes it easier to retrieve a code-
signing certificate when you want to digitally sign a PowerShell script file. For example:

PS CERT:\> get-childitem -codesign

Notice that we didn’t specify the full name of -codeSigningCert; we didn’t need to, because only a few
characters are needed to differentiate the parameter name from the other ones available (actually, we
could have used fewer characters, but this way it’s still relatively obvious what’s going on when you read
the command line).

Changing Location
Now that you know how to get a list of child items from a single location, you’ll also need to know
how to change locations. In MS-DOS and *nix, that’s done with the Cd command, short for “Change
Directory,” and in many operating systems the longer ChDir command will also work. PowerShell
aliases Cd to Set-Location.

Generally speaking, you just tell Set-Location where you want to go:

PS C:\> Set-Location -path CERT:

Or, using an alias and omitting the parameter name:

PS C:\> cd C:\Test\Subfolder

As with the Get-ChildItem cmdlet, you can also specify a literal path, if you don’t want PowerShell
interpreting wildcard characters:

PS C:\> cd -literal HKCU:\SOFTWARE\Manu?\Key

If you’re curious, you can provide wildcards if you don’t use the -literalPath parameter:

PS C:\> cd tes*

On our test system, the above changes into the C:\Test folder. You’ll get an error if the path you specify
resolves to more than one path; this is different than the Cmd.exe behavior of simply changing into the
first matching path in the event of multiple matches.

By the way, you will notice some quirks in how Set-Location behaves compared to Cmd.exe. For exam-
ple, the following will produce an error:

PS C:\test> cd..

Key Cmdlets for Windows Administration

45

In Cmd.exe, that would move up one directory level to C:\; in PowerShell it generates an error because
PowerShell needs a space between the command and any parameters:

PS C:\test> cd ..

That’s just a little thing you’ll have to get used to as you work with PowerShell. Before long, you’ll be
dropping your old Cmd.exe habits and picking up new PowerShell habits!

Cmdlets for Working with Items
Remember, PowerShell uses the word item to generically refer to the “stuff located in a PSDrive.” That
means an item could be a file, a folder, a registry value, a registry key, a certificate, an environment vari-
able, and so forth. For example, try this:

PS C:\> cd env:
PS Env:\> type systemroot
C:\Windows
PS Env:\>

This uses Set-Location (or its alias, Cd) to change to the ENV: drive—the “disk drive” that contains
all the environment variables on your computer. It then uses the Type alias—that’s the Get-Content
cmdlet, by the way—to retrieve the contents of the item named “systemroot.” In this case, that “item” is
an environment variable and Get-Content displays its contents: “C:\Windows.” So, you’ve just learned
a new cmdlet: Get-Content! That cmdlet has a lot of parameters that customize its behavior, allowing
you to filter the content as it’s being displayed, read only a specified number of characters, and so forth;
we won’t be covering the cmdlet in any more depth right now, but feel free to look it up in PowerShell’s
help if you like.

PowerShell has a variety of cmdlets for manipulating items:

Copy-Item•

Clear-Item•

Get-Item•

Invoke-Item•

New-Item•

Move-Item•

Remove-Item•

Rename-Item•

Set-Item•

Some of these will look familiar to you. For example, Remove-Item is an alias for s Del, and is used to
delete items, whether they are files, folders, registry keys, or whatever. The old Move, Ren, and Copy
commands are now aliases to Move-Item, Rename-Item, and Copy-Item. For example, here you can
see a directory listing that includes a folder named Subfolder; the Copy-Item cmdlet is then used to
create a copy of it named Newfolder:

PS C:\test> dir

46

Windows PowerShell: TFM • 2nd Edition

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\test

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 4/9/2007 11:10 AM subfolder
-a--- 3/20/2007 11:37 AM 435 demo1.ps1
-a--- 3/20/2007 11:46 AM 481 demo2.ps1
-a--- 3/20/2007 9:44 AM 354 demo3.ps1
-a--- 3/20/2007 9:44 AM 349 demo4.ps1
-a--- 3/20/2007 11:55 AM 676 scope.ps1
-a--- 3/19/2007 11:15 AM 1825 webcast.zip

PS C:\test> copy subfolder newfolder
PS C:\test> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\test

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 4/9/2007 11:37 AM newfolder
d---- 4/9/2007 11:10 AM subfolder
-a--- 3/20/2007 11:37 AM 435 demo1.ps1
-a--- 3/20/2007 11:46 AM 481 demo2.ps1
-a--- 3/20/2007 9:44 AM 354 demo3.ps1
-a--- 3/20/2007 9:44 AM 349 demo4.ps1
-a--- 3/20/2007 11:55 AM 676 scope.ps1
-a--- 3/19/2007 11:15 AM 1825 webcast.zip

The Copy-Item cmdlet is incredibly powerful, though. It supports a -recurse parameter which lets it
work with entire trees of objects, and supports the -include and -exclude filtering parameters, as well
as -filter. For example, the following will copy all files with a .PS1 filename extension to a folder named
Newfolder. It will not, however, copy files matching the wildcard pattern Demo?.ps1:

PS C:\test> copy *.ps1 newfolder -exclude demo?.ps1

The cmdlet also supports the -whatif and -confirm parameters we introduced in “Windows PowerShell
Architecture and Overview.” The Move-Item cmdlet supports a similar set of functionality. Even
Rename-Item supports the -whatif and -confirm parameters, so that you can test what it’s doing
before actually committing yourself.

Clear-Item works similarly to Remove-Item. However, it leaves the original item in place, and clears
out its contents, making it a zero-length file. That might not seem useful with files and folders, but it’s
definitely useful with other PSDrive providers, such as the registry, where Clear-Item can eliminate the
value from a setting but leave the setting itself intact. Similarly, Set-Item might not seem to have any
use in the file system, but it’s useful for changing the value of registry settings.

Last up is New-Item, which, as you might guess, creates an all-new item. Of course, you will need to tell
PowerShell what kind of item you’d like created, and that type of item must match the drive where the
item is being created. You can’t, for example, create a new file within one of the registry “drives,” because
the registry can’t store a file. For example, this will create a new file and place some text in it:

PS C:\> New-Item -path . -name example.txt -type "file" -value "hello!"

Key Cmdlets for Windows Administration

47

The -path parameter indicates where the item should be created, and the remaining parameters specify
its name, its type, and its initial contents. You might also specify “directory” to create a new directo-
ry—and, by the way, you’ve just found the cmdlet that’s used instead of the old MkDir command!
Unfortunately, PowerShell doesn’t contain an alias for MkDir, because an alias can’t specify parame-
ters—and in order to create a new folder, you must specify the -type directory parameter.

You don’t have to include parameter values like “file” in quotation marks, unless the value contains
a space. It doesn’t hurt to enclose them in quotation marks, though, and it’s not a bad habit to get
into, because quotes will always work, even if the value contains spaces.

Use PowerShell’s built-in help to explore some of the other options available to these cmdlets, and you’ll
soon be working with all types of items from the various PSDrives available to you.

Cmdlets for Working with Text Data
Although PowerShell itself always works with objects, as an administrator you’re often forced to work
with text, or strings of characters. For example, some administrators need to scan through Internet
Information Server (IIS) log files, searching for HTTP application errors, so that the errors can be
reported to the appropriate Web developers for resolution. This is a bit tricky: The HTTP error code
you’re after is 500, but you can’t just search for the string “500,” since it’ll also occur in page names, port
numbers, byte counts, and so forth. Here’s an example log file line with HTTP status code 500 logged:

2007-03-05 09:08:45 W3SVC122167217 DATAPIPE-OG0E5E 65.17.251.151 GET /forum/member_profile.asp
PF=|110|800a000d|Type_mismatch:_'CLng' 80 - 66.249.65.243 HTTP/1.1 Mozilla/5.0+(compatible;+Google
bot/2.1;++http://www.google.com/bot.html) - - www.sapien.com 500 0 0 641 248 93

The status code immediately follows the domain—in this case, “www.sapien.com 500” is the string we’re
after. The Select-String cmdlet can help quickly scan an entire log file looking for lines with this pat-
tern of characters:

PS C:\> get-content c:\sample.log | select-string "www.sapien.com 500" -simple

The -simple parameter tells Select-String that we’re not matching on a regular expression, but rather
a simple string of characters. The output is every line of the input that has a match for our pattern. We
could have stored those matches in a variable, if desired:

PS C:\> $matches = get-content c:\sample.log | select-string "www.sapien.com 500" -simple

We didn’t even have to use Get-Content to retrieve our text file, as Select-String provides a -path
argument, which loads the file automatically:

PS C:\> $matches = select-string "www.sapien.com 500" -simple -path c:\sample.log

Now, our $matches variable actually includes a collection of MatchInfo object, not just pure text. For
example, by treating it as a collection, we can refer to specific matches:

PS C:\> $matches.filename
sample.log
PS C:\> $matches.line
2007-03-05 09:08:45 W3SVC122167217 DATAPIPE-OG0E5E 65.17.251.151 GET /forum/member_profil

48

Windows PowerShell: TFM • 2nd Edition

e.asp PF=|110|800a000d|Type_mismatch:_'CLng' 80 - 66.249.65.243 HTTP/1.1 Mozilla/5.0+(com
patible;+Googlebot/2.1;++http://www.google.com/bot.html) - - www.sapien.com 500 0 0 641 2
48 93
PS C:\> $matches.linenumber
5416
PS C:\> $matches.path
C:\sample.log
PS C:\> $matches.pattern
www.sapien.com 500
PS C:\>

You can see that the Filename, Line, LineNumber, Path, and Pattern properties all return useful infor-
mation. Now, in this example our $matches variable only contained one match (the $matches.Count
property would verify this). But we can modify our search slightly:

PS C:\> $matches = select-string "500" -simple -path c:\sample.log

Now we’re not just getting HTTP 500 errors, but also anything with “500,” including byte counts and
other data. This time our log generated 503 matches:

PS C:\> $matches.count
503

And we can reference individual matches by using their index number:

PS C:\> $matches[0].linenumber
93

This tells us that our first match was on line 93. The Select-String cmdlet also works with regular
expressions; in fact, it’s primarily designed to work with regular expressions, although we’ve been using it
in a simpler fashion in our examples.

Cmdlets for Working with Windows
Even though current versions of Windows—Vista, XP, Server 2003, and Server 2008—aren’t specifi-
cally built on PowerShell, you can still perform a lot of administrative automation in PowerShell. That’s
because PowerShell comes pre-packed with cmdlets designed for administering specific portions of
Windows, and because PowerShell makes it easy to utilize Windows Management Instrumentation
(WMI), a key management technology that’s present in all modern versions of Windows.

Note
Keep in mind that files, folders, registries, and other aspects of Windows are also manageable
through Windows PowerShell, using the various cmdlets and techniques we discussed earlier in
this chapter. There aren’t specific cmdlets used to deal with files or folders, for example; you use
the “generic” Item cmdlets to move, copy, rename, delete, and create these items.

Our goal here is not an exhaustive exploration of these cmdlets. In fact, Part III of this book focuses on
using these and other cmdlets to perform administrative tasks. The goal right now is just to make you
aware of these cmdlets, since we’ll be using them in a lot of examples and samples in upcoming chapters.

Perhaps the easiest cmdlet to start working with is Get-Process. By itself, it returns a collection of all

Key Cmdlets for Windows Administration

49

the currently running processes on your computer. You can also give it a specific process name, or a
numeric process ID, and it’ll retrieve just the specified process. The following example retrieves a specific
process and stores it in the variable $psh. Then, it displays the path of the executable that the process is
running by using the Path property of the process object.

PS C:\test> $psh = get-process PowerShell
PS C:\test> $psh.path
C:\WINDOWS\system32\WindowsPowerShell\v1.0\powershell.exe

The other cmdlet used to work with processes is Stop-Process. It can also accept a process name or ID,
or you can simply give it a process object. It supports the -whatif and -confirm parameters we described
in “Windows PowerShell Architecture and Overview.” In the following example, we’re continuing to use
the $psh variable we created in the previous example. As you can see, we choose not to stop the process
after all. But by using the -confirm parameter, we can see what the Stop-Process cmdlet was doing:

PS C:\test> stop-process -inputobject $psh -confirm

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "powershell (2008)".
[Y] Yes [A] Yes to All [N] No [L] No to All
[S] Suspend[?] Help (default is "Y"): n
PS C:\test>

We’ll give you more examples of process management in “Managing Processes.”

Another straightforward cmdlet is Get-Service, which retrieves one or more Windows services. It sup-
ports the same -include and -exclude parameters that the various Item cmdlets did, allowing you to
filter the results that the cmdlet provides. You can specify either the name of the service you want, or its
display name. If you don’t specify any name, you get a collection of all installed services. For example,
we’ll retrieve the LanManServer service and display its status:

PS C:\> $svc = get-service lanmanserver
PS C:\> $svc.status
Running
PS C:\>

Other cmdlets used to work with services include Stop-Service, Start-Service, Suspend-Service,
Resume-Service, and Set-Service, which allows you to reconfigure a service. New-Service permits you
to create new services. For example, the following would stop our LanManServer service (stored in the
variable $svc)—would stop it, that is, if we hadn’t specified the -whatif parameter:

PS C:\> stop-service -inputobject $svc -whatif
What if: Performing operation "Stop-Service" on Target "Serv
er (LanmanServer)".

“Managing Services” provides examples of performing various service management tasks using
these cmdlets.

The last set basic cmdlet we’ll explore for now is for event log management. Get-EventLog retrieves an

50

Windows PowerShell: TFM • 2nd Edition

event log, such as the Application, System, or Security log. Not sure what logs are installed? Try this:

PS C:\> get-eventlog -list

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 512 7 OverwriteOlder 109 ACEEventLog
 20,480 7 OverwriteOlder 1,296 Application
 15,168 0 OverwriteAsNeeded 6 DFS Replic...
 20,480 0 OverwriteAsNeeded 0 Hardware E...
 512 7 OverwriteOlder 0 Internet E...
 512 7 OverwriteOlder 0 Key Manage...
 8,192 0 OverwriteAsNeeded 0 Media Center
 16,384 0 OverwriteAsNeeded 0 Microsoft ...
 16,384 0 OverwriteAsNeeded 117 Microsoft ...
 20,480 7 OverwriteOlder 25 Security
 20,480 7 OverwriteOlder 4,677 System
 15,360 0 OverwriteAsNeeded 345 Windows Po...

Yes, that last one is “Windows PowerShell.” Bet you didn’t realize Windows PowerShell had a log all
its own! When you retrieve a log, what you’re really retrieving is a collection of the log’s entries. For
example, here’s part of a Security log:

PS C:\> get-eventlog security

Index Time Type Source EventID Mess
 age
----- ---- ---- ------ ------- ----
 25 Apr 04 03:05 Succ Microsoft-Windows... 1108 T...
 24 Apr 04 03:05 Succ Microsoft-Windows... 1100 T...
 23 Mar 30 14:46 Succ Microsoft-Windows... 4616 T...
 22 Mar 30 14:46 Succ Microsoft-Windows... 4616 T...
 21 Mar 23 14:48 Succ Microsoft-Windows... 4616 T...
 20 Mar 23 14:48 Succ Microsoft-Windows... 4616 T...
 19 Mar 23 08:09 Succ Microsoft-Windows... 4616 T...
 18 Mar 23 08:09 Succ Microsoft-Windows... 1100 T...
 17 Mar 19 17:45 Succ Microsoft-Windows... 1108 T...
 16 Mar 19 17:45 Succ Microsoft-Windows... 1100 T...

We’re truncating our output throughout this book to save space and to prevent unnecessary line-
wrapping. When you run this on a full-sized monitor, you’ll see more comprehensive results.

Don’t want the full list of events? No problem!

PS C:\> get-eventlog security -newest 10

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 25 Apr 04 03:05 Succ Microsoft-Windows... 1108 The description for E...
 24 Apr 04 03:05 Succ Microsoft-Windows... 1100 The description for E...
 23 Mar 30 14:46 Succ Microsoft-Windows... 4616 The description for E...
 22 Mar 30 14:46 Succ Microsoft-Windows... 4616 The description for E...
 21 Mar 23 14:48 Succ Microsoft-Windows... 4616 The description for E...
 20 Mar 23 14:48 Succ Microsoft-Windows... 4616 The description for E...
 19 Mar 23 08:09 Succ Microsoft-Windows... 4616 The description for E...
 18 Mar 23 08:09 Succ Microsoft-Windows... 1100 The description for E...
 17 Mar 19 17:45 Succ Microsoft-Windows... 1108 The description for E...

Key Cmdlets for Windows Administration

51

 16 Mar 19 17:45 Succ Microsoft-Windows... 1100 The description for E...

“Managing Event Logs” provides samples for production event log management in PowerShell.

Just this handful of cmdlets provides a lot of administrative functionality. Of course, we haven’t even
talked about WMI, yet, or about ways of managing Directory Services from PowerShell—those topics
will come later in this Part. But right now you know enough cmdlets to start working with PowerShell
in more depth.

Cmdlets for Working with PowerShell
Another category of cmdlets is used to manipulate PowerShell itself, working with the shell’s variables,
commands, and so forth (and, remember, we covered commands to work with aliases in “Part I: Using
Windows PowerShell”).

Creating Output
PowerShell supports a number of different output streams. These can be kind of tough to visualize in
the console, because in the end, everything appears as text within the console window. But, if you can
imagine PowerShell being embedded inside another application—such as the Exchange Server 2007
graphical management console, where the PowerShell command line itself isn’t visible—you can start to
imagine how these different “streams” can be used. PowerShell provides a cmdlet for writing to each of
these streams:

Write-Debug•	 writes debugging information—primarily from a script. Whether or not the
information written to the debugging stream is displayed depends upon the contents of a special
PowerShell variable named $DebugPreference. Its default value, “SilentlyContinue”, suppresses
anything written to the debugging stream. Any other valid value—“Stop” , “Continue”, and
“Inquire”—will display the information written to the debugging stream. This cmdlet is use-
ful within scripts, where you can use it to output status information as the script runs. By setting
$DebugPreference to “SilentlyContinue”, you can then suppress the debug output without having
to remove the Write-Debug commands from the script.

Write-Error•	 writes information to the error stream. This cmdlet has a large number of parameters
that permit you to customize its output. Generally speaking, this should be used only when a script
needs to output an error message. By default, the console displays errors in red text, helping them
stand out from other output.

Write-Host•	 writes information to the application that is hosting PowerShell. Remember, when
you’re using PowerShell.exe, this is the hosting application, and it’s what provides you with the
command-line interface you’re accustomed to seeing. Other applications can host the PowerShell
engine, though, and what those applications do with Write-Host output may differ. We typically
use Write-Host only when we know our scripts will only be run in the PowerShell.exe host and
when we want to take advantage of the formatting options Write-Host offers, like alternate text
colors.

Write-Output •	 sends output to the “success” output stream. This has a number of uses. Within the
PowerShell.exe console host, the “success” output stream is usually just whatever output you want
the user to see. Within a PowerShell function, the “success” output stream is where you send the
information you want to return from the function when the function completes. From the com-
mand line, Write-Output may seem indistinguishable from Write-Host (except that Write-Host
offers some formatting options for text), but under the hood these two cmdlets do serve different

52

Windows PowerShell: TFM • 2nd Edition

purposes. Write-Host always creates output to be displayed in a host window. Write-Output
sends output to a specific output stream, which doesn’t, in all cases, display as text to the user.

Write-Progress•	 creates a progress bar within the PowerShell window. Whether or not the bar is
displayed depends upon the special $ProgressPreference variable. When set to “SilentlyContinue”,
then no progress bar is displayed; other values—“Continue”, “Stop”, and “Inquire”—will display
the progress bar. Note that you can generally display a progress bar only within a script or some
other construct; if you issue a single call to Write-Progress from the command line, the bar will
appear and disappear too quickly to even see.

Write-Verbose •	 writes a string to the hosting application’s “verbose” stream. The contents of the
special $VerbosePreference variable determines whether or not verbose output is actually displayed.
A value of “SilentlyContinue” suppresses output, while other values—“Continue”, “Stop”, and
“Inquire”—will display the output.

Write-Warning •	 writes a string to the hosting application’s “warning” stream. The contents of the
special $WarningPreference variable determines whether or not verbose output is actually dis-
played. A value of “SilentlyContinue” suppresses output, while other values—“Continue”, “Stop”,
and “Inquire”—will display the output. By default, warnings are displayed in reversed colors to help
make them stand out from other output.

Now, here’s where things may get confusing. In reality, none of the Write cmdlets actually produce out-
put. As we describe above, these cmdlets simply write to various different streams (or pipelines—same
thing). Rendering those streams—that is, turning the objects in the streams (which are technically called
pipelines) into text output—is the job of the various Out cmdlets:

Out-Default•	 is a placeholder; that is, it doesn’t really do anything except pass objects right along
to the shell’s default output cmdlet, Out-Host. The only reason Out-Default exists is in case a
developer wanted to create a different default behavior.

Out-Host•	 turns objects into strings and displays them in the console host; that is, it creates com-
mand-line output. The cmdlet does not pass any objects down the pipeline.

Out-Printer•	 turns objects into strings and sends them to the specified Windows printer. The cmd-
let does not pass any objects down the pipeline.

Out-File•	 turns objects into strings, and writes them to the specified file. Cmdlet parameters can
be used to append to an existing file rather than overwriting it, and so forth. The cmdlet does not
pass any objects down the pipeline.

Out-Null•	 doesn’t do anything with whatever it’s given; it just discards it. The cmdlet does not pass
any objects down the pipeline.

Out-String•	 turns objects into strings, and then passes them down the pipeline. This is the only
Out cmdlet that passes things down the pipeline. Out-String is designed to render objects into
strings so that they can be passed to older, external utilities that can work only with strings and not
with objects.

For example, when you run this:

Write-Output "Hello"

You’re really running a lot more than that: The cmdlet is writing the text “Hello” to the success pipeline;
since there are no other cmdlets in the pipeline, PowerShell sends everything to Out-Default, which
reroutes it right to the default output cmdlet, Out-Host. So, really, what you ran, even though you didn’t
realize it, is this:

Key Cmdlets for Windows Administration

53

Write-Output "Hello" | Out-Default | Out-Host

And that’s what resulted in the word “Hello” being displayed on the command line. Write-Host does
something similar, although it explicitly sends objects to Out-Host. So, this:

Write-Host Hello

Is actually running this:

Write-Host Hello | Out-Host

Generally speaking, the output cmdlets (those beginning with “Out”) are designed to have things piped
to them. They then take care of turning that output into strings of text and getting the text to whatever
output device—file, screen, printer, and so forth—that you’ve specified.

Here’s Another Way to Think About Writing and Output
All of the Write cmdlets, with the exception of Write-Host, are writing to a stream, or, more properly, a
pipeline. For example, Write-Output writes to the success pipeline, which is the pipeline that cmdlets
run on and is what we’re generally referring to when we use the term pipeline generically. Write-Debug
writes to the debug pipeline, Write-Error writes to the error pipeline, and so forth.

As we’ve already discussed, when PowerShell comes to the end of a pipeline, its default action is to ren-
der whatever’s in the pipeline into text and display it. More specifically, all of the pipelines are connected
to the Out-Default cmdlet. So, anything left at the end of a pipeline goes to Out-Default, which, as
we’ve described, sends the objects along to Out-Host. Out-Host then renders the objects into text and
displays the result.

All of the pipelines except the success pipeline can be suppressed by using the various Preference
variables we described earlier in this section. Essentially, the Preference variables put a “plug” into the
associated pipeline so that the content in that pipeline never reaches Out-Default, and, therefore, never
displays.

The Write-Host cmdlet is an exception: It does not write to a pipeline. Instead, it implicitly pipes its
output directly to Out-Host, displaying the output in the console window as text.

So, to summarize: The Write cmdlets (except Write-Host) put objects into a pipeline. Preference
variables determine whether or not a given pipeline (except the success pipeline) is connected to Out-
Default. The Out cmdlets are responsible for rendering pipeline objects into text and sending the text to
the associated output device, such as a printer, file, or the console window.

Because Out-File, Out-Printer, and the other Out cmdlets aren’t directly connected to a pipeline, the
only way to use them is to explicitly send objects their way. Technically, when you pipe objects to a cmd-
let such as Out-File, that pipeline is still connected to Out-Default, because the main success pipeline
always ends in Out-Default (which then sends whatever it received on to Out-Host). However, Out-
File, Out-Printer, Out-Host, and Out-Null don’t pass anything down the pipeline. So, even though
Out-Default is always implicitly called after every Out-Printer (for example), Out-Default is given no
objects to work with, and so it doesn’t create any visible result.

Clearing the Console
PowerShell also has a cmdlet named Clear-Host, which simply clears the hosting application’s win-
dow. Its alias, Cls, is one you may be familiar with from the Cmd.exe console or versions of MS-DOS.

54

Windows PowerShell: TFM • 2nd Edition

Clear-Host doesn’t have any parameters, and most people just run the Cls alias instead.

Accepting Input
PowerShell offers one cmdlet for accepting text input from the command line: Read-Host. You can
specify a text prompt, and whatever the user types is returned from the cmdlet and can be stored in a
variable, if you like, as follows:

PS C:\> $username = Read-Host "Type your username"

You can add the -asSecureString parameter to have whatever the user types encrypted as a secure
string—this is useful when you’re asking them to type a password or other sensitive information.
Whatever they type will be obscured by * characters on the screen, as shown here:

PS C:\> $var = read-host "Password" -assecurestring
Password: *********
PS C:\>

Secure strings are a bit more difficult to work with than normal strings of text. For example, you can’t
simply output the contents of a secure string, as shown here. Instead, PowerShell simply informs you
that the variable contains a secure string:

PS C:\> $var
System.Security.SecureString

The ConvertFrom-SecureString cmdlet can convert a secure string into an encrypted string, but all
you wind up with is the encrypted version, not the original cleartext that was typed:

PS C:\> convertfrom-securestring $var
01000000d08c9ddf0115d1118c7a00c04fc297eb01000000c3fa04e02c086948b8384ff78af7b2a0000000000
2000000000003660000a80000001000000099bf997ab82c7d2ed347fbc67cab7ed20000000004800000a00000
0010000000a91c2fa70a5ed0080b523499a48bc4f718000000a89c92a8fd1d1596f07c70c5c799b3bab1befd7
722a0b19514000000a15e2a9e566a7bb748a542080fa89b0aec580e5f

The purpose of secure strings is just that: They’re secure. They can be stored in files and retrieved for
later use (and certain PowerShell cmdlets accept a secure string as input and know how to retrieve the
cleartext version of the string).

Working with Variables
You don’t need to use cmdlets to work with variables. Creating a new variable is as easy as assigning a
value to it (and there’s currently no way to make PowerShell insist on advance variable declaration, as
some programming languages can do). For example:

PS C:\> $var = 5

Retrieving a variable is just as easy: Type it, and hit Enter. The default Out-Host cmdlet will display the
variable’s contents:

PS C:\> $var
5

Key Cmdlets for Windows Administration

55

But PowerShell does provide cmdlets for working with variables. In fact, it also has a PSDrive, since
PowerShell’s variable storage is exposed as a “disk drive” within the shell:

PS C:\> cd variable:
PS Variable:\> dir

Name Value
---- -----
Error {RuntimeException, RuntimeException, RuntimeException, ...
DebugPreference SilentlyContinue
PROFILE C:\Users\Don\Documents\WindowsPowerShell\Microsoft.Powe...
HOME C:\Users\Don
Host System.Management.Automation.Internal.Host.InternalHost
MaximumHistoryCount 64
MaximumAliasCount 4096
foreach
input System.Array+SZArrayEnumerator
StackTrace at System.Number.StringToNumber(String str, NumberSt...
names {computers.txt, computers.txt, computers.txt}
ReportErrorShowSource 1
ExecutionContext System.Management.Automation.EngineIntrinsics
true True
VerbosePreference SilentlyContinue
var 5
ShellId Microsoft.PowerShell
name DON-PC
false False

The variable-manipulation cmdlets are:

Clear-Variable•	 removes a variable’s value.

Get-Variable•	 retrieves the contents of a variable.

New-Variable•	 creates a new variable. Optionally, using parameters, you can assign a specific data
type to the variable and assign an initial value.

Remove-Variable•	 deletes a variable.

Set-Variable•	 changes the value of a variable.

Again, however, it’s unusual to see these cmdlets being used, since you can manipulate variables directly,
just as with most programming languages.

Working with Commands
PowerShell provides a few cmdlets for working with cmdlets, or commands. They are:

Get-Command•	 retrieves basic information about a cmdlet. If you don’t provide a cmdlet name,
then it retrieves a list of all cmdlets. You can use the -verb or
-noun parameters to just retrieve cmdlets related to a specific verb, such as “Get”, or a specific
noun, such as “Variable.” You can also just retrieve the cmdlets contained within a particular
snap-in by using the -pSSnapIn parameter.

Measure-Command•	 allows you to measure the time it takes to run script blocks or cmdlets.
Simply give it the command or script block you want to run, and it’ll output the execute time.

Trace-Command•	 traces the execution of a specific command. It has a wealth of parameters, which
you can review in the built-in help. This is primarily useful in debugging short script blocks that
contain a few cmdlets, so that you can trace the progress of the block’s execution.

56

Windows PowerShell: TFM • 2nd Edition

Working with Command-Line History
As you may know, PowerShell maintains a history of everything you type into the command line.
Normally, you access this history using the up and down arrow keys on your keyboard (we’ll cover that
and other tips in “Command History”). PowerShell also provides three cmdlets used to manipulate the
shell’s command-line history:

Add-History •	 adds a command to the command-line history. You can read a text file containing a
command-line history, for example, and pipe that to Add-History to re-create the command-line
history for a past PowerShell session.

Get-History•	 retrieves a list of what’s in the command-line history buffer. You could pipe this list
to one of the “Out” cmdlets to save the command-line history into a file, or, even better, use one of
the “Export” cmdlets (which we cover in Chapter 5) to create a CSV or XML file.

Invoke-History•	 runs commands from the session history. You specify the desired command by
using its history ID (viewable with Get-History). You can use the -whatif or -confirm parameters
to review what would happen and get confirmation, if desired.

Working with PSDrives
Finally, PowerShell provides three cmdlets for working with PSDrives:

Get-PSDrive•	 retrieves information about a specific PSDrive or, if you don’t specify one, lists all
available drives.

New-PSDrive•	 creates a new drive using the specified provider. Use this to, for example, map net-
work drives, as we showed you in the “PowerShell Drives” chapter.

Remove-PSDrive•	 removes an existing drive from the shell.

The PowerShell Pipeline

57

Chapter 4
The PowerShell Pipeline

Perhaps the most powerful concept in Windows PowerShell is its rich, object-oriented pipeline. You
may already be familiar with pipelines from the Cmd.exe console, or from MS-DOS. For example, one
common use was to pipe a long text file to the More utility, creating a paged display of text:

C:\> type myfile.txt | more

This technique evolved directly from *nix shells, which have used pipelines for years to pass, or pipe, text
from one command to another. In PowerShell, this concept takes on whole new meaning as cmdlets
work with rich objects rather than text, and pipe those objects to one another for great effect. For exam-
ple, consider this cmdlet:

PS C:\> get-process

Run that, and you get a list of processes. It’s easy to assume that what you’re seeing is the actual output
of the cmdlet; that is, it’s easy to think that the cmdlet simply produces a text list. But it doesn’t. The
cmdlet produces a set of Process objects. Because there’s nothing else in the pipeline waiting for those
objects, PowerShell sends them to the default output cmdlet (Out-Default, as we discussed in the
previous chapter). That cmdlet calls one of PowerShell’s formatting cmdlets, which examines various
properties of the objects—in the case of a Process, the Handles, Nonpaged Memory, Paged Memory,
Working Set, Virtual Memory, CPU, ID, and ProcessName properties—and creates a table of informa-
tion. So, the result that you see is certainly a text list, but you’re not seeing the intermediate steps that
created that text list from a collection of objects.

58

Windows PowerShell: TFM • 2nd Edition

By the Way…
How does PowerShell decide what properties to use when it converts objects into a text-based list-
ing? It’s not arbitrary: For most object types, Microsoft has pre-defined the “interesting” properties
that PowerShell uses. These pre-defined formats are in a file called DotNetTypes.format.ps1xml,
located in the PowerShell installation folder. Other pre-defined types are defined in other files,
such as FileSystem.format.ps1xml, Certificate.format.ps1xml, and so forth. These files are digitally
signed by Microsoft, so you can’t modify them unless you’re prepared to re-sign them using your
own code-signing certificate. However, you can build custom formats, a topic we cover in the chap-
ter “Creating Custom Formats.”

Piping Objects from Cmdlet to Cmdlet
Once you have a collection of objects, however, you can do a lot more than let PowerShell create text
lists. For example, take a look at the help for the Stop-Process cmdlet:

PS C:\> help stop-process

NAME
 Stop-Process

SYNOPSIS
 Stops one or more running processes.

SYNTAX
 Stop-Process [-id] <Int32[]> [-passThru] [-whatIf] [-confirm] [<CommonParameters>]

 Stop-Process -name <string[]> [-passThru] [-whatIf] [-confirm] [<CommonParameters>]

 Stop-Process -inputObject <Process[]> [-passThru] [-whatIf] [-confirm] [<CommonParame
 ters>]

DETAILED DESCRIPTION
 The Stop-Process cmdlet stops one or more running processes. You can specify a proces
 s by process name or process ID (PID), or pass a process object to Stop-Process. For
 Get-Process, the default method is by process name. For Stop-Process, the default met
 hod is by process ID.

RELATED LINKS
 Get-Process, Start-Process

REMARKS
 For more information, type: "get-help Stop-Process -detailed".
 For technical information, type: "get-help Stop-Process -full".

Notice that there are three ways in which Stop-Process can be used? If the first parameter is an inte-
ger, the cmdlet assumes you’ve given it a process ID, and it tries to stop that process ID. If you give it a
string, it tries to stop a process with that name. Or, if you give it a Process object, it will try to stop the
process represented by that object. The help indicates that the -id parameter name is optional, but that
-name or -inputObject, should you use those, are required. In other words, you can do this:

PS C:\> stop-process 505

The PowerShell Pipeline

59

But you can’t do this:

PS C:\> stop-process notepad

Instead, if you’re providing a string, you need to provide the parameter name:

PS C:\> stop-process -name notepad

That’s because only the -id parameter is positional; any other parameter, like -name, needs to be speci-
fied, which is easy enough to do from the command line.

Finding Cmdlets That Accept Pipeline Input
That’s all well and good from the command line, but from within the pipeline, things are somewhat dif-
ferent. Inside the pipeline, only certain parameters can accept input. To see this, you need to ask for full
help (using the -full parameter of the help command). Here’s an excerpt:

PARAMETERS
 -id <Int32[]>
 Specifies the process IDs of the processes to be stopped. To specify multiple IDs
 , use commas to separate the IDs. To find the PID of a process, type "get-process
 ". The parameter name ("-Id") is optional.

 Required? true
 Position? 1
 Default value Null
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? false

 -inputObject <Process[]>
 Stops the processes represented by the specified process objects. Enter a variabl
 e that contains the objects or type a command or expression that gets the objects
 .

 Required? true
 Position? named
 Default value
 Accept pipeline input? true (ByValue)
 Accept wildcard characters? False

Notice that the -id parameter can accept input from the pipeline, as can the -inputObject parameter. That
means these parameters can accept pipeline input without specifying a parameter name. More impor-
tantly, -inputObject can accept pipeline input “ByValue”, meaning it can accept entire Process objects.
The -id parameter can only accept pipeline input if that input is actually a property named “ID”—that’s
what “ByPropertyName” means. In other words, if you can produce an object that has an ID property
(other than a Process object), and that ID property’s value corresponds to the ID of a process you want
stopped, then you can pipeline that object into Stop-Process. Sound confusing? It is.

The practical upshot of this is that, when you’re reading the full help, look for parameters that can accept
pipeline input “ByValue”. Those are the ones you want to work with. In this case, it tells us that we can
pipe a bunch of Process objects to Stop-Process, and it’ll stop those processes. But where do we get a
collection of Process objects?

PS C:\> get-process

60

Windows PowerShell: TFM • 2nd Edition

So, all we have to do is pipe those to Stop-Process:

Caution: Don’t run the following on your computer.

PS C:\> get-process | stop-process

And the computer will crash as its critical processes are stopped in their tracks. Oops. It’s a good
demonstration, though, right? The point is that you can continue piping objects down the pipeline to
keep doing things with them. For example, most cmdlets that do something with an object also have a
-passthru parameter, which tells the cmdlet to do whatever it’s going to do, and then continue passing
the objects down the pipeline. So, you could do this:

PS C:\> Get-service | stop-service -passthru | out-file c:\stopped.txt

This will retrieve a collection of Service objects, stop them, and then output a text list to a file named
C:\Stopped.txt. Yes, it’s unlikely you’d want to stop all of a server’s services all at once—so how about
just the ones start with the letter “A”?

PS C:\> Get-service -include a* | stop-service -passthru | out-file c:\stopped.txt

True, this technique would be more useful if you had a more powerful way of filtering the objects that
Get-Service retrieves—and we’ll discuss more powerful ways in the very next chapter, in fact—but this
example serves the illustrate what the pipeline can do for you. By stringing together cmdlets that suc-
cessively refine a collection of objects, you can accomplish extremely powerful administrative tasks with
a single line—what the PowerShell community has taken to calling one-liners. One-liners can literally
replace hundreds of lines of VBScript code, or tens of hours of manual effort.

The Pipeline Enables Powerful One-Liners
Okay, we’ll jump ahead of ourselves a bit and give you a really good example:

PS C:\ > get-wmiobject -query "Select Name,StartMode,State from win32_service
>> where startmode<>'disabled' AND state='Stopped'" | select Name | start-service
>>

This retrieves all services using Get-Wmiobject that have not been disabled and are not running. The
names of the services are extracted using the Select cmdlet and then the list of stopped services is
passed to Start-Service. Here’s another one:

PS C:\>$svcname=Read-Host "Enter a service name" ; get-process | where {$_.id -eq (Get-WmiObject
win32_service | where {$_.name -eq $svcname}).ProcessID} | select -property StartTime

Yes, that’s all one line of text. It asks you for a service name, and then gets a list of all processes. It fil-
ters out all the processes except the one that matches the service name you typed—it actually executes
Get-WmiObject to get the process ID of the service you specified). Then it retrieves just the StartTime
property—the practical upshot is that you can see exactly when the specified service started. Yes, it’s
pretty complicated, but you assemble these things one step at a time. For example, the first task is to get
a service name:

The PowerShell Pipeline

61

PS C:\> $svcname=Read-Host "Enter a service name"

Easy enough. That stores the service name in the variable $svcname. Next, we want to start a new pipe-
line: Notice in the original command where the semicolon occurs? That tells PowerShell to begin a new
logical line, as if you’d hit Enter. So, technically, this is a two-liner. Given the service name in $svcname,
though, the rest occurs on one line. So, we know we need to get a Process object in order to get a start
time, so how do we get Process objects?

PS C:> get-process

Now, we only want the process that represents the specified service. So, we need to make a call to Get-
WmiObject (we cover that in an upcoming chapter—we said we were getting ahead of ourselves, here!)
to retrieve the desired service:

PS C:\> Get-WmiObject win32_service

Well, okay, that gets all the services. Let’s filter that down to get just the one we want:

PS C:\> Get-WmiObject win32_service | where { $_.name -eq $svcname }

That $_ variable, by the way, is a placeholder for “the current pipeline object.” So, Get-WmiObject
will retrieve all instances of the win32_service class, or services, and then Where-Object (or its alias,
Where) will look at each one to see if its ID property matches the process ID of the service we retrieved
from WMI. Don’t worry if this a little confusing. We’ll go over the Where cmdlet in the next chapter.

The upshot is that the Where cmdlet gets rid of all services except the one we’re looking for. Specifically,
what we’re interested in from our service is its process ID. So, the entire call to Get-WmiObject will
result in only one object being returned. Therefore, we can bundle that whole call into parentheses to
treat it as a standalone object, and just refer to the process ID property:

PS C:\> (Get-WmiObject win32_service | where { $_.name -eq $svcname }).ProcessID

And now we combine that with our original call to Get-Process so that we can filter out the processes
that don’t have the process ID we’re after.

PS C:\> get-process | where {$_.ID -eq (Get-WmiObject win32_service | where { $_.name -eq $svcname
}).ProcessID}

Once we’ve gotten the process we’re after, we’ll just select the StartTime property using Select-Object,
or its alias, Select:

PS C:\> get-process | where {$_.ID -eq (Get-WmiObject win32_service | where { $_.name -eq $svcname
}).ProcessID} | select -property StartTime

And that’s it. Yes, it’s a bit funny-looking, and it definitely takes some time to wrap your head around it.
Not to mention the fact that we haven’t really explored some of these cmdlets yet! But the point is that
complex one-liners are constructed on cmdlet at a time, which is a pretty easy way to work, since you
can immediately see your results and decide what step will be next in order to get to your final goal.

62

Windows PowerShell: TFM • 2nd Edition

The Pipeline Enables Simple Output Redirection
For now, don’t worry about complex one-liners. They’ll come to you naturally enough as you learn more
of PowerShell’s cmdlets. For now, remember that the pipeline can be a great way to create output. For
example, in the previous chapter, we mentioned that you could export a command-line history to a text
file. Well, here’s how:

PS C:\> Get-History | Out-File C:\History.txt

That retrieved the command history and piped it to the Out-File cmdlet. See, as you learn more cmd-
lets, you’ll learn more techniques for making the pipeline useful! And the next chapter is all about some
cmdlets designed to work almost entirely within the pipeline.

The End of the (Pipe)line
What you rarely see is the end of the pipeline. Invisibly connected to the end of the pipeline is the Out-
Default cmdlet, which basically does nothing except transfer objects to Out-Host. The Out-Host
cmdlet is both clever and stupid: It’s stupid, in that the only thing it knows how to deal with are format-
ting directives which tell it what text to display; it’s smart in that, if it doesn’t get formatting directives,
it’ll send whatever it does get to a Format cmdlet first.

So, here’s a set of basic rules to remember about the end of the pipeline:

If you end a pipeline by using an Out cmdlet (like • Out-File), then the Out cmdlet doesn’t pass
anything else down the pipeline (unless it’s Out-String, which is definitely an exception). So,
Out-Default is still there at the end, but it has nothing to work with and so nothing else happens.

If you end a pipeline with a Format cmdlet, then the pipeline contains formatting directives. •
Out-Default passes them to Out-Host, which loves formatting directives—it does whatever the
directives say, thus producing text.

If you don’t end the pipeline with either a Format cmdlet or an Out cmdlet, then whatever’s in the •
pipeline goes to Out-Default, which turns right around and sends them to Out-Host. Because
Out-Host doesn’t see formatting directives, it gets scared and calls on PowerShell’s formatting
system to format the pipeline objects. Out-Host then gets the formatting directives it wants, and
displays whatever they tell it to.

In other words, all pipelines end in Out-Default (which, practically speaking, means they end in Out-
Host). The various Out cmdlets all work with formatting directives, so if they see “raw” objects, they’ll
ask PowerShell to format them, first. That means even a simple cmdlet:

PS C:\> Get-Process

This is really running four cmdlets: First, Get-Process. Then, Out-Default. Then, Out-Host. Then, a
formatting cmdlet—PowerShell would choose Format-Table in this case.

Cmdlets to Group, Sort, Format, Export, and More

63

Chapter 5
Cmdlets to Group, Sort, Format, Export, and More

Because PowerShell’s output is almost entirely text-based, it’s easy to mistake it for a text-based shell.
However, what is really happening behind the scenes is that PowerShell is using .NET and cmdlets to
carry out your commands and manipulate data as needed. Only when all processing is complete is the
final data formatted for textual presentation. However, there are many things you can do to control how
the data is ultimately presented.

Formatting
Just about every PowerShell cmdlet is designed to produce textual output. The cmdlet developer cre-
ates a default output format based on the information to be delivered. For example, the output of
Get-Process is a horizontal table. However, if you need a different output format, PowerShell has a few
choices that are discussed below.

Formatting Rules
PowerShell uses a fairly clever system of priorities to determine which formats it uses. Refer to
“Formatting Rules” for more information on these rules, if you’re interested. You don’t need to know
these rules in order to use PowerShell’s formatting capabilities.

64

Windows PowerShell: TFM • 2nd Edition

Format-List
This cmdlet produces a columnar list. Here’s a sample using Get-Process:

PS C:\> get-process | format-list
Id : 720
Handles : 63
CPU : 0.1301872
Name : ApntEx

Id : 584
Handles : 105
CPU : 0.5107344
Name : Apoint

Id : 404
Handles : 130
CPU : 0.4706768
Name : avgamsvr

Id : 444
Handles : 205
CPU : 2.1130384
Name : avgcc
...

Even though we’ve truncated the output, you get the idea. Instead of the regular horizontal table, each
process and its properties is listed in a column. As we’ve pointed when this cmdlet has been used in
other examples, the Format-List doesn’t use all the properties of an object; PowerShell instead follows
its internal formatting rules, which may include using a view, which is essentially a set of pre-selected
properties. Microsoft provides views for most of the common types of information you’ll work with,
and in many cases provides both table- and list-style views so that PowerShell doesn’t just pick random
properties for its output.

If you prefer more control over what information is displayed, you can use the
-property cmdlet parameter to specify the properties:

PS C:\> get-process winword |format-list -property '
>> name,workingset,id,path
>>

Name : WINWORD
WorkingSet : 32522240
Id : 564
Path : C:\Program Files\Microsoft Office\OFFICE11\WINWORD.EXE

PS C:\>

In this example we’ve called Get-Process seeking specific information on the WinWord process.

Cmdlets to Group, Sort, Format, Export, and More

65

How Did You Know?
You might wonder how we knew what properties can be displayed when we use the
-property cmdlet. To review, it is important to get to know the Get-Member cmdlet. This command
lists all the available properties for the process object:

get-process | get-member

Different cmdlets and objects have different properties, especially in WMI.

Note that if you don’t specify any properties, Format-List either uses a pre-defined view, or if none
exists, Format-List looks in PowerShell’s Types.ps1xml type definition file to see if any properties are
marked as “defaults.” If some properties are marked as defaults, and then those properties are used to
construct the list. Otherwise, all of the object’s properties are used to construct the list. To force the
cmdlet to list all of an object’s properties, use * for the properties list:

PS C:\> get-process | format-list *

Format-Table
Just as there are some cmdlets that use a list format as the default, there are some that use a table format.
Of course, sometimes you may prefer a table. The format of this Get-WmiObject expression produces a
list by default:

Why a list?
Why does this cmdlet produce a list by default? There are two possibilities: Microsoft provided a
pre-defined view which happens to be a list, or Microsoft provided no pre-defined view. In the latter
case, PowerShell selected the list type because the object has more than five properties—if it had
fewer, PowerShell would select a table under the same circumstances.

PS C:\> Get-WmiObject -class win32_logicaldisk

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 2815565824
Size : 15726702592
VolumeName : Server2003

DeviceID : D:
DriveType : 5
ProviderName :
FreeSpace :
Size :
VolumeName :

DeviceID : E:
DriveType : 3
ProviderName :
FreeSpace : 2891620352
Size : 24280993792
VolumeName : XP

66

Windows PowerShell: TFM • 2nd Edition

This is not too hard to read. However, here’s the same cmdlet using the Format-Table:

PS C:\> Get-WmiObject -class win32_logicaldisk |format-table

DeviceID DriveType ProviderName FreeSpace Size VolumeName
-------- --------- ------------ --------- ---- ----------
C: 3 2815565824 15726702592 Server2003
D: 5
E: 3 2891620352 24280993792 XP

PS C:\>

Since the ProviderName property is blank, we can clean-up this output even more by using -property as
we did with Format-List:

PS C:\> Get-WmiObject -class win32_logicaldisk |format-table '
>> -property deviceID,freespace,size,volumename,drivetype
>>

deviceID freespace size volumename drivetype
-------- --------- ---- ---------- ---------
C: 2815565824 15726702592 Server2003 3
D: 5
E: 2891239424 24280993792 XP 3

PS C:\>

Notice that the property headings are in the same order that we specified in the expression. They also
use the same case. You can use * for the property list. However, doing so will often create unreadable
output, because PowerShell tries to squeeze all the properties into a single screen-width table, and most
objects simply have too many properties for that to work out well. For example, you can see here how
PowerShell has made the column headers vertical in an attempt to fit as much as possible, still dropped
20 columns, and still created essentially useless output. What you’re seeing after the vertical-ized column
headers are the first character of the value that would normally appear in each column—the columns, in
other words, are only one character wide.

Have fun
Try this with PowerShell’s colors set to a black background and a green text color. Looks a bit like a
screen saver from “The Matrix.”

Cmdlets to Group, Sort, Format, Export, and More

67

PS C:\> get-process | ft *

WARNING: 20 columns do not fit into the display and were removed.

_ N H V W P N P C C F P D P I P H W P P V T B E H E H M M M M M M M N N P P P P P P P P P
_ a a M S M P a o P i r e r d r a o a r i o a x a x a a a a a a i o o o a a a e e e e e e
N m n M t m U l o s o i n r g i r t s i s i n c i i i x n d n n g g g a a a a a a
o e d h p e d c d o d k e v t a e t E t d h n n n W W u p p e e e k k k k k k
u l a V u r u r l i d a u l P C x T l i W W M o o l a a d d d P P W W V V
n e n e c i c i e n M t a P r o i i e n i i o r r e g g M S S a a o o i i
N s y r t p t t C g e e l r i d t m e n n d k k s e e e y y g g r r r r
a s V t y o S m M M o o e e e N d d u i i d d m s s e e k k t t
m i e i C u e o e e c r d a o o l n n S S o t t d d i i u u
e o r o l n t r m m e i m w w e g g y y r e e M M n n a a
 n s n a t y o o s t e H T S S s s y m m e e g g l l
 i s S r r s y a i e e t t S M M m m S S M M
 o s i y y o n t t t e e i e e o o e e e e
 n z S S r d l m m z m m r r t t m m
 e i i T l e M M e o o y y 6 o o
 z z i e e e 6 r r S S 4 r r
 e e m m m 4 y y i i y y
 e o o S S z z S S
 r r i i e e i i
 y y z z 6 z z
 S S e e 4 e e
 i i 6 6
 z z 4 4
 e e
 6
 4
- -
P A 5 0 4 0 2 4 5 4 0 0 0 8 . 0 2 2 0 6 6 4 4 4 4 4 4
P A 2 4 8 8 4 6 2 8 8 8 4 8 . 0 4 4 8 2 2 4 4 4 4 2 2
P A 6 6 6 0 8 C L 0 4 4 T T 4 N 6 6 0 0 6 0 8 F 1 . 0 S 1 2 { 8 8 0 6 6 8 8 6 6 0 0
P c 6 8 0 8 4 0 6 0 8 8 8 3 . 0 4 4 8 4 4 2 2 0 0 4 4

Format-Table lets you tweak the output by using -autosize, which automatically adjusts the table out-
put based on the date:

PS C:\> Get-WmiObject -class win32_logicaldisk |format-table '
>> -property deviceID,freespace,size,volumename,drivetype -autosize
>>

deviceID freespace size volumename drivetype
-------- --------- ---- ---------- ---------
C: 2815565824 15726702592 Server2003 3
D: 5
E: 2890489856 24280993792 XP 3

PS C:\>

This is the same command as before, except it includes autosize. Notice how much neater the output is.
Using -autosize eliminates the need to calculate how long lines will be, add padding manually, or use
any scripting voodoo.

68

Windows PowerShell: TFM • 2nd Edition

Format-Wide
Some cmdlets, like Get-Service, produce a long list of information that scrolls off the console screen.
Wouldn’t it be nice to get this information in multiple columns across the console screen? We can
accomplish this with the Format-Wide cmdlet:

PS C:\> get-service |format-wide

Alerter ALG
AppMgmt aspnet_state
AudioSrv Avg7Alrt
Avg7UpdSvc AVGEMS
BAsfIpM BITS
Browser CiSvc
ClipSrv clr_optimization_v2.0.50727_32
COMSysApp CryptSvc
CVPND DcomLaunch
Dhcp dmadmin
dmserver Dnscache
ERSvc Eventlog
EventSystem FastUserSwitchingCompatibility
GrooveAuditService GrooveInstallerService
GrooveRunOnceInstaller helpsvc
HidServ HTTPFilter
…

If you prefer more than two columns, which is the default, use the -column parameter to specify the
number of columns:

PS C:\> get-service |format-wide -column 3

Alerter ALG AppMgmt
aspnet_state AudioSrv Avg7Alrt
Avg7UpdSvc AVGEMS BAsfIpM
BITS Browser CiSvc
ClipSrv clr_optimization_v2.0.5... COMSysApp
CryptSvc CVPND DcomLaunch
Dhcp dmadmin dmserver
Dnscache ERSvc Eventlog
…

However, don’t get carried away. The more columns you specify, the more you’ll find the output getting
truncated.

The Format-Wide cmdlet also lets you specify which single property you would like to display:

PS C:\> get-service |format-wide displayname -column 3

Alerter Application Layer Gatew... Application Man...
ASP.NET State Service Windows Audio AVG7 Alert Mana...
AVG7 Update Service AVG E-mail Scanner Broadcom ASF IP...
Background Intelligent . Computer Browser Indexing Service
ClipBook .NET Runtime Optimizati... COM+ System App...
Cryptographic Services Cisco Systems, Inc. VPN... DCOM Server Pro...
DHCP Client Logical Disk Manager Ad... Logical Disk Ma...
DNS Client Error Reporting Service Event Log

Cmdlets to Group, Sort, Format, Export, and More

69

COM+ Event System Fast User Switching Com... Groove Audit Serv
Groove Installer Service GrooveRunOnceInstaller Help and Support
…

Unlike Format-Table and Format-List that allow multiple properties, Format-Wide permits only a
single property. In this example, we’ve specified the service’s display name.

Format-Custom
PowerShell provides the ability for you to display data in a custom format; that is, in neither a list nor
a table. Unfortunately it requires defining a new format in a custom XML file, then using the Update-
FormatData cmdlet to register it in PowerShell. Frankly, for most administrators, this cmdlet requires
more effort than it’s worth since it requires a certain degree of knowledge about .NET classes. We do
cover custom format creation in the chapter “Creating Custom Formats,” in case you’re interested (you
can also create custom list, wide, and table formats, if you like).

If you don’t specify a specific custom view using the -view parameter, then Format-Custom will default
to a class view of an object. In this view, you can see the exact structure of the object you’re trying to
display, including any child objects. The -depth parameter can limit how deeply into an object hierarchy
Format-Custom will go; for example, displaying your hard drive’s root folder would normally generate
a very large and deep list, since your root folder contains every other file and folder on that drive. Here’s
an excerpt:

PS C:\> dir \ | format-custom -depth 1

class DirectoryInfo
{
 PSPath = Microsoft.PowerShell.Core\FileSystem::C:\DRIVERS
 PSParentPath = Microsoft.PowerShell.Core\FileSystem::C:\
 PSChildName = DRIVERS
 PSDrive =
 class PSDriveInfo
 {
 CurrentLocation =
 Name = C
 Provider = Microsoft.PowerShell.Core\FileSystem
 Root = C:\
 Description = Local
 Credential = System.Management.Automation.PSCredential
 }
 PSProvider =
 class ProviderInfo
 {
 ImplementingType = Microsoft.PowerShell.Commands.FileSystemProvider
 HelpFile = System.Management.Automation.dll-Help.xml
 Name = FileSystem
 PSSnapIn = Microsoft.PowerShell.Core
 Description =
 Capabilities = Filter, ShouldProcess
 Home = C:\Users\Don
 Drives =
 [
 C
]

 }
 PSIsContainer = True
 Mode = d----
 Name = DRIVERS

70

Windows PowerShell: TFM • 2nd Edition

 Parent =
 class DirectoryInfo
 {
 Mode = d--hs
 Name = C:\
 Parent =
 Exists = True
 Root = C:\
 FullName = C:\
 Extension =
 CreationTime = 11/2/2006 5:18:56 AM
 CreationTimeUtc = 11/2/2006 10:18:56 AM
 LastAccessTime = 4/19/2007 10:26:56 AM
 LastAccessTimeUtc = 4/19/2007 3:26:56 PM
 LastWriteTime = 4/19/2007 10:26:56 AM
 LastWriteTimeUtc = 4/19/2007 3:26:56 PM
 Attributes = Hidden, System, Directory
 }
 Exists = True

As you can see, the output indents child objects slightly and provides a very “under the hood” look at
the objects you’re viewing. Normally, there’s little use for this view; in some instances it can be useful for
debugging or what we call “object spelunking,” but, for the most part, you’ll only use Format-Custom if
you have a custom view definition that you want the cmdlet to use.

Formatting Rules Overview: When Does PowerShell Use a List or Table?
PowerShell will automatically format with one of the Format cmdlets, depending on a couple of things.
First, if PowerShell has a custom output view for the first object in the pipeline, it’ll use that view—and
the view itself defines whether it’s a table, list, custom, or wide view—and PowerShell comes with tons
of custom views for many different types of objects.

If there is no custom view, however, PowerShell will use Format-List if the first object in the pipe-
line has five or more properties; otherwise, it’ll send the output to Format-Table. If Format-Table is
selected, then it’ll use the properties of the first object in the pipeline to form the table columns. So, if the
first object has three properties and every other object in the pipeline has ten properties, you’ll get a
three-column table.

Note that PowerShell’s formatting files—or a custom formatting file you create—can contain multiple
different possible views for a given type of data. We’ll get into these files in more detail in “Creating
Custom Formats.” For now, though, you need to know that PowerShell’s formatting files—or custom
formatting files you create—can contain more than one “view” for a given data type. Normally, when you
explicitly use Format-Table, Format-List, Format-Wide, or Format-Custom, PowerShell will select
the first registered view that matches that layout option. That is, if you send data to Format-Table,
PowerShell will find the first table-style view and use it.

All of the formatting cmdlets, however, support a -view parameter, which lets you specify an alternate
view. For example, normally Get-Process returns a view like this:

PS C:\> get-process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 135 5 2680 4296 56 584 AcPrfMgrSvc
 260 7 5856 6064 74 2476 AcSvc
 86 6 10140 4972 73 0.16 3044 ACTray
 82 6 10236 4836 72 0.16 3048 ACWLIcon

Cmdlets to Group, Sort, Format, Export, and More

71

 109 3 11300 9136 43 1236 audiodg
 106 5 8700 4500 70 0.09 2892 AwaySch

That’s a table view. Yes, it has more than five properties, but it’s a view specifically registered for Process
objects, and PowerShell will always use a registered, type-specific view if one is available. However, you
could specify an alternate view:

PS C:\> get-process | ft -view priority

ProcessName Id HandleCount WorkingSet
----------- -- ----------- ----------
AcPrfMgrSvc 584 135 4399104
AcSvc 2476 260 6205440

 PriorityClass: Normal

ProcessName Id HandleCount WorkingSet
----------- -- ----------- ----------
ACTray 3044 86 5091328
ACWLIcon 3048 82 4952064
audiodg 1236 109 9355264

Notice that this particular view is grouping Process objects on their PriorityClass property, and it
has defined a different list of columns. We had to explicitly use Format-Table (or rather its alias, Ft)
because we needed to specify the view’s name, Priority. If we’d used another formatting cmdlet, this
wouldn’t have worked, because the Priority view is defined as a table—it can’t be selected by anything
but Format-Table.

Unfortunately, there’s no quick or easy way to determine what special formats are available in
PowerShell’s built-in formatting files, other than opening them up in Notepad and browsing them.
You’ll find them in PowerShell’s installation folder, each with a .format.ps1xml filename extension.

GroupBy
All the format cmdlets include a parameter called -GroupBy that allows you to group output based on
a specified property. For example, here is a Get-Service expression that groups services by their status
such as Running or Stopped. The output below has been edited for brevity.

PS C:\> get-service |format-table -groupby status

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped Alerter Alerter
Stopped ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service

 Status: Running

Status Name DisplayName
------ ---- -----------
Running AudioSrv Windows Audio
Running Avg7Alrt AVG7 Alert Manager Server

72

Windows PowerShell: TFM • 2nd Edition

Running Avg7UpdSvc AVG7 Update Service
Running AVGEMS AVG E-mail Scanner

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped BAsfIpM Broadcom ASF IP monitoring service ...
Stopped BITS Background Intelligent Transfer Ser...
Stopped Browser Computer Browser
Stopped CiSvc Indexing Service
Stopped ClipSrv ClipBook
Stopped clr_optimizatio... .NET Runtime Optimization Service v...
Stopped COMSysApp COM+ System Application

 Status: Running

Status Name DisplayName
------ ---- -----------
Running CryptSvc Cryptographic Services

 Status: Running

Status Name DisplayName
------ ---- -----------
Running wuauserv Automatic Updates
Running WZCSVC Wireless Zero Configuration

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped xmlprov Network Provisioning Service

PS C:\>

As you can see, grouping helps a little bit. However, this is probably not what you expected, since the
cmdlet basically just generates a new group header each time it encounters a new value for the specified
property. Because the services weren’t first sorted on that property, things aren’t grouped like you might
want them to be. So, the trick, prior to grouping, is to first sort them.

By the Way…
Using the -groupBy parameter is the same as piping object to the Group-Object cmdlet and then
piping the objects to a Format cmdlet. In both cases, you’ll want to sort the objects first by using
Sort-Object.

Cmdlets to Group, Sort, Format, Export, and More

73

Sort-Object: Sorting Objects
The Sort-Object cmdlet does exactly what its name implies: it sorts objects based on property values.

PS C:\> get-process|sort-object handles

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle
 21 1 168 376 4 0.46 776 smss
 30 2 1912 2436 29 0.11 1288 cmd
 34 2 400 1524 15 0.21 2664 WLTRYSVC
 43 2 376 1392 13 0.18 2932 MsPMSPSv
 62 3 1820 4404 34 0.21 1456 ApntEx
 64 3 1744 5628 37 0.24 324 notepad
 65 2 1472 1600 14 0.17 2488 wdfmgr
 69 3 632 2044 13 0.10 1580 sqlbrowser
 72 3 828 2428 27 0.33 1208 scardsvr
 76 2 524 2116 19 0.04 828 avgupsvc
 91 5 1284 3184 29 2.16 300 svchost
 95 4 1528 5852 39 0.83 844 sqlmangr
...

Here we’ve taken the output of Get-Process and sorted it by the Handles property. The default sort is
ascending, but if you prefer, the cmdlet includes a -descending parameter:

PS C:\> get-process|sort-object handles -descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1290 49 14000 23608 127 38.52 1892 svchost
 1076 0 0 220 2 47.18 4 System
 817 78 15856 8436 136 15.55 1628 Groove
 706 7 1888 4880 28 18.51 868 csrss
 616 16 25680 41096 127 100.01 484 explorer
 589 12 8076 1508 62 3.24 892 winlogon
 538 11 15508 8864 95 126.88 1948 Smc
 483 20 38092 63020 223 168.63 2308 WINWORD
...

Let’s return to our earlier example in which we tried to group the output of Get-Service by status. Now
we can pipe the Get-Service cmdlet to Sort-Object, specifying primary sort on status, then on name.
Next we send the object to Format-Table and group by status. Here’s the output we get:

PS C:\> get-service|sort-object status,name |format-table -groupby status

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped Alerter Alerter
Stopped ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Stopped BAsfIpM Broadcom ASF IP monitoring service ...
Stopped BITS Background Intelligent Transfer Ser...
Stopped Browser Computer Browser
Stopped CiSvc Indexing Service

74

Windows PowerShell: TFM • 2nd Edition

...
 Status: Running

Status Name DisplayName
------ ---- -----------
Running AudioSrv Windows Audio
Running Avg7Alrt AVG7 Alert Manager Server
Running Avg7UpdSvc AVG7 Update Service
Running AVGEMS AVG E-mail Scanner
Running CryptSvc Cryptographic Services
Running DcomLaunch DCOM Server Process Launcher
Running Dhcp DHCP Client
Running Dnscache DNS Client
Running EventSystem COM+ Event System
Running IISADMIN IIS Admin
Running lanmanserver Server
Running lanmanworkstation Workstation
...

PS C:\>

Again, we’ve edited the output for brevity, but you get the picture. And, by the way, we should point out
that the “Format” cmdlets, which we’ve already discussed, also have a -groupBy parameter. Here’s an
example:

PS C:\> get-service | sort status | format-table -groupby status

 Status: Stopped

Status Name DisplayName
------ ---- -----------
Stopped napagent Network Access Protection Agent
Stopped Netlogon Netlogon
Stopped msvsmon80 Visual Studio 2005 Remote Debugger
Stopped MSiSCSI Microsoft iSCSI Initiator Service
Stopped msiserver Windows Installer
Stopped TBS TPM Base Services
Stopped odserv Microsoft Office Diagnostics Service
...

 Status: Running

Status Name DisplayName
------ ---- -----------
Running wudfsvc Windows Driver Foundation - User-mo...
Running wuauserv Windows Update
Running SSDPSRV SSDP Discovery
Running UleadBurningHelper Ulead Burning Helper
...

So, which do you use, Group-Object or the -groupby parameter of a “format” cmdlet? Your choice. The
Group-Object cmdlet has a few other options, such as specifying a case-sensitive grouping and specify-
ing a different culture’s sorting rules, but for the most part you’ll get the same results, and you should use
whichever one you like best.

Getting back to Sort-Object: One final parameter is -Unique, which not only gives sorted output, but
also displays only the unique values:

Cmdlets to Group, Sort, Format, Export, and More

75

PS C:\> $var=@(7,3,4,4,4,2,5,5,4,8,43,54)
PS C:\> $var|sort
2
3
4
4
4
4
5
5
7
8
43
54

PS C:\> $var|sort -unique
2
3
4
5
7
8
43
54
PS C:\>

In the first example, we’ve defined an array of numbers and first pipe it through a regular Sort-Object
cmdlet. Compare that to the second expression that uses
-Unique. Now the output is sorted and only unique objects are returned.

Alias Alert
You will probably find it easier to use the alias for Sort-Object, which is Sort, as we did in the last
example.

PowerShell also has a Get-Unique cmdlet that functions essentially the same as Sort
-Unique, but without the sorting feature. However, its functionality is limited if you don’t sort. Here’s
the array we just used piped through Get-Unique:

PS C:\> $var|get-unique
7
3
4
2
5
4
8
43
54
PS C:\>

The list is not 100% unique, as you’ll see the number 4 repeated. This is because Get-Unique compares
consecutive items and returns the next item only if it is different. This is why you need to sort the object
before using Get-Unique:

PS C:\ > $var | sort | get-unique
2

76

Windows PowerShell: TFM • 2nd Edition

3
4
5
7
8
43
54

This is the same result we got with Sort -Unique.

By the way, Sort-Object is perfectly happy to sort less complicated objects, too. For example:

$names = @("Don","Jeff","Alex")

The $names variable is now a collection (or array) of three String objects. Asking Sort-Object to put
these in order is easy—we can even assign the sorted array right back to the same variable:

$names = $names | sort

Notice that we didn’t have to tell Sort-Object what to sort on; since these are simple objects, it was able
to figure it out on its own.

Where-Object: Filtering Objects
In addition to sorting, you may need to limit or filter the output. The Where-Object cmdlet is a filter
that lets you control what data is ultimately displayed. This cmdlet is almost always used in a pipeline
expression where output from one cmdlet is piped to this cmdlet. The Where-Object cmdlet requires a
code block enclosed in braces that is executed as the filter. Any input objects that match your criteria are
passed down the pipeline; any objects that don’t match your criteria are dropped.

Here’s an expression to get all instances of the Win32_Service class where the state property of each
object equals stopped.

Get-WmiObject -class win32_service | where {$_.state -eq "Stopped"}

Notice the use of the special $_ variable, which represents “the current pipeline object.” So, that expres-
sion reads, ‘“where the current object’s State property is equal to the value “Stopped.”’ You may want to
further refine this expression and format the output by piping to yet another cmdlet:

PS C:\> Get-WmiObject -class win32_service | where {$_.state -eq "Stopped"} | format-wide

Alerter ALG
AppMgmt aspnet_state
BAsfIpM Browser
CiSvc ClipSrv
clr_optimization_v2.0.50727_32 COMSysApp
CVPND dmadmin
dmserver ERSvc
FastUserSwitchingCompatibility GrooveAuditService
GrooveInstallerService GrooveRunOnceInstaller
helpsvc HidServ
NetDDE NetDDEdsdm
Netlogon NtLmSsp
NtmsSvc ose
PDEngine Pml Driver HPZ12

Cmdlets to Group, Sort, Format, Export, and More

77

...

In this example we’ve taken the same Get-WmiObject expression and piped it through Format-Wide
to get a nice two-column report.

The key is recognizing that the script block in braces is what filters the object. If nothing matches the
filter, then nothing will be displayed.

ForEach-Object: Performing Actions Against Each Object
The ForEach-Object cmdlet actually straddles a line between interactive use and scripting. Its alias,
Foreach, acts as a scripting construct, and we’ll cover it as such. However, when used as a cmdlet its syn-
tax is somewhat different, so we’ll cover it here.

In its simplest form, ForEach-Object accepts a collection of objects from the pipeline and then
executes a script block that you provide. The script block is executed once for each pipeline object, and
within the script block you can use the special $_ variable to refer to the current pipeline object. For
example, this command:

Get-WmiObject Win32_LogicalDisk

Will display a list of logical disks on your system. If you only wanted the free space on each disk, and
if you wanted that value expressed in gigabytes, rather than bytes, you could use ForEach-Object as
follows:

Get-WmiObject Win32_LogicalDisk | ForEach-Object { $_.FreeSpace / 1GB }

The script block shown will take the FreeSpace property of the current pipeline object, divide it by
the special 1GB variable, and output the result to the pipeline. That script block is actually passed to a
parameter named -process, which is positional; we don’t need to supply the parameter name, but the fol-
lowing is functionally identical:

Get-WmiObject Win32_LogicalDisk | ForEach-Object -process { $_.FreeSpace / 1GB }

Resulting in output much like the following:

PS C:\> Get-WmiObject win32_logicaldisk | foreach-object -process { $_.FreeSpace / 1GB }
0
117.766156288
162.83420672
0
27.855847424

ForEach-Object has several aliases, including %. Condensing this line to use all aliases looks like this:

gwmi Win32_LogicalDisk | % -pr { $_.FreeSpace / 1GB }

The cmdlet also supports two other parameters: -begin and -end. These parameters accept script blocks
just as -process does, but they work slightly differently. The script block given to -begin will run only
once, before any pipeline objects are processed. Similarly, the script block given to -end will also run
only once, but will do so after all pipeline objects have been processed. Here’s an example:

78

Windows PowerShell: TFM • 2nd Edition

PS C:\> gwmi win32_logicaldisk | % -process { $_.FreeSpace / 1GB } -begin { write " '
>> Disk Space Inventory" } -end { Write "Complete" }
>>
>>
Disk Space Inventory
0
117.7658368
162.83420672
0
27.855847424
Complete

You can see where the -begin and -end script blocks executed, displaying their information before and
after the -process script block executed.

ForEach-Object can seem limited, since it would appear that only a single command can appear within
each script block. However, PowerShell uses the ; character to separate statements that appear on a sin-
gle physical line. For example, if we wanted our -process script block to output the DeviceID property
first, we’d do something like this:

PS C:\> gwmi Win32_LogicalDisk | % -pr { $_.DeviceID; $_.FreeSpace / 1GB }

Now, the -process script block contains two actual statements. Although they’re contained on a single
physical line, PowerShell will treat them, and execute them, independently. The results:

A:
0
C:
117.765771264
D:
162.83420672
F:
0
G:
27.855847424

But wait, there’s more
The ForEach-Object cmdlet provides functionality similar to a filter or a function, which we cover
in the chapter “Script Blocks, Functions, and Filters.” And, as we’ve already mentioned, the cmdlet
finds use as the scripting statement foreach.

Select-Object: Choosing Specific Object Properties
Select-Object, or its alias, Select, takes a bit of work to understand. First, let’s look at what we get when
we pass a particular object to Get-Member (or its alias, Gm), to see what properties and methods the
object has:

PS C:\> Get-WmiObject win32_bios | gm

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_BIOS

Name MemberType Definition

Cmdlets to Group, Sort, Format, Export, and More

79

---- ---------- ----------
BiosCharacteristics Property System.UInt16[] BiosCharacteristics {get;set;}
BIOSVersion Property System.String[] BIOSVersion {get;set;}
BuildNumber Property System.String BuildNumber {get;set;}
Caption Property System.String Caption {get;set;}
CodeSet Property System.String CodeSet {get;set;}
CurrentLanguage Property System.String CurrentLanguage {get;set;}
Description Property System.String Description {get;set;}
IdentificationCode Property System.String IdentificationCode {get;set;}
InstallableLanguages Property System.UInt16 InstallableLanguages {get;set;}
InstallDate Property System.String InstallDate {get;set;}
LanguageEdition Property System.String LanguageEdition {get;set;}
ListOfLanguages Property System.String[] ListOfLanguages {get;set;}

Once you know what properties you are interested in, you can use Select-Object to limit the results:

PS C:\ > Get-WmiObject win32_bios | select Description,Manufacturer,version

Description Manufacturer version
----------- ------------ -------
Phoenix ROM BIOS PLUS Version 1.10 A13 Dell Computer Corporation DELL - 27d5061e

The ability to return selected properties is especially helpful when it comes to exporting information.

Exporting
PowerShell’s ability to manipulate objects is pretty formidable. We’ve seen how PowerShell permits you
to control the output format of an expression or cmdlet. However, PowerShell even has the ability to
change or export the object into something else.

Export-CSV
A comma-separated value (CSV) file is a mainstay of administrative scripting. It’s a text-based database
that can be parsed into an array or opened in a spreadsheet program like Microsoft Excel. The cmdlet
requires an input object that is typically the result of a piped cmdlet:

Get-process | export-csv processes.csv

When you run this command on your system, it creates a text file called processes.csv. When the file is
opened in a spreadsheet program, you’ll be amazed by the amount of information that is available. In
fact, it’s probably overkill for most situations.

Here’s another version of basically the same expression except this time we’re using Select-Object to
specify the properties we want returned:

PS C:\> get-process |select-object name,id,workingset,cpu| export-csv processes.csv
PS C:\> get-content processes.csv
#TYPE System.Management.Automation.PSCustomObject
Name,Id,WorkingSet,CPU
acrotray,3996,6574080,0.7110224
ApntEx,1456,4718592,6.5894752
Apoint,1592,7147520,6.0787408
avgamsvr,436,7389184,4.155976
avgcc,1684,12288000,10.4550336
avgemc,860,22593536,9.5036656
avgupsvc,828,3182592,1.6824192

80

Windows PowerShell: TFM • 2nd Edition

BCMWLTRY,2948,6508544,16.2333424
Client,1084,1019904,140.6121904
cmd,1288,1093632,0.5207488
csrss,868,3440640,82.7790304
cvpnd,4000,8015872,9.6538816
EXCEL,2452,6545408,6.6996336
explorer,484,35528704,801.6427056
firefox,3028,71385088,881.2872288
Groove,2032,11628544,25.3264176
Idle,0,16384,
inetinfo,3012,5357568,1.4420736
Microsoft.Crm.Application.Hoster,1796,28168192,14.7812544
MSASCui,1732,10907648,7.310512
MsMpEng,1832,14114816,107.8951456
MsPMSPSv,2932,1425408,1.0114544
nvsvc32,1788,3522560,2.5236288
powershell,1560,53522432,7.9314048
procexp,588,10452992,86.1438688
PS C:\>

This produces a raw data report that we can further process any way we want. For example, if the Out-
File already exists, it will be overwritten unless you use
-NoClobber. If you don’t want the #TYPE header, which we find distracting, specify
-NoTypeInformation as part of the Export-CSV cmdlet.

On a related note, PowerShell also has an Import-CSV cmdlet that reads the contents of the csv file
and displays the data as a table. Here’s an example with abbreviated output:

PS C:\> import-csv processes.csv

Name Id WorkingSet CPU
---- -- ---------- ---
acrotray 3996 6574080 0.7110224
ApntEx 1456 4718592 6.5894752
Apoint 1592 7147520 6.0787408
avgamsvr 436 7389184 4.155976
avgcc 1684 12288000 10.4550336
avgemc 860 22593536 9.5036656
avgupsvc 828 3182592 1.6824192
cmd 1288 1093632 0.5207488
csrss 868 3440640 82.7790304
cvpnd 4000 8015872 9.6538816
EXCEL 2452 6545408 6.6996336
...

By the way, in actuality Import-CSV reads a CSV file and assumes that the first line consists of column
names. It then creates a collection of objects based upon the contents of the CSV file. For example, if
you have a simple text file that looks like this:

name,type
notepad,process
calc,process

Then Import-CSV would create two objects, each with a Name and a Type property. For example:

PS C:\> $file = import-csv c:\yserver.txt
PS C:\> $file | gm

Cmdlets to Group, Sort, Format, Export, and More

81

 TypeName: System.Management.Automation.PSCustomObject

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
ToString Method System.String ToString()
name NoteProperty System.String name=notepad
type NoteProperty System.String type=process

As you can see, $file is a collection of objects, each of which have a Name and a Type property. This col-
lection can be accessed like any other:

PS C:\> $file[0].name
notepad
PS C:\> $file[1].type
Process

Above, we’ve grabbed the Name property of the first object in the collection, and the Type property of
the second.

Export-CliXML
If you prefer to store results as an XML file, perhaps for processing by other tools, you can use
PowerShell’s Export-CliXML cmdlet. It works much the same way as Export-CSV:

PS C:\>Get-WmiObject -class win32_processor |export-clixml wmiproc.xml

This creates an XML file called wmiproc.xml, which can be imported back into PowerShell using
Import-CliXML:

PS C:\> import-clixml wmiproc.xml

AddressWidth : 32
Architecture : 0
Availability : 3
Caption : x86 Family 6 Model 9 Stepping 5
ConfigManagerErrorCode :
ConfigManagerUserConfig :
CpuStatus : 1
CreationClassName : Win32_Processor
CurrentClockSpeed : 1598
CurrentVoltage : 33
DataWidth : 32
Description : x86 Family 6 Model 9 Stepping 5
DeviceID : CPU0
ErrorCleared :
ErrorDescription :
ExtClock : 133
Family : 2
InstallDate :
L2CacheSize : 1024

L2CacheSpeed :
LastErrorCode :

82

Windows PowerShell: TFM • 2nd Edition

Level : 6
LoadPercentage :
Manufacturer : GenuineIntel
MaxClockSpeed : 1598
Name : Intel(R) Pentium(R) M processor 1600MHz
OtherFamilyDescription :
PNPDeviceID :
PowerManagementCapabilities :
PowerManagementSupported : False
ProcessorId : A7E9F9BF00000695
ProcessorType : 3
Revision : 2309
Role : CPU
SocketDesignation : Microprocessor
Status : OK
StatusInfo : 3
Stepping : 5
SystemCreationClassName : Win32_ComputerSystem
SystemName : GODOT
UniqueId :
UpgradeMethod : 6
Version : Model 9, Stepping 5
VoltageCaps : 2
__GENUS : 2
__CLASS : Win32_Processor
...
PS C:\>

As with the other exporting cmdlets, you can use -NoClobber to avoid overwriting an existing file. This
can be a useful technique when used with command-line history. First, export it to an XML file:

PS C:\> get-history | export-clixml c:\history.xml

Later, when you want to re-import that command history into the shell, use Import-CliXML and pipe
the results to Add-History:

PS C:\> import-clixml c:\history.xml | add-history

Most simple objects can be exported into the CliXML format, and then re-imported at a later date to
approximately re-create those objects. The technique works best for objects that only have properties,
where those properties only contain simple values such as strings, numbers, and Boolean values.

ConvertTo-HTML
Finally, PowerShell includes a cmdlet to convert text output to an HTML table with the ConvertTo-
HTML cmdlet. At its simplest, you can run an expression like this:

PS C:\> Get-Service | ConvertTo-HTML

If you execute this expression you’ll see HTML code fly across the console, which doesn’t do you much
good. This can be changed by piping the HTML output to a file using Out-File, specifying a file name:

PS C:\> Get-Service | ConvertTo-HTML |out-file services.html

Now when you open services.html in a Web browser, you’ll see a pretty complete table of running

Cmdlets to Group, Sort, Format, Export, and More

83

services and their properties. By default, the cmdlet lists all properties. However, you can specify the
properties by name and in whatever order you prefer:

PS C:\> Get-Service | ConvertTo-HTML Name,DisplayName,Status | out-file services.html

Now when you open services.html, it’s a little easier to work with. If you want to dress up the page a bit,
ConvertTo-HTML has some additional parameters as shown in the following table:

ConvertTo-HTML Optional Parameters

Parameter Description
Head Inserts text into the <head> tag of the html page. You might want to include metadata or

style sheet references.
Title Inserts text into the <title> tag of the html page. This lets you have a more meaningful

title to the page other than the default HTMLTABLE.
Body Inserts text within the <body></body> tag. This lets you specify body specify formatting

like fonts and colors as well as any text you want to appear before the table.

Here’s a script where we put it all together.

Service2HTML.ps1

#Service2HTML.ps1
a style sheet, style.css, should be in the same directory
as the saved html file.

$server=hostname
$body="Services Report for "+$server.ToUpper()+"<HR>"
$file="c:\"+$server+"-services.html"

write-host "Generating Services Report for "$server.ToUpper()

 get-service |sort -property status -descending | ConvertTo-HTML `
 Name,DisplayName,Status -Title "Service Report" `
 -Head "<link rel=stylesheet type=text/css href=style.css>" `
 -Body $body | out-file $file

write-host "Report Generation Complete! Open" $file "for results."

This script uses the Get-Service cmdlet to generate a formatted HTML page. The script starts by
defining some variables. First, we want the computer name to use in the report and other variables. Then
we define a variable for the -Body parameter. If just text is being used, we don’t have to bother with this.
However, the ConvertTo-HTML cmdlet is a little finicky and doesn’t handle the results of embedded
cmdlets very well. By defining a variable, we can ensure its value is a string. We also specify the location
and name of the saved file. We’re using the server name as part of the filename.

After a message is sent to the user informing him the report is being generated, the heart of the script is
reached. We take the Get-Service cmdlet and first pipe it to the Sort-Object cmdlet, sorting on service
status and returning the results in descending order. This puts Running services at the top of the page
and Stopped services at the bottom. Next we pipe that to ConvertTo-HTML, specifying the proper-
ties we want in the table. We include a -head parameter so we can reference a style sheet and then the
-body parameter using the $body variable we defined at the beginning of the script. All of this is piped
to Out-File, which saves the result to an HTML file. The results can be seen in the following figure.

84

Windows PowerShell: TFM • 2nd Edition

Comparing Objects and Collections
Occasionally, you may have need to compare complex objects or collections—with text files perhaps
being the most common and easily explained example. PowerShell provides a Compare-Object cmdlet,
which can perform object comparisons. Now, before we get started, we have to remind you: PowerShell
deals in objects, not text. A text file is technically a collection of individual string objects; that is, each line of
the file is a unique, independent object, and the text file serves to “collect” them together.

When comparing objects, you start with two sets: The reference set and the difference set. In the case of
two text files, these would simply be the two files. Which one is the reference and which one is the dif-
ference often doesn’t matter; Compare-Object will show you which objects—that is, which lines of
text—exist in one set but not the other, or which are present in both sets but different. That last bit—
showing you objects which are present in both sets, but different—can get confusing, so we won’t deal
with it at first.

To begin, we’re going to use two text files named Set1.txt and Set2.txt, which each contain some simple
lines of text.

Cmdlets to Group, Sort, Format, Export, and More

85

We’ll use Get-Content to load each file into a variable, which we’ll name $set1 and $set2:

PS C:\> $set1 = get-content c:\set1.txt
PS C:\> $set2 = get-content c:\set2.txt

And here’s our first test:

PS C:\> compare-object -reference $set1 -difference $set2

InputObject SideIndicator
----------- -------------
LEAPED =>
THE =>
JAUNDICED =>
THIS <=
JUMPED <=
LAZY <=

The SideIndicator tells us which “side” of the comparison was unequal. The reference set is always
thought of as being on the left, while the difference set is thought of as being on the right—exactly as
we showed in our screen shot of the two Notepad windows. And remember, we’re seeing the differences,
here. So, the first difference is LEAPED, which existed in the right file, but not the left. We also see that
THE existed on the right but not the left, along with JAUNDICED. The words THIS, JUMPED, and
LAZY appeared on the left, but not in the right. These differences don’t appear in the same order as the
actual differences within the file, which is important to keep in mind.

And notice, too, how two different lines of text always show as missing, rather than different. For
example, the first lines of our two files are different—THIS and THE—but both THIS and THE are
listed separately as “missing” from the other file. That’s because the string objects THIS and THE are
different objects, so PowerShell can’t “match them up” as being the same object with a different property
value. Were we to rearrange the text in one file completely, moving different words to different lines,
Compare-Object would yield the exact same results. For example, these two files:

86

Windows PowerShell: TFM • 2nd Edition

Produce exactly the same results:

PS C:\> compare-object -reference $set1 -difference $set2

InputObject SideIndicator
----------- -------------
LEAPED =>
THE =>
JAUNDICED =>
THIS <=
JUMPED <=
LAZY <=

This behavior reveals that PowerShell isn’t doing a line-by-line comparison. Rather, it’s asking itself, “do
any of the objects in these files not exist in the other file?” The word THE is the best example of this:
Set1 contains the word THE just once; Set2 contains THE twice. So, THE is shown as existing in Set2
at least one time when it doesn’t exist somewhere in Set1. Try this: At the bottom of Set2.text, add two
more lines containing THE and THE:

Once you’ve made that change, re-run Compare-Object and you’ll get the exact same results again. This
type of comparison can be very difficult to understand if you’re used to text-based difference utilities, but
it’s a perfect example of how PowerShell cares about objects. That makes Compare-Object of limited
use for classic text file comparisons, but comparison text files line-for-line was never really the purpose
of this cmdlet.

So, let’s focus on what Compare-Object is really intended for, as implied by its name: Objects. Here’s
a quick example where we’ll query our local computer’s Win32_LogicalDisk WMI class into two
sets, and then compare them. As expected, when you compare the exact same two things, you get no

Cmdlets to Group, Sort, Format, Export, and More

87

differences:

PS C:\> $set1 = gwmi win32_logicaldisk
PS C:\> $set2 = gwmi win32_logicaldisk
PS C:\> compare-object -ref $set1 -diff $set2

So, now we’ll change $set2 to be another computer’s logical disks:

PS C:\> $set2 = gwmi win32_logicaldisk -computer mediaserver

Now we’ll re-run our comparison. This time we’re piping the results to Format-Table so that we can use
its -autosize parameter to generate more easily read results:

PS C:\> compare-object -ref $set1 -diff $set2 | ft -auto

InputObject SideIndicator
----------- -------------
\\MEDIASERVER\root\cimv2:Win32_LogicalDisk.DeviceID="A:" =>
\\MEDIASERVER\root\cimv2:Win32_LogicalDisk.DeviceID="C:" =>
\\MEDIASERVER\root\cimv2:Win32_LogicalDisk.DeviceID="D:" =>
\\MEDIASERVER\root\cimv2:Win32_LogicalDisk.DeviceID="E:" =>
\\DON-PC\root\cimv2:Win32_LogicalDisk.DeviceID="A:" <=
\\DON-PC\root\cimv2:Win32_LogicalDisk.DeviceID="C:" <=
\\DON-PC\root\cimv2:Win32_LogicalDisk.DeviceID="D:" <=
\\DON-PC\root\cimv2:Win32_LogicalDisk.DeviceID="F:" <=
\\DON-PC\root\cimv2:Win32_LogicalDisk.DeviceID="G:" <=

This is showing that our $set2 computer has an A, C, D, and E drive, while our local computer has A,
C, D, F, and G. They are indeed different objects, and so they’re all listed as such. But now let’s have
Compare-Object only look at a specific object property, rather than the entire object:

PS C:\> compare-object -ref $set1 -diff $set2 -property deviceid | ft -auto

deviceid SideIndicator
-------- -------------
E: =>
F: <=
G: <=

By adding the -property parameter and specifying DeviceID as the property, we’re now comparing just
that property in the two sets. Now, the A, C, and D drives are gone because they’re present in both sets.
We’re left with an E drive in $set2, and an F and G drive in $set1. This is truly showing us the difference
in the logical disk device IDs between the two computers. But what if we wanted to also see the matching
device IDs?

PS C:\> compare-object -ref $set1 -diff $set2 -property deviceid -include | ft -auto

deviceid SideIndicator
-------- -------------
A: ==
C: ==
D: ==
E: =>
F: <=
G: <=

88

Windows PowerShell: TFM • 2nd Edition

Now, the matching properties are also included, with an indicator that they’re present in both sets.
We accomplished this by adding the -includeEqual parameter in the command. Another parameter,
-excludeDifference, will remove the difference items, leaving just those that are the same in both sets:

PS C:\> compare-object -ref $set1 -diff $set2 -property deviceid -include -exclude | ft -auto

deviceid SideIndicator
-------- -------------
A: ==
C: ==
D: ==

Perhaps a more practical example involves the use of the Get-Process cmdlet. Try this sometime in the
morning:

PS C:\> $set1 = Get-Process

Leave PowerShell running all day s that $set1 will remain in memory. Then, later in the day, run this:

PS C:\> $set2 = Get-Process

Now you can use Compare-Object to see the different processes that were running during the morning
and the afternoon. Taken to a more practical level, you could use this as an auditing technique for serv-
ers. For example, you could verify that a server is running exactly the processes that it should be running
all the time:

PS C:\> gwmi win32_process -computer mediaserver | export-clixml c:\allowed.xml

We’ve chosen to save this list of “allowed” processes in an XML file, which PowerShell can later use to
re-construct the process objects—meaning we don’t need to leave the shell running. Whenever we want
to conduct an audit of the server’s processes:

PS C:\> $allowed = import-clixml c:\allowed.xml
PS C:\> $running = gwmi win32_process -computer mediaserver
PS C:\> compare-object -ref $allowed -diff $running -property name

name SideIndicator
---- -------------
iexplore.exe =>
notepad.exe =>

We imported the original “allowed” process objects by using Import-CliXML; we then retrieved the
current list of processes and compared the two sets by process name, revealing Internet Explorer and
Notepad in use. Hey, is someone on that server console surfing the Web?

Practical Tips and Tricks

89

Chapter 6
Practical Tips and Tricks

Using the Command Line
PowerShell’s command line offers a number of shortcuts and features to help making typing faster. After
all, just because this is the command line doesn’t mean it needs to be primitive! By training yourself to
use these shortcuts, you’ll become much more efficient.

Command History
Like Cmd.exe and most other command-line environments, PowerShell maintains a history, or “buffer,”
of commands you’ve typed (this is different from the command history that the Get-History and Add-
History cmdlets can manipulate). Pressing the Up and Down arrow keys on your keyboard provides
access to this history, recalling past commands so that you can either easily run them again, or allowing
you to quickly change a previous command and run the new version.

A little-known shortcut is the F7 key, which pops up a command-line history window, allowing you to
scroll through the window and select the command you want. If your press Enter, the selected command
executes immediately. If you press the right or left arrow key, the command will be inserted but not exe-
cuted. This is helpful when you want to recall a complicated command but need to tweak it. Press Esc to
close the window without choosing a command.

By default only 50 commands will be stored in this buffer. To increase the command buffer, right-
click the system menu of your PowerShell window and select Properties. On the Options tab, you can
increase the buffer size from the default of 50. While you’re at it, make sure the boxes for QuickEdit
Mode and Insert Mode are checked. We’ll show you how to take advantage of these later. Feel free to

90

Windows PowerShell: TFM • 2nd Edition

change the font size and colors as well.

Finally, one last trick for the command history: Type the beginning of a command that you’ve recently
used, and press F8. PowerShell will fill in the rest of the command, and you can press F8 again to find
the next “match” to what you’d typed. This is a quick way to recall a command that’s further in the past
than the arrow keys provide convenient access to.

Line Editing
While PowerShell doesn’t provide a full-screen editor (if you need that, then it may be time in investi-
gate a visual development environment that supports PowerShell, such as SAPIEN PrimalScript—www.
primalscript.com), it does provide basic editing capabilities for the current line:

The Left and Right arrow keys move the cursor left and right on the current line.•

Pressing Ctrl+Left arrow and Ctrl+Right arrow moves left and right one word at a time, much as •
it does in Microsoft Word.

The Home and End keys move to the beginning and end of the current line, respectively.•

The Insert key toggles between insert and overwrite mode.•

The Delete key deletes the character under the cursor; the Backspace key deletes the character •
“behind,” or to the left of, the cursor.

The Esc key clears the current line.•

Copy and Paste
If you’ve enabled QuickEdit and Insert Mode for your PowerShell window, you can easily copy •
and paste between PowerShell and Windows. To copy from PowerShell, merely select the text and
press Enter. You can then paste it into another application like Notepad. To paste something into
PowerShell, position your cursor in the PowerShell window and use the mouse right button. The
copied text will be inserted at the command prompt.

Tab Completion
Also called command completion, this feature exists to help you complete command names and even
parameter values more quickly. Pressing Tab on a blank line will insert an actual tab character; any other
time—if you’ve already typed something on the line, that is—the Tab key kicks in command completion
mode. Here’s how it works:

If you’ve just typed a period, then command completion will cycle through the properties and •
methods of whatever object is to the left of the period. For example, if $wmi represents a WMI
object, typing $wmi. and pressing Tab will call up the first property or method from that WMI
object.

If you’ve typed a period and one or more letters, pressing Tab will cycle through the properties and •
methods that match what you’ve already typed. For example, if $wmi is an instance of the Win32_
OperatingSystem WMI class, typing $wmi.re and pressing Tab will display “$wmi.Reboot(”,
which is the first property or method that begins with “re”.

If you’ve just typed a few characters, and no punctuation other than a hyphen •
(“-“), command-completion will cycle through matching cmdlet names. For example, typing get-w
and pressing Tab will result in “Get-WmiObject”, the first cmdlet that begins with “get-w.” Note
that this does not work for aliases, only cmdlet names.

Practical Tips and Tricks

91

If you’ve typed a command and a partial parameter name, you can hit Tab to cycle through •
matching parameter names. For example, you can type gwmi -comp and press Tab to get “gwmi
-computerName”.

If none of the above conditions is true, then PowerShell will default to cycling through file and •
folder names. For example, type cd, a space, and press Tab. You’ll see the first folder or file name
in the current folder. Type a partial name, like cd Doc, and press Tab to have PowerShell cycle
through matching file and folder names. Wildcards work, too: Type cd pro*files and press tab to
get “cd ‘Program Files’”, for example.

Instant Expressions
PowerShell can evaluate expressions at the command line. The easiest examples are mathematical
expressions:

PS C:\> 2 + 2
4
PS C:\> 4 * 4
16
PS C:\> 16 / 16
1
PS C:\> 1 - 1
0
PS C:\>

PowerShell recognizes the characters “kb,” “mb,” and “gb” as having special purpose. It uses these charac-
ters to represent a kibibyte, mibibyte, and gibibyte, units of measurement for computer memory.

Kibi-what?
Does kilo equal 1,000 or 1,024? When measuring storage—such as hard drive space—or nearly
anything else, kilo means 1,000, while mega means one million and giga means one billion. These
three terms have long been used improperly to refer to computer memory measurements, as well.
We say “improperly” because a “kilobyte” of computer memory—RAM—is actually 1,024, not an
even thousand.

In 2000, the International Electrotechnical Commission (of which the United States’ American
National Standards Institute is a member) created a new set of measurements specifically for com-
puter memory, ending the 1,000-or-1,024 confusion. The term kilo therefore always means 1,000;
since RAM is measured in powers of two, the term kibi was created to represent 1,024. This is all
documented in IEEE 1541, a standard of the Institute of Electrical and Electronics Engineers, the
European Union legalized these units of measurement in HD60027-2:2003-03.

Technically, the abbreviation kb still means kilobyte; a kibibyte is properly abbreviated as KiB
instead. However, PowerShell recognizes kb as meaning 1,024; therefore, it’s a kibibyte.

For example, to add one mibibyte to one kibibyte:

PS C:\> 1kb + 1mb
1049600

These expression evaluation capabilities allow you to quickly perform basic calculations without having

92

Windows PowerShell: TFM • 2nd Edition

to pull up Windows Calculator, and to provide a built-in means of working with binary values. Here’s
one last example:

PS C:\> (gwmi win32_computersystem).TotalPhysicalmemory/1mb
2037.25
PS C:\>

The TotalPhysicalMemory property is displayed by default in bytes, but by dividing the value by 1mb,
we can represent the value in MB.

Pausing a Script
Use the Start-Sleep cmdlet to make your script pause for a specified number of seconds (or millisec-
onds, if you prefer; seconds is the default measurement):

PS C:\> Start-Sleep 10

Displaying a Progress Meter
PowerShell’s Write-Progress cmdlet allows you to display a sort of text-based progress bar in the
PowerShell window. During long-running tasks, this can be a useful way of telling the user (or yourself)
that PowerShell isn’t “locked up,” it’s just busy. Here’s a quick example of how the cmdlet works:

for ($i=0; $i -lt 100; $i++) {
 Start-Sleep 1
 Write-Progress -activity "Waiting..." -status "STATUS" -id 1 -percentComplete $i

}

This results in a progress bar as shown here:

Practical Tips and Tricks

93

There are a couple of key parameters for Write-Progress:

-ID•	 specifies a unique numeric ID number for your progress bar. You can use whatever number
you like for this, but you should specify it so that you can refer back to your progress bar.

-percentComplete•	 is the percentage of the bar that should be filled in, on a scale of 1 to 100. In
our example, this was easy to provide, because we were using a loop that counted from 1 to 100. If
you’re using other values, you’ll need to divide, multiply, or whatever to ensure that this property
receives a value of 1 to 100.

-secondsRemaining•	 is an alternative to -percentComplete and simply specifies the number of
seconds that the user should expect before the operation will be complete.

-activity•	 and -status display text labels, as shown in our example. Typically, the “activity” is what-
ever broad operation is being conducted, such as “Querying computers.” Status is more specified,
such as “Querying Server2” or “Querying Server3.” You can also specify
-CurrentOperation, which is even more specific and which appears below the progress bar.

Both -secondsRemaining and -percentComplete are optional; if you don’t specify them, then no
progress bar will be displayed. Instead, just the activity and status messages—which are both mandato-
ry—will be displayed.

Here’s an extended example. This assumes we have a file named C:\Computers.txt, which contains one
computer name per line. Pay close attention to the use of Write-Progress: You can see that each time,
we’re updating the information and, in some cases, displaying a bit more information about what’s going
on. The current computer name is used for the “status” label, while the current operation—service pack
or logical disk inventory—is displayed for the -currentOperation parameter.

InventoryProgress.ps1

initial status bar
Write-Progress -activity "Getting inventory" -status "Starting" -id 1

get computer names
$computers = Get-Content c:\computers.txt

how many computers?
$qty = $computers | Measure-Object
$currentComputer = 1

foreach ($computer in $computers) {
 # calculate status
 [int]$pct = ($currentComputer / $qty.count) * 100

 # update status bar
 Write-Progress -activity "Getting inventory" -status $computer -id 1 -percent $pct

 # get service pack
 Write-Progress -activity "Getting inventory" -status $computer -id 1 -percent $pct `
 -current "Service Pack"
 $wmi = gwmi win32_operatingsystem -computer $computer
 write `n
 write $computer
 write "Service Pack: " $wmi.servicepackmajorversion

 # get disks
 Write-Progress -activity "Getting inventory" -status $computer -id 1 -percent $pct `
 -current "Disks"
 $wmi = gwmi win32_logicaldisk -computer $computer

94

Windows PowerShell: TFM • 2nd Edition

 Write-Host "Logical disks: "
 foreach ($disk in $wmi) {
 write $disk.deviceid
 }

 # next computer...
 $currentComputer++
}

Also note that we didn’t add any error checking, just to keep this sample clearer. It will result in errors if
any of the computer names specified in C:\Computers.txt aren’t available, or if we don’t have permission
to query a computer’s WMI information.

When the progress bar finishes, it should automatically go away. If for some reason the progress bar
remains on the screen, you can call Write-Progress –completed $True to dismiss it.

Keeping a Transcript
Sometimes, it can be useful to keep track of exactly what you’re doing in PowerShell. For example, if
you’re experimenting a bit, going back and reviewing your work can help you spot things that worked
correctly. You could then copy and paste those command lines into a script for future use. PowerShell
offers a way to keep track of your work through a transcript. You start a new one with the Start-
Transcript cmdlet:

PS C:\> Start-Transcript C:\MyWork.txt

A transcript is just a simple text file that contains everything shown in the PowerShell console win-
dow. A downside to it is that, if you do want to copy and paste your work into a script, you first have to
edit out all the command prompts, your mistakes, and so forth. Once started, a transcript will continue
recording your work until you either close the shell, or run the Stop-Transcript cmdlet:

PS C:\> Stop-Transcript

The Start-Transcript has additional parameters (which you can look up by using Help) that append to
an existing file, force an existing file to be overwritten, and so forth.

PowerShell Command-Line Parsing

95

Chapter 7
PowerShell Command-Line Parsing

In an attempt to be all things to all people, and to maintain backward compatibility with external exe-
cutables and the way Cmd.exe worked, PowerShell has a rather complex command-line parser. A parser
is a piece of software that takes the entire command line you’ve entered, breaks it down, and tries to fig-
ure out what you want PowerShell to do. For example, PowerShell’s parser looks for spaces as command
delimiters, uses hyphens to indicate cmdlet parameters, and uses other standards. Knowing what the
parser is doing under the hood can provide some useful insight into why certain commands don’t seem
to work as expected, and can give you an idea of how to work around any oddities you come across.

Parsing would be simple if it weren’t for us humans. For example, nobody wants to type cd “\” to change
to the root of their hard drive—we just want to type cd \. Yet \ is clearly a string (well, a character, in
any event), and not a number, and in programming languages, strings are usually enclosed in quotation
marks. So, there’s a lot of complex stuff under the hood in PowerShell, working to figure out what the
heck you mean every time you hit Enter. Fortunately, the eggheads up at Microsoft had to write all that
complex stuff; you just need to know how it affects you. String handling is a major part of the parser’s
complexity. The other major part is that the parser can actually operate in one of two distinct modes.

Quotation Marks
Quotation marks are usually used to set off a string of characters that should be treated just as a string of
characters and not as part of a command or other keyword. For example, consider this:

PS C:\> write-host "Hello" -fore cyan
Hello

96

Windows PowerShell: TFM • 2nd Edition

You can’t see it, but “Hello” is displayed in the color cyan. You’ll have to trust us, because even printing
this one page in color would have doubled the price of this book. But that command is very different
from:

PS C:\> write-host "Hello -fore cyan"
Hello -fore cyan

See, the quotation marks are telling PowerShell that “-fore cyan” isn’t intended to be a parameter. It’s just
a string of characters, so PowerShell shouldn’t try to interpret it as a command.

PowerShell actually treats single and double quotation marks somewhat differently. Double quotation
marks are still subject to a quick review by the parser, to see if any variables are lurking in there. Any
variables that PowerShell finds are replaced with their contents. Watch:

PS C:\> $hello = "Greeting"
PS C:\> Write-host "What a $hello"
What a Greeting
PS C:\> Write-host 'What a $hello'
What a $hello

See the difference between the two? Because PowerShell always looks for spaces to separate different
keywords, any string that contains an embedded space needs to be enclosed in some kind of quotation
mark:

PS C:\> cd \program files
Set-Location : A parameter cannot be found that matches parameter name 'files'.
At line:1 char:3
+ cd <<<< \program files
PS C:\> cd "\program files"
PS C:\Program Files>

The first command failed, because PowerShell thought “files” was supposed to be a separate parameter,
and it couldn’t find one named “files,” so it got upset. By enclosing everything in quotation marks, we
told PowerShell to treat the entire string as a single parameter—the folder we wanted to change to.

PowerShell does support a weird alternative when you only need to quote one character, like the space
between “Program” and “Files”:

PS C:\> cd \program' files
PS C:\Program Files>

The backtick, or backquote, is PowerShell’s escape character. By “escaping” the space, we’re telling
PowerShell that the space isn’t really a space; it’s to be treated literally, as part of a string, not as a key-
word separator. But, honestly, that way just looks too strange, and only saves you one keystroke. But that
escaping trick works well elsewhere, too. Consider this:

PS C:\Program Files> $saying = "Peace"
PS C:\Program Files> write-host "say $saying"
say Peace
PS C:\Program Files> write-host "say '$saying"
say $saying

In the second example, by “escaping” the dollar sign, we forced PowerShell to treat it as a literal dollar

PowerShell Command-Line Parsing

97

sign, not as the beginning of a variable name. This prevents PowerShell from “expanding” the variable,
even though we used double quotes.

Parsing Modes
PowerShell’s parser supports two distinct parsing modes: Expression mode and command mode. In expres-
sion mode, strings must be quoted, numbers aren’t quoted, and so forth. In command mode, numbers are
still numbers, but anything else is treated as a string unless it starts with $, @, ‘, “, or (- all special char-
acters that denote the start of a variable, array, string, or sub-expression.

Expression mode is active whenever you don’t type a PowerShell cmdlet name or alias at the start of a
line. For example:

PS C:\> 2 + 2
4

That’s expression mode. Command mode kicks in when you do start off with a PowerShell cmdlet or
alias:

PS C:\> Write-Host 2+2
2+2

Different output in this case, because you’re in command mode and that “+” forces PowerShell to treat
“2+2” as a string, and not a number. However, remember that “(“ at the start of a string forces expression
mode for it:

PS C:\> write-host (2+2)
4

By forcing into expression mode, “2+2” is evaluated as an expression rather than a string, and you get the
output you were probably expecting. The differences between these modes can be subtle, but by remem-
bering these basic rules you’ll usually be able to keep yourself out of trouble.

Line Termination
PowerShell needs to know when you’ve reached the end of a line, so that it can process what you’ve
given it. When you’ve typed a complete command, a carriage return (technically, a “newline” character)
indicates the end of the line. So, if you type something like this, you get a result:

PS C:\> write-host "2+2"
2+2

However, if you type something that’s not complete, PowerShell treats the new line character as another
form of whitespace, like a tab or space character. At the command line, you’ll get a special prompt, tell-
ing you that PowerShell is waiting for you to finish:

PS C:\> write-host "2+2
>> "
>>
2+2

98

Windows PowerShell: TFM • 2nd Edition

Here, we left off the closing quotation mark, and so PowerShell figured we weren’t done yet. It
prompted us, and we completed the quotation mark, and hit Enter again to complete the command and
display the result. If you purposely want to break a long line and use the nested >> prompt, use the back-
tick character at the end of your line:

PS C:\ > get-wmiobject win32_computersystem | select-object Caption,Name,Manufacturer, '
>> model | format-list
>>

The semicolon is also an “end of line” character. By using it, you can put two logical lines onto a single
physical line:

PS C:\> 2+2 ; 4+4
4
8

Understanding PowerShell’s line termination rules can help keep you out of trouble, and help you
understand what’s going on when you get that strange “>>” prompt.

Working with the PowerShell Host

99

Chapter 8
Working with the PowerShell Host

Whenever we’re using PowerShell interactively, we’re working with what’s called the PowerShell host-
ing application, or just PowerShell host. As we explained in Chapter 1, PowerShell’s engine can be hosted
by many different applications, such as Exchange Server 2007’s management GUI, applications like
SAPIEN PrimalScript, and more. When using the PowerShell.exe console host, the special variable
$host provides access to some of this host’s unique capabilities.

It is important that you understand the $host will vary depending on which application is hosting
PowerShell. For many of you, the Windows PowerShell that you downloaded from Microsoft may be
the only host you ever work with. To illustrate the concept of different hosts, look at the different values
you get for each host. Here is $host from a Windows PowerShell session running on Windows Vista:

PS C:\ > $host

Name : ConsoleHost
Version : 1.0.0.0
InstanceId : 9f47e1dc-2bf9-45d8-8110-95568aabd014
UI : System.Management.Automation.Internal.Host.InternalHostUserInterface
CurrentCulture : en-US
CurrentUICulture : en-US
PrivateData : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

We’ve mentioned that PrimalScript can host PowerShell. Here is the information for that host:

Name : PrimalScriptHostImplementation
Version : 1.0.0.0

100

Windows PowerShell: TFM • 2nd Edition

InstanceId : d75b566f-7658-4cac-bd71-de08a4d358be
UI : System.Management.Automation.Internal.Host.InternalHostUserInterface
CurrentCulture : en-US
CurrentUICulture : en-US
PrivateData :

Finally, here is $host from Exchange 2007:

Name : ConsoleHost
Version : 1.0.0.0
InstanceId : efd45da6-65a4-45ae-b221-ae3317c2b402
UI : System.Management.Automation.Internal.Host.InternalHostUserInterface
CurrentCulture : en-US
CurrentUICulture : en-US
PrivateData : Microsoft.PowerShell.ConsoleHost+ConsoleColorProxy

For the most part, these hosts have identical functionality, but that’s not to say that some other future
host might have additional functionality. One way to check what your host can do is to pipe $host to
Get-Member:

PS C:\ > $host | get-member

 TypeName: System.Management.Automation.Internal.Host.InternalHost

Name MemberType Definition
---- ---------- ----------
EnterNestedPrompt Method System.Void EnterNestedPrompt()
Equals Method System.Boolean Equals(Object obj)
ExitNestedPrompt Method System.Void ExitNestedPrompt()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
get_CurrentCulture Method System.Globalization.CultureInfo g
get_CurrentUICulture Method System.Globalization.CultureInfo g
get_InstanceId Method System.Guid get_InstanceId()
get_Name Method System.String get_Name()
get_PrivateData Method System.Management.Automation.PSObj
get_UI Method System.Management.Automation.Host.
get_Version Method System.Version get_Version()
NotifyBeginApplication Method System.Void NotifyBeginApplication
NotifyEndApplication Method System.Void NotifyEndApplication()
SetShouldExit Method System.Void SetShouldExit(Int32 ex
ToString Method System.String ToString()
CurrentCulture Property System.Globalization.CultureInfo C
CurrentUICulture Property System.Globalization.CultureInfo C
InstanceId Property System.Guid InstanceId {get;}
Name Property System.String Name {get;}
PrivateData Property System.Management.Automation.PSObj
UI Property System.Management.Automation.Host.
Version Property System.Version Version {get;}

You see most of the properties when you invoke $host. But what else is there?

Culture Clash
Given that Windows is an international platform, it should come as no surprise that different versions
have different regional and language settings. In PowerShell, this is referred to as the Culture, which is a
property of $host:

Working with the PowerShell Host

101

PS C:\ > $host.currentculture

LCID Name DisplayName
---- ---- -----------
1033 en-US English (United States)

You get the same result if you use the Get-Culture cmdlet. However, there may be situations where
you need to execute a command or expression in another culture setting. Usually, the situation is with
non-US users who are running a command or application that fails to execute properly unless they use
the EN-US culture. Even though PowerShell has a cmdlet to get the current culture, there are no cmd-
lets for changing it system wide, which isn’t very practical anyway. Culture settings are thread level. But
what if you really, really had to change the culture setting temporarily? The Microsoft PowerShell team
posted a function a while ago on their blog. The entry was based on pre-release code so we’ve updated it
a bit:

Function Using-Culture (
[System.Globalization.CultureInfo]$culture = (throw "USAGE: Using-Culture -Culture culture -Script
{scriptblock}"),
[String]$script= (throw "USAGE: Using-Culture -Culture culture -Script {scriptblock}"))
{
 $OldCulture = [System.Threading.Thread]::CurrentThread.CurrentCulture
 trap
 {
 [System.Threading.Thread]::CurrentThread.CurrentCulture = $OldCulture
 }
 [System.Threading.Thread]::CurrentThread.CurrentCulture = $culture
 Invoke-Expression $script
 [System.Threading.Thread]::CurrentThread.CurrentCulture = $OldCulture
}

Using this function, you can execute any expression or command under the guise of a different culture:

PS C:\ > using-culture en-GB {get-date}

29 August 2007 17:06:27

The function executes Get-Date using the British culture settings, which have a different date format
than the United States settings.

Using the UI and RawUI
The $host object also gives you access to the underlying user interface (UI). You shouldn’t need to access
these properties and methods often. There are cmdlets for much of the functionality you are likely to
need. Still, there may be situations where you’d like to tweak the PowerShell window or take advantage
of a feature that doesn’t have a ready cmdlet.

Reading Lines and Keys
The best way to get user input is by using the Read-Host cmdlet:

PS C:\ > $name=Read-Host "What is your name?"
What is your name?: Jon
PS C:\ > $name
Jon

102

Windows PowerShell: TFM • 2nd Edition

You can use the ReadLine() method from $host.ui, but it’s a little primitive:

PS C:\ > write-host "What is your name?";$name=$host.ui.Readline()
What is your name?
Jon
PS C:\ > $name
Jon

The ReadLine() method has no provision for a prompt like Read-Host, so we used Write-Host to
display something. The ReadLine() method simply waits for the user to type a line and press Enter.
Off hand, we can’t think of a situation where this would be preferable to using Read-Host. But there is
another $host method that you might find helpful for which there is no PowerShell cmdlet.

The $host.ui.rawui object has a method called ReadKey() that works like the ReadLine() method,
except it only accepts a single key:

PS C:\ > $host.ui.rawui.readkey()
y
 VirtualKeyCode Character ControlKeyState KeyDown
 -------------- --------- --------------- -------
 89 y NumLockOn True
PS C:\ >

You can fine tune this method by specifying some Readkey() options. You’ll likely not need to echo the
typed character:

PS C:\ > $host.ui.rawui.readkey(“NoEcho,IncludeKeyUp,IncludeKeyDown”)

You need to use either IncludeKeyUp or IncludeKeyDown, or both. We always use both. To use this
method in a script or function, you’ll also need to include the KeyAvailable property. This is a Boolean
value that indicates whether a keystroke is waiting in the keyboard input buffer.

$ESCkey = 27
Write-Host "Press the ESC key to continue"

$Running=$True

while ($Running) {
 if ($host.ui.RawUi.KeyAvailable)
 { $key = $host.ui.RawUI.ReadKey("NoEcho,IncludeKeyUp,IncludeKeyDown")
 if ($key.VirtualKeyCode -eq $ESCkey)
 {
 $Running=$False
 }
 }
}

In this code example, we use a While loop that runs until the value of $Running is changed to $False.
The outer If statement checks to see if a key is in the buffer:

if ($host.ui.RawUi.KeyAvailable)

If so, then the code uses the ReadKey() method:

Working with the PowerShell Host

103

 { $key = $host.ui.RawUI.ReadKey(“NoEcho,IncludeKeyUp,IncludeKeyDown”)

If the value of the entered key is 27, which is the key value of the ESC key, then $Running is set to
$False and the next time through the While loop, the code will exit the loop.

Changing the Window Title
You can access the title of your Windows PowerShell window very easily by accessing the WindowTitle
property:

PS C:\ > $host.ui.rawui.WindowTitle
Windows PowerShell

You can just as easily change the window title. Here’s an example:

Create-ServerReport.ps1

function Set-Title {
Param ([string]$NewTitle)
$host.ui.rawui.WindowTitle=$NewTitle
}

Set-Alias title Set-Title

function Save-Title {
$Global:SavedTitle=$host.ui.rawui.WindowTitle
}

Save-Title
$report="c:\test\report.txt"

"REPORT CREATED "+(get-date).ToString() | Out-File $report

foreach ($server in @(Get-Content c:\test\servers.txt)) {
#skip blank lines
 if (($server).length -gt 0)
 {
 $newtitle="Checking " + $server.ToUpper()
 title $newtitle
 $server.ToUpper() | Out-File $report -append
 "PageFile" | Out-File $report -append
 Get-WmiObject win32_pagefile -computer $server.Trim() `
 | Out-File $report -append
 "OS" | Out-File $report -append
 Get-WmiObject win32_operatingsystem -computer $server.Trim()`
 | Out-File $report -append
 "ComputerSystem" | Out-File $report -append
 Get-WmiObject win32_computersystem -computer $server.Trim()`
 | Out-File $report -append
 #pause for a few seconds just to show title in action
 #not really required.
 sleep 5
 }
}

#revert back to old title
Title $savedtitle
#view report
Notepad $report

104

Windows PowerShell: TFM • 2nd Edition

This script processes a list of servers, gets information about each server from WMI and saves the results
to a text file. Since this script could run for a long time, we modify the title to reflect what server the
script is working on. You can then minimize your PowerShell window yet still be able to monitor the
script’s progress.

The script defines functions to set the window title as well as save the current one. We also define an
alias, Title, for the Set-Title function. Thus as each server is processed from the list, the window title is
changed to reflect the current server:

 $newtitle="Checking " + $server.ToUpper()
 title $newtitle

At the end of the script we change the title back to the saved, original window title:

Title $savedtitle

Changing Colors
We can also modify the color settings of PowerShell windows. First, let’s look at the current settings:

PS C:\ > $host.ui.rawui

ForegroundColor : DarkYellow
BackgroundColor : DarkMagenta
CursorPosition : 0,2999
WindowPosition : 0,2950
CursorSize : 25
BufferSize : 120,3000
WindowSize : 120,50
MaxWindowSize : 120,81
MaxPhysicalWindowSize : 160,81
KeyAvailable : False
WindowTitle : Windows PowerShell

You might prefer something like this:

PS C:\ > $host.ui.rawui.backgroundcolor="green"
PS C:\ > $host.ui.rawui.foregroundcolor="black"

These changes last only for as long as your PowerShell session is running. If you want a more permanent
change, then add lines like these to your profile script.

Changing Window Size and Buffer
The raw UI also lets you control position and size of your PowerShell windows. To see the current size,
you can use this expression:

PS C:\ > $host.ui.rawui.Windowsize | format-list

Width : 120
Height : 50

Working with the PowerShell Host

105

The WindowSize cannot be larger than the value of MaxPhysicalWindowSize. To simplify changing
the console window size, you can use this function:

Function Set-WindowSize {
Param([int]$width=$host.ui.rawui.windowsize.width,
 [int]$height=$host.ui.rawui.windowsize.height)

 $size=New-Object System.Management.Automation.Host.Size($width,$height)

 $host.ui.rawui.WindowSize=$size

}

To dynamically change your console window to 60 columns wide and 30 rows, use the following
command:

PS C:\> Set-windowsize 60 30.

If you don’t specify a width or height value, the function will use the value of the current window size.
We can take a similar approach to console’s buffer.

The buffer controls how much of the window can be scrolled either vertically or horizontally. Setting a
large vertical buffer lets you see more output from previous commands. If you have a script that will pro-
duce a lot of information, you may want to modify the buffer size so you can scroll up to see it all. Here’s
a function that might help:

Function Set-WindowBuffer {
Param([int]$width=$host.ui.rawui.BufferSize.width,
 [int]$height=$host.ui.rawui.BufferSize.height)

 $buffer=New-Object System.Management.Automation.Host.Size($width,$height)

 $host.ui.rawui.Buffersize=$buffer

}

You cannot set a buffer size that is less than the window size. But suppose your current window and buf-
fer size is 120 X 50, if run this command:

PS C:\ > set-windowbuffer 120 500

You’ll see a vertical scroll bar appear in your PowerShell window. Now you’ll be able to scroll back to see
more of your previous commands and output.

Nested Prompts
One of the most interesting features about the console host is its nested prompts. This is a bit difficult
to see in action, so let’s walk through an example. Be very careful if you’re following along! One wrong
keystroke could crash your computer.

First, open several instances of Windows Notepad. Then, in PowerShell, run this:

PS C:\> get-process notepad | stop-process -confirm

106

Windows PowerShell: TFM • 2nd Edition

You should see something like this:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (2072)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

If you hit S, you’ll suspend the pipeline operation and enter a nested prompt. Your original command is
still pending, but you’ve sort of entered a side conversation with Windows PowerShell. In it, you can
do whatever you want—check variables, run cmdlets, and so forth. By default, the PowerShell prompt
reflects this nested state:

PS C:\>>>

Typing Exit ends the nested prompt and takes you back up one level:

PS C:\>>> exit

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (2072)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

Here, you’ll see your original command still in action. Select L to abort. You can manually create a new
nested prompt by running $host.EnterNestedPrompt(). There’s not much use in this from the com-
mand line, perhaps, but when you’re writing a script you can have a new prompt created for certain
conditions, such as an error occurring. The nested prompt runs “inside” the script, so it’ll have access to
all the variables and so forth within a script. Again, running Exit ends the nested prompt, and would
return to your script.

Note that you can’t have more than 128 nested prompts (we can’t imagine why you’d need even that
many, to be honest). A built-in variable, $NestedPromptLevel, tells you how deeply you’re already
nested, and you can check it to see if it’s safe to launch a new nested prompt.

By the Way…
Instead of running Exit, you can also run $host.ExitNestedPrompt() to exit a nested prompt.

Quitting PowerShell
Of course, running Exit from a non-nested prompt will exit the shell. But you can also run $host.
SetShouldExit(xxx) to exit the shell, passing a number for xxx. This number will be returned as an error
code to the Windows environment.

Prompting the User to Make a Choice
The $host interface provides some access to PowerShell’s underlying user interface capabilities. For
example, suppose you want to provide a simple “Yes or No” text prompt. First, you would need to con-
struct the prompt in an array:

Working with the PowerShell Host

107

PS C:\> $no = ([System.Management.Automation.Host.ChoiceDescription]"&No")
PS C:\> $no.helpmessage = "Do not continue"
PS C:\> $yes = ([System.Management.Automation.Host.ChoiceDescription]"&Yes")
PS C:\> $yes.helpmessage = "Continue"
PS C:\> $prompts = ($yes,$no)

What we’ve done is created two new prompts. Use the & character before whichever letter will be the
“answer” for that prompt. In other words, in our example, you’d press “N” for “No” and “Y” for “Yes.” We
also specified a “help message” for each prompt, and then assembled them into an array in the $prompts
variable. Next, you ask the host to display the prompt:

PS C:\> $host.ui.promptforchoice("Continue?","Do you want to continue?",'
>>[System.Management.Automation.Host.ChoiceDescription[]]$prompts,0)
>>

Continue?
Do you want to continue?
[Y] Yes [N] No [?] Help (default is "Y"):

Notice that the prompt does not display our “help message” text—that’s only displayed if you select
? from the prompt. Also, as you can see, you can provide a title, a description, and then your array
of choices. Those choices have to be of a specific .NET Framework type, System.Management.
Automation.Host.ChoiceDescription, which is why you see that long class name enclosed in square
brackets in there. The PromptForChoice() method will return whatever choice the user made. This is
perhaps best wrapped up into a reusable function:

Function ChoicePrompt($caption, $message, $choices,$default=0) {
 $host.ui.promptforchoice($caption,$message, `
 [System.Management.Automation.Host.ChoiceDescription[]]$choices,$default)
}

You’d then call this function, passing it your desired caption, message, prompt array, and the index num-
ber of the default prompt choice. The function would return the index number—0 for the first choice, 1
for the second, and so forth—that the user picked. Here’s how you might use it in a PowerShell session:

PS C:\ > $message="Please make a selection"
PS C:\ > $caption="Continue?"
PS C:\ > $yes = ([System.Management.Automation.Host.ChoiceDescription]"&Yes")
PS C:\ > $yes.helpmessage = "Continue"
PS C:\ > $no = ([System.Management.Automation.Host.ChoiceDescription]"&No")
PS C:\ > $no.helpmessage = "Do not continue"
PS C:\ > $choices = ($yes,$no)
PS C:\ > choiceprompt $caption $message $choices

Continue?
Please make a selection
[Y] Yes [N] No [?] Help (default is "Y"):
0
PS C:\

Security Features

109

Chapter 9
Security Features

PowerShell has some interesting challenges to meet in terms of security. The last time Microsoft pro-
duced a scripting shell, it produced the Windows Script Host (WSH) that is commonly used to run
VBScript scripts. When WSH was produced, security wasn’t much of a concern. As a result, VBScript
probably became one of the biggest attack points within Windows. As a result, it was used to write and
execute a number of viruses and other malicious attacks. Microsoft certainly didn’t want to repeat that
with PowerShell, and so a number of security features have been built-in.

Why Won’t My Scripts Run?
The first thing you may notice is that files having a .ps1 filename extension don’t do anything automati-
cally when double-clicked. The PowerShell window might not even open, since by default the .ps1
filename extension is associated with Notepad! But even if you manually open PowerShell and type a
script name, it doesn’t run. What good is PowerShell if it can’t run scripts?

When Scripts Don’t Run
There are two reasons why a PowerShell script might not run. The first is the script’s location.
PowerShell won’t run scripts that are located in the current directory—it’s as if it simply can’t see them.
For example, we created a script named Test.ps1 in a folder named C:\Test. With PowerShell set to that
folder, we type the script name— it isn’t found:

110

Windows PowerShell: TFM • 2nd Edition

PS C:\test> test
The term 'test' is not recognized as a Cmdlet, function, operable program,or script file.
Verify the term and try again.
At line:1 char:4
+ test <<<<
PS C:\test>

This is a security precaution to help prevent a malicious script from intercepting cmdlet and command
names and then running. In other words, if we named our script Dir.ps1, it still wouldn’t run—the Dir
command would run instead. So, the only way to run a script is to explicitly refer to that folder:

PS C:\test> cd ..
PS C:\> test\test
Ok
PS C:\>

By moving up to the C:\ folder on the first line, we are able to run the script by referring to its folder
(test) and filename (test, or test\test for the complete relative path).

Actually, you can have PowerShell execute scripts in the same directory if you specify the directory. For
example, running .\test.ps1 will run the Test.ps1 script in the current directory, which is specified by the
.\ part. However, by specifying a directory you’re eliminating the possibility of your script being confused
for a command or cmdlet, which makes it safer.

The second reason is the most likely reason your script won’t run—the execution policy. For security
purposes, PowerShell defaults to a very restrictive execution policy that says the shell can only be used
interactively, which occurs when you type in commands directly and have them execute immediately.
This helps ensure that PowerShell can’t be used to run script-based viruses by default. In order to run
scripts, you’ll need to change PowerShell to a different execution policy. However, first we need to talk a
bit about how PowerShell identifies and decides whether to trust scripts.

Note
When considering security issues, keep in mind that PowerShell may eventually be a core part of
Windows that is included with new installations. It is already included as an optional component of
Windows Server 2008, for example.

Digital Signatures
Digital signatures are an important part of how PowerShell’s security works. A digital signature is cre-
ated by using a code-signing certificate, sometimes referred to as a “Class 3” digital certificate or an
Authenticode certificate, which is a Microsoft brand name. These certificates are sold by commercial
certification authorities (CAs). The certificates can also be issued by company’s own private CAs.

The CA is where the trust process starts. All Windows computers have a list of trusted root CAs that is
configured in the Internet Options control panel applet as shown in the following figure. To access this
window, open Internet Options, and click Publishers… on the Content tab. Then, select the Trusted
Root Certification Authorities tab. This list, which is pre-populated by Microsoft and can be custom-
ized by administrators, determines the CAs that your computer trusts. By definition, your computer will
trust any certificates issued by these CAs or any lower-level CA that a trusted CA has authorized. For
example, if you trust CA 1, and they authorize CA 2 to issue certificates, then you’ll trust certificates
issued by CA 1 and by CA 2—your trust of CA 2 comes because it was authorized by the trusted CA 1.

Security Features

111

When a CA issues a code-signing certificate, it consists of two halves: a private key and a public key.
You usually install the entire certificate on your local computer and use it to digitally sign code including
PowerShell scripts. A digital signature is created by calculating a cryptographic hash, which is a kind of
complex checksum, on the script’s contents. The hash is the result of a complex mathematical algorithm
that is designed so that no two different scripts can ever produce the same hash value. In other words,
the hash acts as a sort of electronic fingerprint for your script. The hash is then encrypted using your
certificate’s private key. This encrypted hash, which is referred to as the signature, is appended to the
script.

Because the hash portion of the digital signature is unique to your script, it will change if your script
changes in the slightest. Even an extra blank line somewhere in your script will invalidate the old check-
sum and digital signature. After making any changes to your script, you’ll need to re-sign it. Tools like
SAPIEN PrimalScript can be configured to automatically sign scripts each time they’re saved, which
can save you a lot of hassle.

Trusted Scripts
When PowerShell tries to run a script, it first looks for a signature. If it doesn’t find one, then the script
is considered untrusted. If PowerShell does find a signature, it looks at the unencrypted part of the sig-
nature that contains information about the author of the script. PowerShell uses this information to
retrieve the author’s public key, which is always available from the CA that issued the code-signing cer-
tificate that was used to sign the script. If the CA isn’t trusted, then the script isn’t trusted. In this case,
PowerShell doesn’t do anything else with the script or signature.

If the CA is trusted, and PowerShell is able to retrieve the public key, then PowerShell tries to decrypt
the signature using that public key. If it’s unsuccessful, then the signature isn’t valid, and the script is
untrusted. If the signature can be decrypted, then PowerShell knows the script is conditionally trusted,
which means it’s been digitally signed by a trusted certificate issued by a trusted CA. Finally, PowerShell
computes the same hash on the script to see if it matches the previously encrypted hash from the signa-

112

Windows PowerShell: TFM • 2nd Edition

ture. If the two match, then PowerShell knows the script hasn’t been modified since it was signed, and
the script is fully trusted. If the hashes do not match, then the script has been modified, and the script is
untrusted because the signature is “broken.”

PowerShell uses the script’s status as trusted or untrusted to decide whether or not the script can be
executed in accordance with its current execution policy.

Execution Policies
Within PowerShell, you can run help about_signing to learn more about PowerShell’s four execution
policies that are listed below.

AllSigned.•	 In this mode, PowerShell executes scripts that are trusted, which means they must be
properly signed. Malicious scripts can execute, but you can use their signature to track down the
author.

Restricted. •	 This is the default policy. The restricted mode means that no scripts are executed,
whether signed or not.

RemoteSigned.•	 In this mode, PowerShell will run local scripts without them being signed.
Remote scripts that are downloaded through Microsoft Outlook, Internet Explorer, and so forth
must be trusted in order to run.

 • Unrestricted. PowerShell runs all scripts, whether signed or not. Downloaded scripts will prompt
before executing to be sure you really want to run them.

We highly recommend that you sign your scripts since it creates a more secure and trustworthy envi-
ronment. If you plan to sign your scripts as recommended, then the AllSigned execution policy is
appropriate. Otherwise, use RemoteSigned. The Unrestricted policy is overly generous and leaves your
computer open to a range of attacks, therefore it shouldn’t be used.

To check the current execution policy from within PowerShell, run:

PS C:\> Get-executionpolicy

You’ll get back information about the current execution policy. If it’s Restricted, then you’ll know why
your scripts won’t run.

The execution policy can be changed within PowerShell. Keep in mind that this is changing a value in
the system registry, to which only administrators may have access. Therefore, if you’re not an administra-
tor on your computer, then you may not be able to modify the execution policy. To change the execution
policy, run the following within PowerShell:

PS C:\> set-executionpolicy RemoteSigned

This will set the execution policy to RemoteSigned. This change takes effect immediately without
restarting PowerShell.

Signing Scripts
Because code-signing certificates can be expensive ($300 per year or more is the current going rate), you
may wish to create a self-signed certificate for your own local testing purposes. This certificate will be
trusted only by your personal computer, but it costs you nothing to create. To create a self-signed certifi-
cate, you’ll need a program called Makecert.exe that is available in the downloadable Microsoft .NET

Security Features

113

Framework Software Development Kit (SDK) at http://msdn.microsoft.com/netframework/
downloads/updates/default.aspx. This file is also downloadable from the Windows Platform SDK.
Documentation, including examples for this utility, can be found at http://msdn2.microsoft.com/en-us/
library/aa386968.aspx.

After downloading and installing this file, you can use the Makecert.exe file to create the certificate by
running the following from a Cmd.exe shell:

C:\> Makecert -n "CN=PowerShell Local Certificate Root" -a sha1
 -eku 1.3.6.1.5.5.7.3.3 -r -sv root.pvk root.cer
 -ss Root -sr localMachine

Note: If you have problems running Makecert, run Makecert /? to verify the correct syntax.
Different versions of Makecert (a version might be included in your Microsoft Office installation, for
example) require slightly different command-line arguments.

Note that this is all one long line of instructions. Next run:
C:\> Makecert -pe -n "CN=PowerShell User" -ss MY -a sha1
 -eku 1.3.6.1.5.5.7.3.3 -iv root.pvk -ic root.cer

Again, this is all one long line of typed instructions. These lines create two temporary files, root.pvk and
root.cer, that you can save as backups. The actual certificate will be installed into your local certificate
store where it can be used to sign scripts. Within PowerShell, run:

PS C:\> Set-authenticodeSignature "filename.ps1" '
>>@(get-childitem cert:\CurrentUser\My -codesigning)[0]
>>
PS C:\>

This is also one long line. This line retrieves your code-signing certificate and signs the file named
filename.ps1, which should be an existing, unsigned PowerShell script. You can run help set-authenti-
codesignature for additional help with signing scripts. You can also use high-end script development
environments, such as SAPIEN PrimalScript, to sign scripts using a graphical user interface.

We need to emphasize that a certificate made with Makecert is only useful for testing on your local
computer. If you want to distribute your scripts internally or externally, you’ll need to acquire a real
code-signing certificate.

Alternate Credentials
Whenever you start a new instance of the PowerShell shell, it runs under your security context. This
means that PowerShell uses your logon credentials to run whatever scripts and commands you need to
run. If your credentials do not have permissions to perform a particular command, such as retrieving a
WMI object from a remote computer, then PowerShell will not be able to perform that task. One way
to run PowerShell under alternate credentials is to use the Windows RunAs command. In this case,
PowerShell will run under whatever credentials you provide to RunAs. However, sometimes this option
might not work for what you need to do. For example, suppose you want to retrieve a WMI object from
a computer on which you’re not a local administrator. By default, WMI only permits local administra-
tors to access WMI remotely. You could launch PowerShell using RunAs, if you can provide RunAs
with credentials, such as a domain administrator account that is a local administrator on the computer
in question. However, if that computer is not a domain member, there is no way to provide RunAs with

114

Windows PowerShell: TFM • 2nd Edition

the credentials of another computer’s local accounts. If this situation arises, it appears that you’re stuck.

However, it may only seem that way. Many PowerShell cmdlets support an optional parameter named
-credential, which allows you to specify an alternate username and password that this one cmdlet will
use to execute. For example, the Get-WmiObject cmdlet has a -credential parameter. Running Help
Get-WmiObject indicates that the -credential parameter takes a value of the type PSCredential. This
means you’ll need to learn how to make one of those credentials.

The task, then, is to use PowerShell to get something called a security principal, which in English is a
user or security group. PowerShell provides a cmdlet named Get-Credential that does just that. The
cmdlet prompts you for the appropriate password and returns a PSCredential object that you can store
in a variable. For example:

PS:> $cred = get-credential MYDOMAIN\Administrator

Note that the username is specified in the DOMAIN\USER format. For a local computer, use
COMPUTER\USER instead. Always specify the short (NetBIOS) domain or computer name rather
than the longer DNS domain name. If you prefer, you can also enter the username in the user@domain
format, in which case you’ll use the complete DNS domain name.

If you try this, there are two really important things to note:

A dialog box will pop up, prompting you for the specified user’s password.•

PowerShell • does not check the user. Instead, it prompts you for a password. Keep in mind that
it doesn’t see if it’s correct, and it doesn’t check to see if the specified user exists. That’s your
responsibility.

Now you can run a command like this:

PS:> Get-wmiobject -class Win32_Process -computername Client32 -credential $cred

This script first utilizes the credential stored in the variable $cred to connect to a machine named
Client32 and then attempts to retrieve all instances of the WMI Win32_Process class. Note that not
all cmdlets support the -credential parameter as shown here. Run Help cmdlet-name to view a particu-
lar cmdlet’s help file to see if it offers this functionality. In many cases, the ability to utilize alternate
credentials isn’t dependent on whether or not the cmdlets can accomplish this. Instead, it depends on
whether or not the underlying Windows functionality, which the cmdlet is calling upon, can pass along
alternate credentials.

Is PowerShell Dangerous?
The answer is that PowerShell is no more dangerous than any other application. Certainly, PowerShell
has the potential for great destruction, since it can delete files, modify the registry, etc. However, so can
any other application. If you run PowerShell as a local administrator, then it will have full access to your
system—just like any other application. If you follow the principle of least privilege, which means you
don’t routinely log on to your computer as a local administrator, and you don’t routinely run PowerShell
as a local administrator, then its potential for damage is minimized—just like any other application. In
fact, when set to its AllSigned execution policy, PowerShell is arguably safer than many applications,
since you can ensure that only scripts signed by an identifiable author will actually be able to run.

Naturally, much of PowerShell’s security begins and ends with you. Microsoft has configured it to be
very safe out-of-the-box. Therefore, anything you do from there can potentially loosen PowerShell’s
security. For this reason, you need to understand that your actions could have consequences before you

Security Features

115

do anything.

Safer Scripts from the Internet
One potential danger point is downloading PowerShell scripts from the Internet or acquiring them
from other untrusted sources. While these scripts are a great way to quickly expand your scripting skills,
they present a danger if you don’t know exactly what they do. Fortunately, Microsoft has provided the
-whatif parameter, which is a very cool way to find out what scripts do.

All PowerShell cmdlets are built from the same basic class, or template, which allows them to have a
-whatif parameter. Not every cmdlet actually implements this, but then not every cmdlet does some-
thing potentially damaging. Let’s look at a good example of how you might use the -whatif parameter.

Say you download a script from the Internet, and in it you find the following:

PS:> Get-process | stop-process

Note: Did you know that Get-Process, with no other arguments, returns a list of all processes?

This runs the Get-Process cmdlet and pipes its output to the Stop-Process cmdlet. So, this script will
have the effect of stopping every process on your computer. Not good. However, if you weren’t sure of this
output, you could just add -whatif:

PS:> Get-Process | stop-process -whatif

The output listed below is what you’d get, which is a portion of the actual list:

What if: Performing operation "stop-process" on Target "acrotray (4092)".
What if: Performing operation "stop-process" on Target "alg (1480)".
What if: Performing operation "stop-process" on Target "ati2evxx (1356)".
What if: Performing operation "stop-process" on Target "ati2evxx (1672)".
What if: Performing operation "stop-process" on Target "BTStackServer (3668)".
What if: Performing operation "stop-process" on Target "BTTray (1252)".
What if: Performing operation "stop-process" on Target "btwdins (168)".
What if: Performing operation "stop-process" on Target "csrss (1084)".
What if: Performing operation "stop-process" on Target "explorer (3380)".
What if: Performing operation "stop-process" on Target "Groove (1232)".
What if: Performing operation "stop-process" on Target "hpqgalry (3260)".
What if: Performing operation "stop-process" on Target "hpqtra08 (1556)".
What if: Performing operation "stop-process" on Target "hpwuSchd2 (3956)".
What if: Performing operation "stop-process" on Target "HPZipm12 (1004)".
What if: Performing operation "stop-process" on Target "Idle (0)".
What if: Performing operation "stop-process" on Target "inetinfo (236)".
What if: Performing operation "stop-process" on Target "iPodService (1136)".

Other than getting this output, nothing would happen. The -whatif parameter tells PowerShell (or more
specifically, the Stop-Process cmdlet) to display what it would do, without actually doing it. This allows
you to see what the downloaded script would have done without taking the risk of running it. That’s one
way to make those downloaded scripts a bit safer in your environment—or at least see what they’d do.
Most cmdlets that change the system in some way support -whatif, and you can check individual cmd-
lets’ built-in help to be sure.

Note that -whatif doesn’t take the place of a signature. For example, if your PowerShell execution policy
is set to only run trusted (signed) scripts, and you download a script from the Internet that isn’t signed,

116

Windows PowerShell: TFM • 2nd Edition

then you’ll have to sign the script before you can add -whatif and run the script to see what it would do.

Our scripts aren’t signed!
We’ve deliberately not signed any of the sample scripts in this book (which are downloadable from
www.SAPIENPress.com). If you decide to run any of our scripts, you need to evaluate them first
to make sure they’re suitable for you, and then sign them or configure PowerShell to not require
a signature on scripts in order to execute them. We don’t want you running any of our scripts until
you’ve determined that they’re appropriate for your environment, free of typos, and so forth.

You should also bear in mind the differences between the AllSigned and RemoteSigned execution poli-
cies. When you download a file with Microsoft Outlook or Microsoft Internet Explorer, Windows
“marks” the file as having come from a potentially untrustworthy source, the Internet. Files “marked” in
this fashion won’t run under the RemoteSigned execution policy unless they’ve been signed. While we
still encourage the use of the AllSigned execution policy, RemoteSigned at least lets you run unsigned
scripts that you write yourself, while providing a modicum of protection against potentially malicious
scripts you acquire from somewhere else.

Passwords and Secure Strings
In certain situations, you may need to have a script prompt for a string that you need to keep safe and
secure such as a password. PowerShell provides a special object called SecureString that is designed to
securely work with string data. Three cmdlets are available for working with SecureString objects: Read-
Host, ConvertFrom-Securestring, and ConvertTo-Securestring.

Read-Host prompts for input and masks whatever is typed. The typed input then returns as the result of
the cmdlet that can be stored in a variable. For example:

PS C:\> $password = read-host -assecurestring

PS C:\>

The password is stored in the variable $password. However, unlike a regular variable, you can’t just dis-
play the contents of a SecureString:

PS C:\> $password
System.Security.SecureString
PS C:\>

As you can see, the contents of $password weren’t displayed. Instead, the type of $password—“System.
Security.SecureString”—was displayed. So, how can you get the password? Well, you can’t exactly. It’s
intended to be passed directly to other cmdlets that accept a SecureString as their input.

However, there’s another way in which SecureString is useful. You may have already realized that
hardcoding passwords into a script is a bad idea. Anyone with permission to run the script also has
permission to read it, which means they can read the hard-coded password. SecureString provides a
slight amount of additional security when you must hard-code a password. You start by creating a new
SecureString like the ones we’ve shown you. Then you use ConvertFrom-SecureString to export your
encrypted password in a format that can be hard-coded into a script:

Security Features

117

PS C:\> $password = read-host -assecurestring

PS C:\> $password = ConvertFrom-SecureString $password
PS C:\> $password
01000000d08c9ddf0115d1118c7a00c04fc297eb010000009c0d9c7fe8c37b439faf
e0000000002000000000003660000a80000001000000093aaa18edf6f108b6222559
00000004800000a00000001000000098e4c93b57f59ff35110960a80b248a2180000
10ef82f30674ca4beea5df77c556388e95238b2140000002735d16881363c9c7b385
c7aea529
PS C:\>

That string of letters and numbers can be hard-coded into your script, assigning them to a variable.
When you’re ready to actually use the password, such as passing it as a parameter to a cmdlet that
accepts a SecureString, then use ConvertTo-SecureString to turn the letters and numbers back into a
SecureString:

PS C:\> $password = read-host -assecurestring

PS C:\> $password = ConvertFrom-SecureString $password
PS C:\> $password
01000000d08c9ddf0115d1118c7a00c04fc297eb010000009c0d9c7fe8c37b439faf
e0000000002000000000003660000a80000001000000093aaa18edf6f108b6222559
00000004800000a00000001000000098e4c93b57f59ff35110960a80b248a2180000
10ef82f30674ca4beea5df77c556388e95238b2140000002735d16881363c9c7b385
c7aea529
PS C:\> $password= ConvertTo-SecureString $password
PS C:\> $password
System.Security.SecureString
PS C:\>

The last four lines show ConvertTo-SecureString being used. As you can see, once again $password is
a SecureString. So, here’s how this works: A SecureString can be used in your script as a normal variable;
only the various “Output” and “Write” cmdlets will be unable to display it. If a cmdlet needs a password,
and you send the password in a SecureString, the cmdlet will be able to read the password.

When you need to store a SecureString in a file or in a script, convert it from a SecureString into an
encrypted string; convert it back to a SecureString to actually use it.

Here’s the only problem—the encryption algorithm used by CovertFrom-SecureString is deterministic,
which means any given input always results in the same output. This makes the encrypted password vul-
nerable to a dictionary attack, which occurs when the encrypted password is compared to a huge list of
pre-encrypted passwords. When a match is found, the dictionary knows the cleartext password used to
produce that particular encrypted password, which means the password, is compromised. You can specify
an encryption key when you use CovertFrom-SecureString; however, that key has to be used with
ConvertTo-SecureString, and if you store the key in a file or in the script, then the key is essentially
compromised and offers no particular security. And, no matter what, the output of CovertFrom-
SecureString can be cracked by a dictionary attack.

Dictionary attacks are not particularly time-consuming once the dictionary itself is created. Pre-created
dictionaries exist that contain every possible character combination for 6-, 7-, and 8-character pass-
words. A good dictionary will fit on a stack of DVD-ROM discs, and there are places on the Internet
where you can buy such a stack—essentially, a ready-to-use password cracking tool. If you plan to use
this SecureString technique to hard-code passwords into your script, be sure they’re very long pass-
words—think passphrases—to help avoid the possibility of an easy dictionary attack.

118

Windows PowerShell: TFM • 2nd Edition

You should also be aware that a clever .NET developer or PowerShell scripter can decrypt the contents
of a SecureString and display the cleartext result:

PS C:\> $Secret = read-host -assecurestring

PS>$Secret
System.Security.SecureString
PS>$BSTR = [System.Runtime.InteropServices.marshal]::SecureStringToBSTR($Secret)
PS>$ClearString = [System.Runtime.InteropServices.marshal]::PtrToStringAuto($BSTR)
PS>[System.Runtime.InteropServices.marshal]::ZeroFreeBSTR($BSTR)
PS>$ClearString
The password
PS>

What happened, here? A new SecureString was created and stored in the variable $secret. This might
be a password, for example. Then, .NET’s COM interoperability services were used to convert the
SecureString to a binary string (BSTR). It is then used to output the cleartext version into the vari-
able $ClearString. This isn’t exactly the huge security leak it looks like, since it can only be done with
the original SecureString object created by Read-Host, and only on the computer on which the
SecureString was created. So, really, the only person who could use this trick is the person who typed
the password in the first place. In essence, your personal login credentials are used to encrypt the
SecureString in memory. So, without those, it can’t be decrypted.

The Microsoft .NET Framework: An Overview for PowerShell Users

119

Chapter 10
The Microsoft .NET Framework:
An Overview for PowerShell Users

You probably don’t feel as if you need to know much about the .NET Framework. Or maybe you’re just
hoping that’s the case. Well, you’re almost right. You certainly don’t need to know much about the .NET
Framework. However, you need to know a little so that all of PowerShell’s features make sense to you.
The good news is that what you need to know about the .NET Framework is summarized in this short
chapter.

Microsoft .NET Framework Essentials
.NET is Microsoft’s leading-edge software development framework. Traditional .NET develop-
ment begins inside a development environment like Microsoft Visual Studio, SAPIEN PrimalScript
Enterprise, or even Windows Notepad. After applications are written in languages like Visual Basic
.NET or Visual C#, they’re compiled to a special language called the Microsoft Intermediate Language
(MSIL). This is important, because it’s different from how other things such as Visual Basic 6 compiled
programs into a native, binary executable.

When you double-click a .NET executable, it doesn’t run right away because it contains MSIL, not
actual binary code. Instead, Windows fires up the .NET Common Language Runtime (CLR), which
is what reads the MSIL and compiles it into executable, binary code that will run on your system. This
makes .NET applications inherently portable, since they can (more or less) run on any platform for
which a CLR is available. This is all a bit of an oversimplification, but it’s more than close enough for
Windows administrative work.

The point of all this is that PowerShell is built on .NET, as are the cmdlets you’ll be running. .NET is

120

Windows PowerShell: TFM • 2nd Edition

what’s called an object-oriented framework, which is a fancy way of saying it is kind of template-based.
For example, all PowerShell cmdlets start out as copies of a standardized cmdlet base class or template.
In programmer terms, you’d say that all cmdlets inherit from that cmdlet base class. This is important
because it’s what makes all cmdlets pretty consistent with one another, which allows them to share cer-
tain ubiquitous parameters, etc.

The object-oriented stuff plays heavily into how PowerShell works, which is why you need to know a bit
more about what an object is. At the simplest level, perhaps a level suitable for cocktail parties, an object
is a bunch of computer code bundled into a “black box.” The black box has buttons you can push to
make things happen, and it has little blinking lights to tell you what’s going on inside. You don’t actually
know how the box works—inside it could be anything from a particle accelerator to a cheese sandwich.
But that doesn’t really matter since the point is that you only interact with the box through its blink-
ing lights and buttons while everything inside remains a big mystery. You can build your own black box
that incorporates another black box, which is called inheritance. Essentially inheritance occurs when you
install box number one inside box number two, so box number two can take full advantage of box num-
ber one’s functionality without knowing much about what goes on inside.

Everything is an object in .NET and in PowerShell. Every variable you create, every WMI class you
return—everything is an object. All of these objects have buttons called methods and blinking lights
called properties. For example, when you run the code listed below, the Get-WmiObject cmdlet gets all
the instances of the Win32_Process WMI class.

PS C:\> $stuff = Get-WmiObject -class Win32_Process -namespace root\cimv2

Each instance of the Win32_Process WMI class is an object. Together, the instances are bundled into a
collection of objects that is stored in $stuff. The collection itself is an object.

Note: You can think of a collection as a bucket that is an object you can do things to. This bucket
can also contain other independent objects. Sometimes a collection is referred to as a list or array.

So, the variable $stuff is now a collection of Win32_Process instances. Even a simple string of text “like
this one” is really an object—specifically a string object—as far as PowerShell and .NET are concerned.

Reflection
Microsoft’s Component Object Model (COM) is the pre-PowerShell way of managing Windows, often
through a language like VBScript. Part of what made COM so difficult was that objects had to take spe-
cial steps to define their functionality ahead of time. In other words, when someone at Microsoft created
a DLL that allowed your scripts to work with files and folders, they also had to create a little file called
a type library that explained the capabilities of the DLL. That made COM difficult to extend in certain
ways, and certainly made it tough to use.

On the other hand, with .NET there’s a nifty feature called reflection. Basically, reflection is a way for
one application like PowerShell to discover something about an object at runtime without being told in
advance what the object can do. Reflection makes PowerShell infinitely extensible because you can add
new cmdlets. PowerShell can also, more or less, ask the cmdlets what they do and how they work.

Reflection makes PowerShell easier for you to use. For example, if you don’t know what capabilities an
object has, just pipe an instance of it to the Get-Member cmdlet. This cmdlet uses reflection to display
all the known properties and methods of the object within PowerShell.

The Microsoft .NET Framework: An Overview for PowerShell Users

121

Assemblies
In .NET, everything eventually gets packaged into an assembly, which is a fancy word for what we oth-
erwise call an executable, DLL, or some other file-that-contains-executable-code. You’ll find assemblies
distributed with PowerShell by default in the shell’s installation folder.

Note: One assembly can contain or implement multiple objects or interfaces—each one being a
separate cmdlet, for example).

For example, System.Management.Automation.Commands.Management.dll is a file containing
bunches of different cmdlets.

Classes
The .NET Framework, and also PowerShell, treats almost everything as an object. However, different
objects can be expected to have different functionality. For example, a car object has different capabili-
ties than an airplane object. The Framework defines classes to distinguish between object types. A class is
an abstract description of an object’s capabilities. The name of a class is often referred to as its type. So,
a string variable is more accurately referred to as “an object of the System.String type” or “an object of
the System.String class.” String objects have some distinct capabilities, such as the ability to return an
uppercase version as shown in the following code:

PS C:\> $a = "hello"
PS C:\> $a.ToUpper()
HELLO
PS C:\>

Or the ability to display their length:

PS C:\> $a = "world"
PS C:\> $a.Length
5
PS C:\>

Don’t Forget the ()
This is a great time to point out a difference between methods and properties. In the above two
examples, notice that the method ToUpper() must be executed with parentheses, even though it
doesn’t have any arguments. The property Length, on the other hand, doesn’t use parentheses. If
you forget to add the parentheses to a method, it won’t run properly. We forget all the time, and it
can be very frustrating until you develop the proper typing habits!

The Framework exposes most of Windows’ functionality, such as the ability to display graphical dialog
boxes as classes. For example, if you create a new instance of the Windows.Forms.Form class, you’re
creating a new blank window or dialog box. You’ll see how to use this in the next section. The impor-
tant thing to remember right now is that the .NET Framework is comprised entirely of these classes.
Knowing how to work with them can give you a lot of capabilities in PowerShell. Even if you don’t work
with advanced classes like Windows forms, you can still work with basic classes like String, Int32 that
let your scripts manipulate data more easily.

122

Windows PowerShell: TFM • 2nd Edition

Variables as Objects
Earlier, we mentioned that even variables are objects. In particular, string variables in .NET are
extremely robust and have a number of methods. One of them is Split, which is a method that takes a
string and creates an array (or list) out of it by breaking the list up on some character like a comma or a
space. Try this in PowerShell:

PS C:\> "1,2,3,4".Split(",")

What you’re telling PowerShell is “take this string and execute its Split method.” Use a comma for the
method’s input argument. When PowerShell does this, the method returns an array of four elements
that each contains a number. PowerShell gets that array and displays it in a textual fashion with one
array element per line:

1
2
3
4

There are other ways to use this technique. For example, we’ve already referred to Get-Member, a
cmdlet that displays the methods and variables (which are collectively referred to as members in pro-
grammer-speak) associated with a given object instance. So, take a string like “Hello, World”—which,
remember, is an instance of a String object—and pipe it to the Get-Member cmdlet to display informa-
tion about that String object:

PS C:\> "Hello, World" | get-member

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method System.Int32 CompareTo(Objec
Contains Method System.Boolean Contains(Stri
CopyTo Method System.Void CopyTo(Int32 sou
EndsWith Method System.Boolean EndsWith(Stri
Equals Method System.Boolean Equals(Object
get_Chars Method System.Char get_Chars(Int32
get_Length Method System.Int32 get_Length()
IndexOf Method System.Int32 IndexOf(Char va
IndexOfAny Method System.Int32 IndexOfAny(Char
Insert Method System.String Insert(Int32 s
LastIndexOf Method System.Int32 LastIndexOf(Cha
LastIndexOfAny Method System.Int32 LastIndexOfAny(
PadLeft Method System.String PadLeft(Int32
PadRight Method System.String PadRight(Int32
Remove Method System.String Remove(Int32 s
Replace Method System.String Replace(Char o
Split Method System.String[] Split(Params
StartsWith Method System.Boolean StartsWith(St
Substring Method System.String Substring(Int3
ToCharArray Method System.Char[] ToCharArray(),
ToLower Method System.String ToLower(), Sys
ToLowerInvariant Method System.String ToLowerInvaria
ToString Method System.String ToString(), Sy
ToUpper Method System.String ToUpper(), Sys
ToUpperInvariant Method System.String ToUpperInvaria

The Microsoft .NET Framework: An Overview for PowerShell Users

123

Trim Method System.String Trim(Params Ch
TrimEnd Method System.String TrimEnd(Params
TrimStart Method System.String TrimStart(Para
Chars ParameterizedProperty System.Char Chars(Int32 inde
Length Property System.Int32 Length {get;}

This output is truncated a bit to fit in this book. However, you can see it includes every method and
property of the String and correctly identifies “Hello, World” as a “System.String” type, which is the
unique type name that describes what we informally call a String object. You can pipe nearly anything to
Get-Member to learn more about that particular object and its capabilities.

Variable Types
The fact that PowerShell is built on and around .NET gives PowerShell tremendous power, which isn’t
always obvious. For example, in the first chapter, we explained that any PowerShell variable can contain
any type of data. This occurs because all types of data—strings, integers, dates, etc—are .NET classes
that inherit from the base class named Object. A PowerShell variable can contain anything that inherits
from Object. However, as in the previous example with a string, PowerShell can certainly tell the differ-
ence between different classes that inherit from Object.

You can force PowerShell to treat objects as a more specific type. For example, take a look at this
sequence:

PS C:\> $one = 5
PS C:\> $two = "5"
PS C:\> $one + $two
10
PS C:\> $one = 5
PS C:\> $two = "5"
PS C:\> $one + $two
10
PS C:\> $two + $one
55

In this example, we gave PowerShell two variables: one contained the number five, and the other con-
tained the string character “5”. Even though this might look the same to you, it’s a big difference to a
computer! However, we didn’t specify what type of data they were, so PowerShell assumed they were
both of the generic Object type. PowerShell also decided it would figure out something more specific
when the variables are actually used.

When we added $one and $two, or 5 + “5”, PowerShell said, “Aha, this is addition: The first character is
definitely not a string because it wasn’t in double quotes. The second character one was in double quotes,
but… well, if I take the quotes away it looks like a number, so I’ll add them.” This is why we correctly got
ten as the result.

However, when we added $two and $one—reversing the order—PowerShell had a different decision to
make. This time PowerShell said, “I see addition, but this first operand is clearly a string. The second one
is a generic Object. So, let’s treat it like a string too and concatenate the two.” This is how we got the
string “55”, which is the first five tacked onto the second five.

But what about:

PS C:\> [int]$two + $one
10

124

Windows PowerShell: TFM • 2nd Edition

Same order as the example that got “55”, but in this type we specifically told PowerShell that the
generic object in $two was an [Int], or integer, which is a type PowerShell knows about. So, this time
PowerShell used the same logic as in the first example. When it added the two, it came up with “10”.

You can force PowerShell to treat anything as a specific type. For example:

PS C:\> $int = [int]"5"
PS C:\> $int | get-member

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
CompareTo Method System.Int32 CompareTo(Int32 value), System.Int
Equals Method System.Boolean Equals(Object obj), System.Boole
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToString Method System.String ToString(), System.String ToStrin

Here, the value “5” would normally be either a String object or, at best, a generic Object. But by specify-
ing the type [int], we forced PowerShell to try and convert “5” into an integer before storing it in the
variable $int. The conversion was successful, which you can see when we piped $int to Get-Member
revealing the object’s type: System.Int32.

Note that once you apply a specific type to a variable, it stays that way until you specifically change it.
For example:

PS C:\> [int]$int = 1

This creates a variable named $int as an integer and assigns it the value 1. The $int variable will be
treated as an integer from now on, even if you don’t include the type:

PS C:\> $int = 2

It is still using $int as an integer because it was already cast into a specific type. Once set up to be an
integer, you can’t put other types of data into it. Here’s an example of an error that occurred when we
tried to put a string into a variable that was already specifically cast as an integer:

PS C:\> [int]$int = 1
PS C:\> $int = 2
PS C:\> $int = "hello"
Cannot convert value "hello" to type "System.Int32". Error: "Input string was not in a correct
 format."
At line:1 char:5
+ $int <<<< = "hello"
PS C:\>

However, you can recast a variable by reassigning a new, specific type:

[string]$int = "Hello"

That works just fine, and $int will now be treated as a string by PowerShell.

The Microsoft .NET Framework: An Overview for PowerShell Users

125

PowerShell isn’t a miracle worker: For example, if you try to force it to convert something that doesn’t
make sense, it will complain:

PS C:\> $int = [int]"Hello"
Cannot convert "Hello" to "System.Int32". Error: "Input string was not in a correct format."
At line:1 char:13
+ $int = [int]" <<<< Hello"

This occurred because “Hello” can’t sensibly be made into a number.

This one’s even more fun because it illustrates some of the advanced data types:

PS C:\> $xml = [xml]"<users><user name='joe' /></users>"
PS C:\> $xml.users.user

name

joe

In this example we created a string, but told PowerShell it was of the type XML, which is another data
type that PowerShell knows. XML data works sort of like an object: We defined a parent object named
Users and a child object named User. The child object had an attribute called Name, with a value of Joe.
So, when we asked PowerShell to display $xml.users.user, it displays all the attributes for that user. We
can prove that PowerShell treated $xml as XML data by using Get-Member:

PS C:\> $xml | get-member

 TypeName: System.Xml.XmlDocument

Name MemberType Definition
---- ---------- ----------
ToString CodeMethod static System.Stri
add_NodeChanged Method System.Void add_No
add_NodeChanging Method System.Void add_No
add_NodeInserted Method System.Void add_No
add_NodeInserting Method System.Void add_No
add_NodeRemoved Method System.Void add_No
add_NodeRemoving Method System.Void add_No
AppendChild Method System.Xml.XmlNode
Clone Method System.Xml.XmlNode
CloneNode Method System.Xml.XmlNode
CreateAttribute Method System.Xml.XmlAttr
CreateCDataSection Method System.Xml.XmlCDat
CreateComment Method System.Xml.XmlComm
CreateDocumentFragment Method System.Xml.XmlDocu
CreateDocumentType Method System.Xml.XmlDocu
CreateElement Method System.Xml.XmlElem
CreateEntityReference Method System.Xml.XmlEnti
CreateNavigator Method System.Xml.XPath.X
CreateNode Method System.Xml.XmlNode
CreateProcessingInstruction Method System.Xml.XmlProc
...

This demonstrates not only that variables are objects, but also that PowerShell understands different
types of data, and provides different capabilities for the various types of data.

Curious about what object types are available? Here’s a quick list of more common types (although there

126

Windows PowerShell: TFM • 2nd Edition

are more than this):

Array•

Bool (Boolean)•

Byte•

Char (a single character)•

Char[] (Character array)•

Decimal•

Double•

Float•

Int (Integer)•

Int[] (Integer array)•

Long (Long integer)•

Long[] (Long integer array)•

Regex (Regular expression)•

Scriptblock•

Single•

String•

XML•

You will learn more about variables in the chapter “Variables, Arrays, and Escape Characters” (where,
because repetition is a good thing when you’re learning, we’ll repeat a lot of this information with new
examples). We’ll also be popping in with details on these other types as appropriate throughout this
book. Some of the types aren’t frequently used in administrative scripting, so we will not arbitrarily hit
you with all of them at once. Instead, we’ll cover them in a context where they’re accomplishing some-
thing useful.

Variable Precautions
One thing to be careful of is PowerShell’s ability to change the type of a variable if you haven’t explicitly
selected a type. For example:

Write-host $a.ToUpper()

This works fine if $a contains a string, as shown here:

PS C:\> $a = "Hello"
PS C:\> write-host $a.ToUpper()
HELLO
PS C:\>

However, if $a was already set to an integer value, you’ll get an error:

The Microsoft .NET Framework: An Overview for PowerShell Users

127

PS C:\> $a = 1
PS C:\> write-host $a.toupper()
Method invocation failed because [System.Int32] doesn't contain a method named 'toupper'.
At line:1 char:22
+ write-host $a.toupper(<<<<)

This occurs because, as an integer, $a doesn’t have a ToUpper() method. You need to watch out for this
when you’re writing scripts that take input from other sources. For example, this might occur with a user
or a file, since this type of error can be tricky to troubleshoot. One way around it is to force PowerShell
to treat the variable as the string you’re expecting it to be:

PS C:\> $a = 1
PS C:\> $a = [string]$a
PS C:\> write-host $a.ToUpper()
1
PS C:\>

You don’t necessarily need to select a type up-front for every variable you use. However, you should
be aware of situations that can make a variable contain a type of data other than what you originally
expected.

.NET Conclusion
PowerShell is built on and around the .NET Framework, which means everything in PowerShell has a
distinctly .NET flavor to it. On one level, you can ignore this and use PowerShell at a more simple level.
For example, you can let it treat everything as a generic Object. However, as you grow with PowerShell,
and want to leverage more powerful features, you’ll find yourself gradually learning more about .NET.

This chapter wasn’t meant to be a comprehensive look at .NET—that’s another book entirely! Instead,
the purpose of this chapter is to provide a rather a quick look at how .NET impacts the way PowerShell
is built and the way PowerShell works. You’ll see a lot more details about these topics, especially vari-
ables and their capabilities, throughout the remaining chapters.

Using WMI in Windows PowerShell

129

Chapter 11
Using WMI in Windows PowerShell

WMI Fundamentals
Like PowerShell, Windows Management Instrumentation (WMI) was created to solve a problem with
Windows management: Every different part of Windows made management information available
through a different means. WMI is an attempt to make all of that more consistent. As a result, WMI is
more or less a “one stop shop” for obtaining management information.

It is important to understand that WMI is completely separate from PowerShell. WMI can be used
from within PowerShell, but it can also be used from VBScript, C++, VB.NET, and nearly any other
Windows-based language. There’s even Wmic.exe, a command-line tool that can access WMI from the
old Cmd shell. WMI is important to you because, from within PowerShell, you can work with WMI to
retrieve and manipulate information related to various aspects of Windows. PowerShell doesn’t replace
WMI, it uses it.

WMI Architecture
WMI is built around classes, which are abstract descriptions of computer-related things. For example,
the Win32_Volume class describes what a logical disk volume looks like. The class includes properties
like size and serial number and can perform tasks like defragmenting. However, the class doesn’t repre-
sent an actual volume; it’s just a description of what a volume might look like. When you actually have a
volume, you have an instance of the class. For example, if your computer has two volumes, you have two
instances of the Win32_Volume class. Actually, only Windows Server 2003 exposes the Win32_Volume
class, but we’ll discuss this in more detail in a bit. Each instance has properties such as size and name. It
might also have methods such as Defragment that you can use to manage that instance.

130

Windows PowerShell: TFM • 2nd Edition

There are lots of WMI classes. Windows itself has hundreds, and Windows Server System products like
SQL Server and Microsoft Exchange Server can each add hundreds more. To keep things organized,
Microsoft files classes into namespaces. The main namespace for the core Windows classes is root\cimv2.
Incidentally, most of the core classes’ names start with Win32_. Internet Information Services 6.0 (IIS)
installs the root\MicrosoftIISv2 namespace, along with lots of classes related to IIS management. The
Windows XP SP2 Security Center can be accessed by the root\SecurityCenter namespace. In fact,
nearly any recent Microsoft product installs a WMI namespace and several classes that can be used to
manage that product.

WMI Documentation
When you’re working with classes, it’s useful to know where the documentation is. Fortunately,
Microsoft provides it free online. Unfortunately, they change the URLs almost constantly, so it’s tough
to publish a useful one. Instead, we suggest that you go to http://msdn.microsoft.com/library. In the
“Search” box, type Win32_OperatingSystem. Make sure the search scope is set to “MSDN Library,”
then hit the Search button. In the search results, one of the first hits should be something like “Win32_
OperatingSystem class [WMI],” which is what you want, so click it. Then, right above the contents tree
view on the left, click the “sync toc” link. This will take you into the WMI table of contents in Internet
Explorer. You can browse from there. In other browsers, you’ll need to click “Up One Level” in the
contents—do this twice—to navigate up to where the WMI class documentation starts.

The documentation provides important information. For example, under the Operating System Classes
category, locate the Win32_Volume class. You should see something similar to what was shown in the
following figure. Notice that the table of contents on the left reveals several methods for this class that
are actions you can perform, including Defrag and AddMountPoint. The main pane includes a brief
description of the class, along with a list of its properties such as DeviceID, FreeSpace, FileSystem,
and so on. When you scroll all the way to the bottom, you’ll see a section labeled Requirements. This
is where you will find documentation about operating systems, including the one this class exists on—
Windows Server 2003 and later. This is important! If you’re planning to use this class with a Windows
XP computer, you now know that it won’t work. From this example you can see why it is important to
always check these requirements before you assume a class is universally supported on all versions of
Windows.

Using WMI in Windows PowerShell

131

Working with WMI Classes
Something you need to keep in mind about WMI is that while its goal is to present management infor-
mation in a consistent fashion…well, it doesn’t, really. The problem is that the actual implementation
of WMI in any given Microsoft product is a decision left up to that product’s development group. For
example, the classes related to the core Windows operating system live in the root\cimv2 namespace.
Those classes are all fairly consistent in the way they work: You query classes, the properties are read-
only, and you execute methods to make changes. For example, if you query the Win32_Service class,
you can examine the StartMode and StartName properties to determine if the service starts automati-
cally, and to determine the account that the services uses to log on. However, to change those items, you
execute the Change() method, passing parameters with the new information.

There are still inconsistencies. For example, you can connect to a remote computer’s WMI service and
start a new instance of the Win32_Process class, and that starts a new process running on the remote
computer. However, you can’t simply create a new instance of the Win32_LogicalDisk class in order to
create a new hard disk partition.

Other product teams have taken different approaches. For example, the root\MicrosoftIISv2 namespace
contains classes related to Internet Information Services (IIS) 6. In that namespace, one set of classes is
provided for read-only information; a second set of classes has read-write properties that allow you to
make configuration changes. No class in root\cimv2, however, has writable properties. This sort of incon-
sistency in how different products can be managed through WMI is unfortunate, but it’s something
you’ll have to become accustomed to—it’s just the way Microsoft built things.

Remote Computers, Security, and WMI
WMI runs as a background service on Windows computers. When you connect to a remote computer,

132

Windows PowerShell: TFM • 2nd Edition

some kind of credentials must be provided so you can connect to the remote computer’s WMI service.
Normally, your credentials are passed along to execute whatever WMI actions you specify. So, if you have
permission to perform the action, WMI will be able to perform it on your behalf. However, by default,
only local administrators have permission to remotely utilize WMI in any way. This is configured in the
WMI console. To view it, open a blank Microsoft Management Console (MMC) by running Mmc.exe.

From the File menu, select Add/Remove Snap-In. Click Add and scroll to the bottom to add the WMI
Control snap-in. Focus the snap-in on whatever computer you want to view, such as the local computer,
and then close the open dialogs to go back to the main console. Right-click WMI Control and then
select Properties. If Properties isn’t available, left-click WMI Control first, and then right-click it. On
the Security tab, select Root and click Security. As shown here, by default only administrators have the
Remote Enable permission, which allows them to remotely utilize WMI on this computer.

Caution!
Do not modify the WMI permissions unless you know what you’re doing and are being very careful.
A number of Microsoft and third-party applications rely on WMI. So, if you change the permissions,
those applications might stop working.

Using Wbemtest
Windows includes a built-in tool, called Wbemtest, which can be used to test WMI and interactively
examine the WMI repository. To run it, select Run from the Start menu, type Wbemtest, and click the
OK button.

When the application appears, the first thing you’ll do is connect to a computer and a WMI namespace.
For example, click the Connect button and type \\.\root\cimv2 to connect to your local computer’s
root\cimv2 namespace, where the core Windows operating system classes are installed.

Next, you’ll issue a WMI query. The easiest type of query takes the pattern SELECT * FROM <WMI

Using WMI in Windows PowerShell

133

Class Name>, such as SELECT * FROM Win32_LogicalDisk. Click the Apply button to execute the
query, and you’ll get a window containing the query’s results—a collection of WMI instances. You can
double-click an instance to examine its properties (when doing so, we always select the Hide System
Properties checkbox to hide the properties that aren’t actually very useful). For each instance, you can
review the available property names, see the type of data each property holds, and see the property val-
ues associated with that particular instance.

The WMI Query Language (WQL) is similar to the Structured Query Language (SQL) used in most
relational database management systems like Microsoft SQL Server, Oracle, or MySQL. You can use a
WHERE clause to filter results. For example, to only get local drives, you’d issue the query SELECT *
FROM Win32_LogicalDisk WHERE DriveType = 3. If all you cared about was the DeviceID, you
could just select that property by issuing SELECT DeviceID FROM Win32_LogicalDisk. We’ll have
some more WQL examples in the next chapter, but hopefully this gives you an idea of what WQL looks
like.

We strongly recommend that you play with WMI in Wbemtest before doing so in PowerShell. While
PowerShell does make it easy to work with WMI, Wbemtest provides a way of graphically exploring the
WMI repository. If you’re after a way to browse the WMI repository, visit www.PrimalScript.com/free-
tools and download the free WMI Explorer.

So What Can You Do with WMI?
WMI makes all things possible. Well, many things. The challenge with WMI is learning what class will
get you the information you need or do the thing you want, and then figuring out which namespace
the class lives in. We can’t really offer any shortcuts apart from “browse the documentation.” Be sure
that you scroll to the bottom of a WMI class’ documentation page, though, because some classes don’t
exist in older versions of Windows—each new version of Windows adds new stuff. Even some class
properties get added over time, so don’t go crazy if a WMI query on Windows Vista has properties that
Windows XP doesn’t—that’s just progress.

If you’re totally stuck trying to figure out what WMI class will do what you need, drop on by www.
ScriptingAnswers.com and post a question in the Windows PowerShell forum—we’ll try and get you
pointed in the right direction.

Retrieving WMI Objects
We need to point out that PowerShell actually offers two or three different ways of working with WMI.
If you’re perusing samples that you find in other books or on the Internet, in fact, you may see some of
the other techniques. However, of the various ways PowerShell has to work with WMI, only one way—
the way we’re going to show you—can do everything. That is, we’re going to show you the one technique
PowerShell has for working with WMI that will do everything you’ll need.

The first step in working with WMI is to get one or more instances of a WMI class; that is, to get a
“WMI object.” You might retrieve these instances from your local computer’s WMI service, or you
might get them from a remote machine’s WMI service; either way, what you want is to get a collection
of WMI instances (or objects) to work with. PowerShell provides an easy way to do this: The Get-
WmiObject cmdlet. In its simplest form, you simply tell it which WMI class you want, and it’ll retrieve
all the instances of that class:

PS C:\> Get-WmiObject win32_service

If you find that typing Get-WmiObject over and over becomes tiresome, try the alias Gwmi instead:

134

Windows PowerShell: TFM • 2nd Edition

PS C:\> gwmi win32_service

Retrieving instances from a remote computer is just as easy:

PS C:\> gwmi win32_service -computerName Server2

And, remember, you don’t need to type the entire parameter name—you just need to type enough to dis-
tinguish the parameter from any others. For example:

PS C:\> gwmi win32_service -computer Server2

Or even:

PS C:\> gwmi win32_service -comp Server2

Sometimes, the user credentials you used to run PowerShell won’t have the appropriate permissions
(generally, local Administrator) on the remote computer. In those cases, the Get-WmiObject cmdlet
can accept alternate credentials. Note that this only works with connections to remote computers! WMI
itself is designed to not permit alternate credentials when you’re connecting to the local WMI service.
There are a couple of ways to specify alternate credentials. This is probably the easiest to type for a quick,
one-time connection:

PS C:\> gwmi win32_service -computerName Server2 -credential DOMAIN\Username

PowerShell will automatically prompt you for the password. However, if you plan to use that same cre-
dential over and over, repeatedly typing in the username and the password can be a pain in the neck.
PowerShell does provide a way for you to save the credential in a variable, and then pass that variable to
the -credential parameter:

PS C:\> $cred = get-credential DOMAIN\Username
PS C:\> gwmi win32_service -comp Server2 -cred $cred

The Get-Credential cmdlet will prompt you for the password, and then securely store the credential in
the variable $cred. That variable will last for the duration of your PowerShell session and can be passed
to the -credential parameter of any cmdlet that supports the parameter, including Get-WmiObject.

The techniques we’ve just shown you assume that you’re querying classes from the default root\cimv2
namespace. If you aren’t, then you’ll need to specify the WMI namespace:

PS C:\> gwmi AntiVirusProduct -namespace root\SecurityCenter

In the section Using Wbemtest, we made a big deal of using Wbemtest to test your WMI queries before
using them in PowerShell. So, where exactly do you use a WQL query? Get-WmiObject supports an
alternate syntax that accepts a complete WQL query, rather than just a class name:

PS C:\> gwmi -query "SELECT * FROM Win32_Service WHERE StartName = 'LocalSystem'"

The same -computerName, -credential, and -namespace parameters can be used with this syntax to
specify a remote computer to connect to, an alternate set of credentials, and a namespace other than
root\cimv2, if necessary.

Using WMI in Windows PowerShell

135

An alternative approach is to use the -filter parameter. This parameter, which is available on a number of
cmdlets, will filter output. The format depends on the cmdlet. For Get-Wmiobject, the filter value is the
Where component of a WMI query. For example, you could use an expression like this:

PS C:\ > gwmi -query "select * from win32_logicaldisk where drivetype=3"

Or you can use -filter:

PS C:\ > gwmi win32_logicaldisk -filter "drivetype=3"

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 44984381440
Size : 80024170496
VolumeName :

The output will be the same in either situation. So, when do you use a filter and when do you use a
query? It’s really up to you and the situation. If you are only selecting a subset of properties, then a query
is more appropriate:

PS C:\ > gwmi -query "Select DeviceID,Freespace,Size from win32_logicaldisk"

What you cannot do though is combine -query and -filter. You can only use one or the other in a Get-
WmiObject expression.

Get-WmiObject can even help you figure out what classes are available to you. Simply specify
the -namespace parameter by itself, and add the -list parameter to list the classes available in that
namespace:

PS C:\> gwmi -namespace root\securitycenter -list

__NotifyStatus __ExtendedStatus
__SecurityRelatedClass __Trustee
__NTLMUser9X __ACE
__SecurityDescriptor __PARAMETERS
__SystemClass __ProviderRegistration
__EventProviderRegistration __ObjectProviderRegistration
__ClassProviderRegistration __InstanceProviderRegistration
__MethodProviderRegistration __PropertyProviderRegistration
__EventConsumerProviderRegistration __thisNAMESPACE
__NAMESPACE __IndicationRelated
__FilterToConsumerBinding __EventConsumer
__AggregateEvent __TimerNextFiring
__EventFilter __Event
__NamespaceOperationEvent __NamespaceModificationEvent
__NamespaceDeletionEvent __NamespaceCreationEvent
__ClassOperationEvent __ClassDeletionEvent
__ClassModificationEvent __ClassCreationEvent
__InstanceOperationEvent __InstanceCreationEvent
__MethodInvocationEvent __InstanceModificationEvent
__InstanceDeletionEvent __TimerEvent
__ExtrinsicEvent __SystemEvent
__EventDroppedEvent __EventQueueOverflowEvent
__QOSFailureEvent __ConsumerFailureEvent

136

Windows PowerShell: TFM • 2nd Edition

__EventGenerator __TimerInstruction
__AbsoluteTimerInstruction __IntervalTimerInstruction
__Provider __Win32Provider
__SystemSecurity AntiSpywareProduct
AntiVirusProduct FirewallProduct

Class names that begin with a double underscore (“__”) are system classes and you won’t usually uti-
lize these directly. Instead, focus on the classes at the end of the list, which don’t start with a double
underscore.

Working with WMI Objects
So far, what we’ve shown you only displays the results of your WMI query. That is, PowerShell retrieves
the objects you requested, but since you haven’t told it what else to do with them, it converts them into
a text list. That’s fine if that’s all you need, but you can do a lot more. For example, you can pipe those
objects to other PowerShell cmdlets to refine and filter your list, such as filtering so that only running
services are shown:

PS C:\> gwmi win32_service | where { $_.State -eq "Running" }

You can further refine that to perhaps list the running services in reverse alphabetical order:

PS C:\> gwmi win32_service | where { $_.State -eq "Running" } | sort name -desc

This is where the cmdlets introduced in the “Key Cmdlets for Windows Administration” chapter really
come in handy to help you further refine that result set. However, you should be aware of one thing:
When you run a command line like the one above, PowerShell has to retrieve all instances of the speci-
fied class. In the case of the Win32_Service class, that’s not a big deal because there aren’t that many.
However, it does have to go get them all, and then filter them through the Where-Object cmdlet. A
more efficient technique would be to issue a WQL query that filters the results at the origin—that is,
on the computer you’re connecting to. WQL is capable of filtering results much more quickly than
PowerShell, so using the following technique will yield better performance:

PS C:\> gwmi -query "SELECT * FROM Win32_Service WHERE State = 'Running'" | sort name -desc

Note that we still have to have PowerShell perform the sort, because the WQL language doesn’t support
any keywords for sorting (there’s no equivalent to the SQL language’s ORDER BY clause).

All of this, however, still results in PowerShell reaching the end of the pipeline and generating a text list
of whatever WMI objects are in the pipeline at that point. Sometimes you might need to place those
objects into a variable, so that you can persist your results and actually do other things with them. Here’s
an example:

PS C:\> $wmi = gwmi win32_operatingsystem -computer Server2
PS C:\> $wmi.Reboot()

This example retrieves the Win32_OperatingSystem class from a remote machine, Server2. It saves the
resulting collection (which contains just one instance) in the variable $wmi. Because the collection only
has one object in it (that particular WMI class can only ever return one object), I can just pretend that
the $wmi variable represents that object directly, and on the second line execute the object’s Reboot()
method—remotely restarting that server. If your WMI query returns more than one object, however,

Using WMI in Windows PowerShell

137

you have to use a slightly different technique:

PS C:\> $wmi = gwmi win32_service
PS C:\> $wmi[0]

ExitCode : 0
Name : AcrSch2Svc
ProcessId : 340
StartMode : Auto
State : Running
Status : OK

PS C:\> $wmi[0].StopService()

Here, we’ve retrieved all instances of Win32_Service and put them into the variable $wmi. Next, we dis-
play the first instance in the collection—index number zero—by typing $wmi[0]. That lets us verify that
the first instance is the one we’re after by examining its name and other properties. Finally, we take the
first instance and execute its StopService() method to stop that instance.

Wait a second…
Did we have to use WMI in this example? Couldn’t we have just used the Get-Service and Stop-
Service cmdlets? Well, yes, in this case—but only because we chose services to work with, and
only because we’re working with the local machine. Neither of those cmdlets work with remote
machines, although WMI does. In addition, WMI works with a broader range of manageable com-
ponents, although services are a great example.

If you’re having trouble figuring out which properties and methods a given WMI class has, remember to
consult the documentation—or just ask PowerShell by piping the WMI object to Get-Member:

PS C:\> gwmi win32_bios | get-member

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_BIOS

Name MemberType Definition
---- ---------- ----------
BIOSVersion Property System.String[] BIOSVersion {get;set;}
BuildNumber Property System.String BuildNumber {get;set;}
CurrentLanguage Property System.String CurrentLanguage {get;set;}
Description Property System.String Description {get;set;}
Manufacturer Property System.String Manufacturer {get;set;}
Name Property System.String Name {get;set;}
OtherTargetOS Property System.String OtherTargetOS {get;set;}
PrimaryBIOS Property System.Boolean PrimaryBIOS {get;set;}
ReleaseDate Property System.String ReleaseDate {get;set;}
SerialNumber Property System.String SerialNumber {get;set;}
SMBIOSBIOSVersion Property System.String SMBIOSBIOSVersion {get;set;}
SMBIOSMajorVersion Property System.UInt16 SMBIOSMajorVersion {get;set;}
SMBIOSMinorVersion Property System.UInt16 SMBIOSMinorVersion {get;set;}
SMBIOSPresent Property System.Boolean SMBIOSPresent {get;set;}
SoftwareElementID Property System.String SoftwareElementID {get;set;}
SoftwareElementState Property System.UInt16 SoftwareElementState {get;set;}
Status Property System.String Status {get;set;}
TargetOperatingSystem Property System.UInt16 TargetOperatingSystem {get;set;}

Properties and methods will be listed so that you can see them, and figure out what that particular WMI

138

Windows PowerShell: TFM • 2nd Edition

class is capable of doing for you.

Some WMI properties contain multiple values—that is, they’re arrays. Those can be a bit trickier to
work with. For example, the Win32_NetworkAdapterConfiguration class exposes a property named
IPAddress, which contains the hardware addresses of a particular network adapter. However, since any
given network adapter can have multiple IP addresses bound to it, this property must be an array so that
it can contain all the possible IP addresses. For the most part, PowerShell can just display the property
directly. That is, PowerShell detects that the property contains an array and deals with it accordingly. For
example:

PS C:\> $nics = gwmi win32_networkadapterconfiguration
PS C:\> $nics[4].ipaddress
192.168.4.102
fe80::e468:3091:f2fc:8deb

Here you can see that two IP addresses—an IPv4 and IPv6 address (because this was executed on
Microsoft Vista)—are returned. If you just wanted one of those, you’d treat the IPAddress property like
any other PowerShell array or collection:

PS C:\> $nics = gwmi win32_networkadapterconfiguration
PS C:\> $nics[4].ipaddress[0]
192.168.4.102
PS C:\> $nics[4].ipaddress[1]
fe80::e468:3091:f2fc:8deb

Simply referring to the appropriate array element by its index number allows you to access just that
element.

Working Directly with Classes
So far, everything we’ve shown you has been about retrieving and working with instances of WMI
classes. But did you know that you can do some cool stuff directly with classes, too? For example, let’s
retrieve a list of WMI classes, and then filter it so that we’re just getting the Win32_Process class. We’ll
format the output in a list form:

PS C:\> $class = gwmi -list | where { $_.Name -eq "Win32_Process" }
PS C:\> $class | format-list

Name : Win32_Process
__GENUS : 1
__CLASS : Win32_Process
__SUPERCLASS : CIM_Process
__DYNASTY : CIM_ManagedSystemElement
__RELPATH : Win32_Process
__PROPERTY_COUNT : 45
__DERIVATION : {CIM_Process, CIM_LogicalElement, CIM_ManagedSystemElement}
__SERVER : DON-PC
__NAMESPACE : ROOT\cimv2
__PATH : \\DON-PC\ROOT\cimv2:Win32_Process

We can see the methods of the class by piping the class itself to Get-Member. We’ll actually ask that
cmdlet to just display the methods, so that the list is shorter. Remember, we’re not working with any
particular running process at this point; we’re working with the class—the abstract description of what a
process looks like this:

Using WMI in Windows PowerShell

139

PS C:\> $class | get-member -membertype method

 TypeName: System.Management.ManagementClass#ROOT\cimv2\Win32_Process

Name MemberType Definition
---- ---------- ----------
Create Method System.Management.ManagementBaseObject Create(System.String CommandL...

Only one method of the class itself: Create(). Which we’re guessing creates a new process—let’s try it:

PS C:\> $class.create("calc.exe")

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ProcessId : 4676
ReturnValue : 0

Of course, you can’t see it unless you try it, but when we ran this we not only got the output shown,
but a new Calculator window also popped up. And remember: If the original Get-WmiObject() call
had been to a remote computer, we would be starting the process on that computer. That doesn’t mean the
process would be visible to other users on that computer (it normally wouldn’t), but you can use this
technique to start background processes remotely!

There’s a quicker way to get a WMI class, using the [WMICLASS] type accelerator:

PS C:\> $wc = [WMICLASS]"\\.\root\cimv2:Win32_Process"

This retrieves the local computer’s (represented by the special computername “.”) Win32_Process class.
And, by the way, if you’re wondering how a particular method works, try running it without the (). For
example:

140

Windows PowerShell: TFM • 2nd Edition

PS C:\Users\Don> $wc.create

MemberType : Method
OverloadDefinitions : {System.Management.ManagementBaseObject Create(System.String Comman
 dLine, System.String CurrentDirectory, System.Management.Management
 Object#Win32_ProcessStartup ProcessStartupInformation)}
TypeNameOfValue : System.Management.Automation.PSMethod
Value : System.Management.ManagementBaseObject Create(System.String Command
 Line, System.String CurrentDirectory, System.Management.ManagementO
 bject#Win32_ProcessStartup ProcessStartupInformation)
Name : Create
IsInstance : True

This detailed output shows us that the Create() method accepts a string, which is the command line we
want to run, another string that is the working directory to set, and then a Win32_ProcessStartup object
that contains options for starting the new process. Obviously, all but the first argument is optional, since
we were able to use just the first argument in our previous example—you’ll need to turn to the docu-
mentation, or just recklessly experiment, to see which arguments are required.

Using ADSI in Windows PowerShell

141

Chapter 12
Using ADSI in Windows PowerShell

Before we get started, we need to make sure you have some realistic expectations about ADSI in
PowerShell. First, understand that ADSI support was always planned to be a part of PowerShell. Then,
as PowerShell’s ship date approached and the ADSI stuff wasn’t up to the quality the team wanted from
it, they decided to drop those features and move them to a future version (which, just to have something
to call it, we’ll refer to as version 2). Then, very close to PowerShell’s final release, the team realized that
some kind of directory services support was absolutely necessary—and so they added the support that
we have today. To be honest, that support’s pretty minimal; ADSI isn’t the first-class citizen that, say,
WMI is in version 1 of PowerShell. You can still do some great things with it, but in many cases you’re
working with the raw, underlying .NET Framework classes, and not an “adapted” view like PowerShell
usually gives you with complex objects. Our goal in this chapter, then, is to show you what you can do,
and to try and help you understand what’s needlessly complex.

There’s Hope!
Quest Software has created a set of cmdlets, and the PowerShell Community Extensions a
PSDrive provider, that both help make Active Directory management easier. We cover them, briefly,
in the chapter “The PowerShell Ecosystem: Third-Party Extensions.” For this chapter, we’re sticking
with what’s built into PowerShell.

142

Windows PowerShell: TFM • 2nd Edition

ADSI Fundamentals
Active Directory Services Interface, or ADSI, is an extremely misleading name. Rather than reading
it as “Active Directory…Services Interface,” which is what most administrators think it is, you should
think of it as “Active…Directory Services Interface.” ADSI was named at a time when Microsoft
slapped the word “Active” on everything that wasn’t bolted down: ActiveX Data Objects, Active
Directory, Active Documents, and more. The thing to remember, though, is that ADSI isn’t just for
Active Directory. It works great with old Windows NT 4.0 domains, and even works with the local secu-
rity accounts on standalone and member computers running modern versions of Windows.

ADSI is built around a system of providers. Each provider is capable of connecting to a particular type
of directory: Windows NT (which includes local security accounts on standalone and member comput-
ers), Lightweight Directory Access Protocol (LDAP—this is what Active Directory, or AD, uses), and
even Novell Directory Services, if you still have that in your environment somewhere.

ADSI Queries
The primary way to access directory objects—that is, users, groups, and so forth—is by issuing an ADSI
query. A query starts with an ADSI provider, so that ADSI knows which type of directory you’re trying
to talk to. The two providers you’ll use most are WinNT:// and LDAP://—and note that, unlike most
things in PowerShell, these provider names are case-sensitive, and that they use forward slashes, not back-
slashes. Those two caveats mess us up every time!

The format of an ADSI query depends on the provider. For the WinNT:// provider, queries look some-
thing like this:

WinNT://NAMESPACE/OBJECT,class

The NAMESPACE portion of the query can either be a computer name or a NetBIOS domain name—
including AD domains! Remember that AD is backward-compatible with Windows NT, and by using
the WinNT:// provider to access AD, you’ll be able to refer to directory objects—users and groups—
without needing to know what organizational unit (OU) they’re in, because Windows NT didn’t have
OUs. The OBJECT portion of the query is the object name—that is, the user name, group name, or
whatever—that you’re after. The class part of the query is technically optional, but we recommend always
including it: It should be “user” if you’re querying a user object, “group” for a group object, and so forth.
So, a complete query for our test machine’s local Administrator account would look like this:

WinNT://TESTBED/Administrator,user

An LDAP query is much different. These queries require a fully qualified distinguished name, or FQDN.
For example, if you need to get the SalesUsers group, which is in the East OU, which is in the Sales OU
of the MyDomain.com domain, your query would look like this:

LDAP://cn=SalesUsers,ou=East,ou=Sales,dc=MyDomain,dc=com

Definitely a bit more complicated. LDAP queries don’t directly support wildcards, either; you need
to know exactly which object you’re after (PowerShell does provide a somewhat cumbersome .NET
Framework-based means of searching for directory objects, which we’ll outline in “Managing Directory
Services”).

Using ADSI in Windows PowerShell

143

Using ADSI Objects
Once you’ve queried the correct object, you can work with its properties and methods. Objects que-
ried through the WinNT:// provider generally have several useful properties. Although be aware that
if you’re accessing an AD object through the WinNT:// provider, you won’t have access to all of the
object’s properties. You’ll only see the ones that the older WinNT:// provider “understands.” A few
methods are available, too, such as SetPassword() and SetInfo(). The SetInfo() method is especially
important: It must be executed after you change any object properties, so that the changes you made will
be saved back to the directory correctly.

Objects retrieved through the LDAP:// provider don’t directly support many properties. Instead, you
execute the Get() and GetEx() methods, passing the property name you want, to retrieve properties.
For example, assuming the variable $user represented a user, you’d retrieve the Description property as
follows:

$user.Get("Description")

Get() is used to retrieve properties that have only a single value, such as Description. GetEx() is used for
properties that can contain multiple values, such as AD’s otherHomePhone property. The opposites of
these two methods are Put() and PutEx(), which are used like this:

$user.Put("Description","New Value")

After you finish all the Put() and PutEx() calls you want, you must execute the SetInfo() method to
save the changes back to the directory. As with the WinNT:// provider, security principals retrieved
through the LDAP:// provider also have a SetPassword() method you can use.

We’ll explore the actual use of ADSI within PowerShell in the chapter “Using ADSI in Windows
PowerShell.” We find, however, that the real trick with ADSI—especially with the LDAP:// provid-
er—is in figuring out which properties do what. For example, in AD, a user’s last name is stored in the
“sn” property. Their city is in the property named “l.” That’s hardly intuitive—we strongly recommend
picking up a copy of ADSI Scripting: TFM (SAPIEN Press, www.SAPIENPress.com), which contains
an exhaustive reference of directory properties, including a cross-reference that maps the graphical
administration tools’ input fields to the underlying property names that you’ll use when working with
ADSI.

Retrieving ADSI Objects
Unfortunately, there’s no built-in “Get-DirectoryObject” cmdlet built into PowerShell, which is a
shame. Instead, you have to use the [ADSI] type accelerator to retrieve objects. You’ll need to start with
an ADSI query string, which we showed you how to build in “ADSI Queries.” Then, just feed that to
the type accelerator:

PS C:\> $user = [ADSI]"WinNT://TESTBEST/Administrator,user"

This will retrieve the local Administrator user account from the computer named TESTBED, using
the WinNT:// provider. You can then pipe the resulting object—which we’ve stored in the $user vari-
able—to Get-Member (or its alias, Gm) to see what properties and methods the object contains:

PS C:\> $user | gm

144

Windows PowerShell: TFM • 2nd Edition

 TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
AutoUnlockInterval Property System.DirectoryServices.PropertyValueCollection...
BadPasswordAttempts Property System.DirectoryServices.PropertyValueCollection...
Description Property System.DirectoryServices.PropertyValueCollection...
FullName Property System.DirectoryServices.PropertyValueCollection...
HomeDirDrive Property System.DirectoryServices.PropertyValueCollection...
HomeDirectory Property System.DirectoryServices.PropertyValueCollection...
LockoutObservationInterval Property System.DirectoryServices.PropertyValueCollection...
LoginHours Property System.DirectoryServices.PropertyValueCollection...
LoginScript Property System.DirectoryServices.PropertyValueCollection...
MaxBadPasswordsAllowed Property System.DirectoryServices.PropertyValueCollection...
MaxPasswordAge Property System.DirectoryServices.PropertyValueCollection...
MaxStorage Property System.DirectoryServices.PropertyValueCollection...
MinPasswordAge Property System.DirectoryServices.PropertyValueCollection...
MinPasswordLength Property System.DirectoryServices.PropertyValueCollection...
Name Property System.DirectoryServices.PropertyValueCollection...
objectSid Property System.DirectoryServices.PropertyValueCollection...
Parameters Property System.DirectoryServices.PropertyValueCollection...
PasswordAge Property System.DirectoryServices.PropertyValueCollection...
PasswordExpired Property System.DirectoryServices.PropertyValueCollection...
PasswordHistoryLength Property System.DirectoryServices.PropertyValueCollection...
PrimaryGroupID Property System.DirectoryServices.PropertyValueCollection...
Profile Property System.DirectoryServices.PropertyValueCollection...
UserFlags Property System.DirectoryServices.PropertyValueCollection...

We started with a WinNT:// provider example because these are perhaps the easiest objects to work
with: You get nice, clearly defined properties. However, remember in “Using ADSI Objects” that we said
you have to execute the object’s SetInfo() method whenever you change any properties? Do you see the
SetInfo() method listed above? Nope. And that’s because a major problem with the [ADSI] type accel-
erator is that it doesn’t pass in the object’s methods—only its properties. You can still use the SetInfo()
method, though:

PS C:\> $user.description = "Local Admin"
PS C:\> $user.SetInfo()
PS C:\> $user.description
Local Admin

It’s just that the method doesn’t show up in Get-Member, so you’ll have to remember the method
on your own. Basically, though, that’s how you work with objects from the WinNT:// provider:
Query the object, view or modify properties, and call SetInfo() if you’ve changed any properties. Use
SetPassword() to change the password of a user object.

Although it isn’t shown in the output of Get-Member, you can also use the Get(), Put(), GetEx(), and
PutEx() methods we discussed in “Working with ADSI Objects:”

PS C:\> $user.get("description")
Local Admin

This isn’t really useful with local computer accounts, since the object has direct properties you can access.

Here, you can see the WinNT:// provider being used to access an AD user named DonJ from the
COMPANY domain (note that you have to use the domain’s “short,” or NetBIOS name, not its full
DNS name):

Using ADSI in Windows PowerShell

145

PS C:\> $user = [ADSI]"WinNT://COMPANY/DonJ,user"
PS C:\> $user | gm

 TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
AutoUnlockInterval Property System.DirectoryServices.PropertyValueCollection...
BadPasswordAttempts Property System.DirectoryServices.PropertyValueCollection...
Description Property System.DirectoryServices.PropertyValueCollection...
FullName Property System.DirectoryServices.PropertyValueCollection...
HomeDirDrive Property System.DirectoryServices.PropertyValueCollection...
HomeDirectory Property System.DirectoryServices.PropertyValueCollection...
LockoutObservationInterval Property System.DirectoryServices.PropertyValueCollection...
LoginHours Property System.DirectoryServices.PropertyValueCollection...
LoginScript Property System.DirectoryServices.PropertyValueCollection...
MaxBadPasswordsAllowed Property System.DirectoryServices.PropertyValueCollection...
MaxPasswordAge Property System.DirectoryServices.PropertyValueCollection...
MaxStorage Property System.DirectoryServices.PropertyValueCollection...
MinPasswordAge Property System.DirectoryServices.PropertyValueCollection...
MinPasswordLength Property System.DirectoryServices.PropertyValueCollection...
Name Property System.DirectoryServices.PropertyValueCollection...
objectSid Property System.DirectoryServices.PropertyValueCollection...
Parameters Property System.DirectoryServices.PropertyValueCollection...
PasswordAge Property System.DirectoryServices.PropertyValueCollection...
PasswordExpired Property System.DirectoryServices.PropertyValueCollection...
PasswordHistoryLength Property System.DirectoryServices.PropertyValueCollection...
PrimaryGroupID Property System.DirectoryServices.PropertyValueCollection...
Profile Property System.DirectoryServices.PropertyValueCollection...
UserFlags Property System.DirectoryServices.PropertyValueCollection...

So, where are all the AD-specific properties, like otherHomePhone, and sn? Well, perhaps we could use
the Get() method to retrieve one of them:

PS C:\> $user.get("sn")
Exception calling "get" with "1" argument(s): "The directory property cannot be found in
the cache.
"
At line:1 char:10
+ $user.get(<<<< "sn")

Nope. It turns out that the WinNT:// provider can’t “see” any additional properties from AD; it can only
see those properties that are backward-compatible with Windows NT 4.0 domains. So, when you’re
using the WinNT:// provider to access AD, you’re giving up a lot of AD’s extended capabilities.

Which brings us to AD’s native provider, LDAP://. You’ll retrieve objects in pretty much the same way
as you did for the WinNT:// provider: Use the [ADSI] type accelerator, and provide an LDAP query
string. Take a look:

PS C:\> $domain = [adsi]"LDAP://dc=company,dc=com"
PS C:\> $domain | gm

 TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
auditingPolicy Property System.DirectoryServices.PropertyValueColl...
creationTime Property System.DirectoryServices.PropertyValueColl...

146

Windows PowerShell: TFM • 2nd Edition

dc Property System.DirectoryServices.PropertyValueColl...
distinguishedName Property System.DirectoryServices.PropertyValueColl...
forceLogoff Property System.DirectoryServices.PropertyValueColl...
fSMORoleOwner Property System.DirectoryServices.PropertyValueColl...
gPLink Property System.DirectoryServices.PropertyValueColl...
instanceType Property System.DirectoryServices.PropertyValueColl...
isCriticalSystemObject Property System.DirectoryServices.PropertyValueColl...
lockoutDuration Property System.DirectoryServices.PropertyValueColl...
lockOutObservationWindow Property System.DirectoryServices.PropertyValueColl...
lockoutThreshold Property System.DirectoryServices.PropertyValueColl...
masteredBy Property System.DirectoryServices.PropertyValueColl...
maxPwdAge Property System.DirectoryServices.PropertyValueColl...
minPwdAge Property System.DirectoryServices.PropertyValueColl...
minPwdLength Property System.DirectoryServices.PropertyValueColl...
modifiedCount Property System.DirectoryServices.PropertyValueColl...
modifiedCountAtLastProm Property System.DirectoryServices.PropertyValueColl...
ms-DS-MachineAccountQuota Property System.DirectoryServices.PropertyValueColl...
msDS-AllUsersTrustQuota Property System.DirectoryServices.PropertyValueColl...
msDS-Behavior-Version Property System.DirectoryServices.PropertyValueColl...
msDs-masteredBy Property System.DirectoryServices.PropertyValueColl...
msDS-PerUserTrustQuota Property System.DirectoryServices.PropertyValueColl...
msDS-PerUserTrustTombstonesQuota Property System.DirectoryServices.PropertyValueColl...
name Property System.DirectoryServices.PropertyValueColl...
nextRid Property System.DirectoryServices.PropertyValueColl...

We’ve truncated the results a bit, but you can see that we’ve retrieved the domain object and displayed
its properties—but not methods, because those won’t be shown—by using the LDAP:// provider and
the Get-Member cmdlet. We can retrieve the built-in Users container in a similar fashion:

PS C:\> $container = [adsi]"LDAP://cn=users,dc=company,dc=com"
PS C:\> $container | gm

 TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
cn Property System.DirectoryServices.PropertyValueCollection cn ...
description Property System.DirectoryServices.PropertyValueCollection des...
distinguishedName Property System.DirectoryServices.PropertyValueCollection dis...
instanceType Property System.DirectoryServices.PropertyValueCollection ins...
isCriticalSystemObject Property System.DirectoryServices.PropertyValueCollection isC...
name Property System.DirectoryServices.PropertyValueCollection nam...
nTSecurityDescriptor Property System.DirectoryServices.PropertyValueCollection nTS...
objectCategory Property System.DirectoryServices.PropertyValueCollection obj...
objectClass Property System.DirectoryServices.PropertyValueCollection obj...
objectGUID Property System.DirectoryServices.PropertyValueCollection obj...
showInAdvancedViewOnly Property System.DirectoryServices.PropertyValueCollection sho...
systemFlags Property System.DirectoryServices.PropertyValueCollection sys...
uSNChanged Property System.DirectoryServices.PropertyValueCollection uSN...
uSNCreated Property System.DirectoryServices.PropertyValueCollection uSN...
whenChanged Property System.DirectoryServices.PropertyValueCollection whe...
whenCreated Property System.DirectoryServices.PropertyValueCollection whe...

Notice anything similar about the container and the domain? They’re both a “System.DirectoryServices.
DirectoryEntry” object, even though they’re very different objects. This is one of the things that make
PowerShell’s current ADSI support a bit complicated: PowerShell relies on this underlying .NET
Framework class, “DirectoryEntry,” to represent all directory objects. Obviously, different types of
objects—containers, users, groups, and so forth—have different properties and capabilities, but this class
represents them all generically. PowerShell and the Framework try to represent the object’s properties

Using ADSI in Windows PowerShell

147

as best it can, but it can’t always show you everything that’s available. This becomes especially apparent
when you view the untruncated output of Get-Member for an AD user object:

PS C:\> $user = [adsi]"LDAP://cn=don jones,cn=users,dc=company,dc=com"
PS C:\> $user | gm

 TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
accountExpires Property System.DirectoryServices.PropertyValueCollection accou...
badPasswordTime Property System.DirectoryServices.PropertyValueCollection badPa...
badPwdCount Property System.DirectoryServices.PropertyValueCollection badPw...
cn Property System.DirectoryServices.PropertyValueCollection cn {g...
codePage Property System.DirectoryServices.PropertyValueCollection codeP...
countryCode Property System.DirectoryServices.PropertyValueCollection count...
displayName Property System.DirectoryServices.PropertyValueCollection displ...
distinguishedName Property System.DirectoryServices.PropertyValueCollection disti...
givenName Property System.DirectoryServices.PropertyValueCollection given...
instanceType Property System.DirectoryServices.PropertyValueCollection insta...
lastLogoff Property System.DirectoryServices.PropertyValueCollection lastL...
lastLogon Property System.DirectoryServices.PropertyValueCollection lastL...
logonCount Property System.DirectoryServices.PropertyValueCollection logon...
name Property System.DirectoryServices.PropertyValueCollection name ...
nTSecurityDescriptor Property System.DirectoryServices.PropertyValueCollection nTSec...
objectCategory Property System.DirectoryServices.PropertyValueCollection objec...
objectClass Property System.DirectoryServices.PropertyValueCollection objec...
objectGUID Property System.DirectoryServices.PropertyValueCollection objec...
objectSid Property System.DirectoryServices.PropertyValueCollection objec...
primaryGroupID Property System.DirectoryServices.PropertyValueCollection prima...
pwdLastSet Property System.DirectoryServices.PropertyValueCollection pwdLa...
sAMAccountName Property System.DirectoryServices.PropertyValueCollection sAMAc...
sAMAccountType Property System.DirectoryServices.PropertyValueCollection sAMAc...
sn Property System.DirectoryServices.PropertyValueCollection sn {g...
userAccountControl Property System.DirectoryServices.PropertyValueCollection userA...
userPrincipalName Property System.DirectoryServices.PropertyValueCollection userP...
uSNChanged Property System.DirectoryServices.PropertyValueCollection uSNCh...
uSNCreated Property System.DirectoryServices.PropertyValueCollection uSNCr...
whenChanged Property System.DirectoryServices.PropertyValueCollection whenC...
whenCreated Property System.DirectoryServices.PropertyValueCollection whenC...

Active Directory Users and Computers uses a dialog box to display user properties, and it definitely
displays more than these! For example, where is the Description property? Well, it turns out that the
particular user we retrieved doesn’t have a Description property—that is, it was never filled in when the
user was created. So, the property isn’t shown. We can set the property—provided we know the property
name already, since Get-Member won’t show it to us. We’ll set the property, use SetInfo() to save the
change, and then re-query the user to see if the property shows up:

PS C:\> $user.put("description","This is a test user.")
PS C:\> $user.setinfo()
PS C:\> $user = [adsi]"LDAP://cn=don jones,cn=users,dc=company,dc=com"
PS C:\> $user | gm

 TypeName: System.DirectoryServices.DirectoryEntry

Name MemberType Definition
---- ---------- ----------
accountExpires Property System.DirectoryServices.PropertyValueCollection accou...

148

Windows PowerShell: TFM • 2nd Edition

badPasswordTime Property System.DirectoryServices.PropertyValueCollection badPa...
badPwdCount Property System.DirectoryServices.PropertyValueCollection badPw...
cn Property System.DirectoryServices.PropertyValueCollection cn {g...
codePage Property System.DirectoryServices.PropertyValueCollection codeP...
countryCode Property System.DirectoryServices.PropertyValueCollection count...
description Property System.DirectoryServices.PropertyValueCollection descr...
displayName Property System.DirectoryServices.PropertyValueCollection displ...

As you can see, the Description property now appears, because it has a value. This is an important caveat
of working with ADSI in PowerShell: You can’t rely on Get-Member to discover objects’ capabilities.
Instead, you’ll need an external reference, such as a book like ADSI Scripting: TFM (SAPIEN Press),
which lists all the available attributes for any given type of AD object.

Searching for ADSI Objects
Sometimes you need to retrieve an object from Active Directory without knowing exactly where
it is or what its FQDN is. PowerShell relies on the .NET Framework and the DirectoryServices.
DirectorySearcher class. This type of object is used to find objects in a directory service such as Active
Directory. Here’s a sample function that uses the class to find a user object in Active Directory based on
the user’s SAM account name:

Function Find-User
{
Param ($sam=$(throw "you must enter a sAMAccountname"))
$searcher=New-Object DirectoryServices.DirectorySearcher
$searcher.Filter="(&(objectcategory=person)(objectclass=user)(sAMAccountname="+$sam+"))"
$results=$searcher.FindOne()
if ($results.path.length -gt 1)
 {
 return $results
 }
 else
 {
 return "Not Found"
 }
 }

You use the New-Object cmdlet to create the DirectorySearcher object:

$searcher=New-Object DirectoryServices.DirectorySearcher

The searcher will by default search the current domain, although you can specify a location such as an
OU, which we’ll show in a little bit. What you will need to do, however, is specify a LDAP search filter:

$searcher.Filter="(&(objectcategory=person)(objectclass=user)(sAMAccountname="+$sam+"))"

The filter instructs the searcher to find user objects where the sAMAccountname property matches that
passed as a function parameter. The function calls the searcher’s FindOne() method:

$results=$searcher.FindOne()

Assuming a user is found, the resulting object will be stored in $results. The script checks the length
of the Path property of $results. If a user object was found, the Path property will be the user’s distin-
guishedname and will have a length greater than 1. Otherwise, the user was not found and the function

Using ADSI in Windows PowerShell

149

returns and error message:

if ($results.path.length -gt 1)
 {
 return $results
 }
 else
 {
 return "Not Found"
 }

Here’s how you can use the function:

PS C:\> find-user jhicks

Path Properties
---- ----------
LDAP://CN=Jeff Hicks,OU=IT,DC=MYCOMPANY,... {homemdb, distinguishedname, countrycode, cn...}

PS C:\>

The Path property shows the user’s distinguished name. The Properties property is a collection of all the
user properties. Here’s another way you might use this function:

PS C:\> $user=find-user jhicks
PS C:\> $user.properties.description
Company admin
PS C:\> $user.properties.userprincipalname
jhicks@MYCOMPANY.LOCAL
PS C:\>

The results of the Find-User function are stored in the $user variable. This means we can access its
properties directly, such as Description and UserPrincipalName. If you want to see all of user’s defined
properties, simply use:

PS C:\> $user.properties

You can also use the searcher object to search from a specific container and to find more than one
object:

PS C:\> $Searcher = New-Object DirectoryServices.DirectorySearcher
PS C:\> $Root = New-Object DirectoryServices.DirectoryEntry `
>> 'LDAP://OU=Sales,OU=Employees,DC=mycompany,DC=local'
>>
PS C:\> $Searcher.SearchRoot = $Root
PS C:\> $searcher.Filter="(&(objectcategory=person)(objectclass=user))"
PS C:\> $Searcher.FindAll()

Path Properties
---- ----------
LDAP://CN=Sales User1,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…
LDAP://CN=Sales User2,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…
LDAP://CN=Sales User3,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…
LDAP://CN=Sales User4,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…
LDAP://CN=Sales User5,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…

150

Windows PowerShell: TFM • 2nd Edition

LDAP://CN=Sales User6,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…
LDAP://CN=Sales User7,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…
LDAP://CN=Sales User8,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…
LDAP://CN=Sales User9,OU=Sales,OU=Employees,DC=MYCOMPANY... {homemdb, distinguishedname, cou…
LDAP://CN=Sales User10,OU=Sales,OU=Employees,DC=MYCOMPAN... {homemdb, distinguishedname, cou…

PS C:\>

In this example, we create a new object type called a DirectoryEntry:

PS C:\> $Root = New-Object DirectoryServices.DirectoryEntry `
>> 'LDAP://OU=Sales,OU=Employees,DC=mycompany;DC=local'
>>

This object can be used for the Root property of the searcher object:

PS C:\> $Searcher.SearchRoot = $Root

Again, we’re going to search for user objects:

PS C:\> $searcher.Filter="(&(objectcategory=person)(objectclass=user))"

Only this time, we’ll use the FindAll() method to return all objects that match the search pattern:

PS C:\> $Searcher.FindAll()

Working with ADSI Objects
You’ve actually already seen a quick example of working with AD objects when we set the Description
property of our test user account back in the Using ADSI Objects section.

Here’s how to change a password:

PS C:\> $user.setpassword("P@ssw0rd!")

Retrieve the object into a variable, and then call its SetPassword() method, passing the desired new
password as an argument.

Creating new objects is straightforward: You’ll need to retrieve the parent container that you want the
new object created in, and then call the parent’s Create() method. Doing so will return an object that
represents the new directory object; you’ll need to set any mandatory properties and then save the object
to the directory. Here’s an example:

PS C:\> $container = [adsi]"LDAP://cn=users,dc=company,dc=com"
PS C:\> $user = $container.create("user","cn=JefferyH")
PS C:\> $user.put("sAMAccountName","JefferyH")
PS C:\> $user.setinfo()

If you’re familiar with VBScript, you may be thinking, “wow, this looks a lot like what we did in
VBScript.” It sure does—it’s almost exactly the same, in fact. We’ll present additional directory-related
tasks in the “Managing Directory Services” chapter, but hopefully this gives you a quick idea of what

Using ADSI in Windows PowerShell

151

PowerShell can do with ADSI.

We should show you one more thing before we go on: Some AD properties, like WMI properties, are
arrays, meaning they contain multiple values. For example, the Member property of an AD group object
contains an array of FQDNs, with each FQDN representing one group member. Here’s an example of
retrieving the FQDN of the first member of a domain’s Domain Admins group:

PS C:\> $user.setinfo()
PS C:\> $group = [adsi]"LDAP://cn=Domain Admins,cn=Users,dc=company,dc=com"
PS C:\> $group.member[0]
CN=Administrator,CN=Users,DC=company,DC=com

Modifying these properties is a bit complicated, since you have to use the PutEx() method, and pass
it a parameter indicating if you’re clearing the property completely, updating a value, adding a value, or
deleting a value. The special parameter values are:

1: Clear the property•

2: Change an existing value within the property•

3: Add a new value to the property•

4: Delete a value from the property•

So, to add a new user to the Domain Admins group, which we’ve already retrieved into the $group vari-
able, do this:

PS C:\> $group.PutEx(3, "member", @("cn=Don Jones,cn=Users,dc=company,dc=com"))
PS C:\> $group.setinfo()

We used the value 3, so we’re adding a value to the array. We have to actually add an array, even
though we only need to have one item—the user we want to add to the group—in the array. So, we use
PowerShell’s @ operator to create a new, one-element array containing the FQDN of the new group
member. SetInfo() is needed to save the information back to the directory.

We hope this quick overview gives you a good start in using ADSI from within PowerShell. As you can
see, the actual mechanics of it all aren’t that complicated; the tough part is understanding what’s going
on inside the directory, including the property names that let you view and modify the information you
need.

IIWindows PowerShell Scripting
Part II

Scripting Overview

155

Chapter 13
Scripting Overview

With many shells—particularly some *nix shells—using the shell interactively is a very different expe-
rience than scripting with the shell. Typically, shells offer a complete scripting language that is only
available when you’re running a script. Not so with PowerShell: The shell behaves exactly the same,
and offers exactly the same features and functionality, whether you’re writing a script or using the shell
interactively. In fact, a PowerShell script is a true script—simply a text file listing the things you’d type
interactively. The only reason to write a script is because you’re tired of typing those things interactively
and want to be able to run them again and again with less effort.

Script Files
PowerShell recognizes the .PS1 filename extension as a PowerShell script. Notice the “1” in there?
That indicates a script designed to work with PowerShell version 1; future versions of PowerShell will
presumably be able to use that as an indicator for backward-compatibility. Script files are simple text
files; they can be edited with Windows Notepad or any other text editor. In fact, by default, the .PS1
filename extension is associated with Notepad, not PowerShell, so double-clicking a script file opens it
in Notepad rather than executing it in PowerShell. Of course, we’re a bit biased against Notepad as a
script editor: Notepad was certainly never designed for that task, and better options exist. We’re obvi-
ously keen on SAPIEN PrimalScript (www.primalscript.com) because it offers a full visual development
environment with PowerShell-specific support, such as the ability to package a PowerShell script in a
standalone executable that runs under alternate credentials.

156

Windows PowerShell: TFM • 2nd Edition

Profiles
PowerShell supports four special scripts called profiles. These scripts are physically identical to any other
script; what makes them special is that PowerShell looks for them when it starts and, if it finds them,
executes them. Think of them as a sort of “auto-run” set of scripts, allowing you to define custom aliases,
functions, and so forth. For example, by defining custom aliases in your profile, those aliases will be
defined every time PowerShell runs, making your aliases available to you anytime you’re using the shell.

PowerShell looks for profiles using a specific path and filename. It looks for them—and executes them,
if they’re present—in the following order:

%windir%\system32\WindowsPowerShell\v1.0\profile.ps1 •
This applies to all users and to all shells.

%windir\system32\WindowsPowerShell\v1.0\Microsoft.PowerShell_profile.ps1 •
This applies to all users but only to the PowerShell.exe shell.

%UserDocuments%\WindowsPowerShell\profile.ps1 •
This applies to the current user but affects all shells.

%UserDocuments%\WindowsPowerShell\Microsoft.PowerShell_profile.ps1 •
This applies to the current user and only to the PowerShell.exe shell.

By the way…
%UserDocuments% isn’t a valid environment variable; we’re using it to represent the user’s
“Documents” folder. On Windows XP, for example, this would be under %UserProfile%\My
Documents; on Windows Vista it’s under %UserProfile%\Documents.

Notice the references to “all shells.” In this book, we’re primarily working with the PowerShell.exe shell.
However, other shells exist: The Exchange Management Shell (which ships with Exchange Server 2007)
is a different shell. So, if you have things you want defined in all the shells you use—such as custom
aliases—you’d put them in one of the “all shells” profiles.

A Note on Shells
Note that you don’t have to use custom shells. For example, you don’t need to use the Exchange
Management Shell to manage Exchange Server 2007. Instead, you could simply add the Exchange
snap-in to PowerShell.exe, using Add-PSSnapIn. Doing so would give you access to the
Exchange cmdlets from the PowerShell.exe shell. This trick allows you to create a shell environ-
ment that has all the cmdlets you need to manage all your PowerShell-manageable products.

None of these profile files are created by default. You should also remember that these are just PowerShell
scripts, so they won’t run unless they meet your shell’s execution policy—in other words, your profiles
need to be signed if your execution policy is AllSigned.

Scripting Basics
In the next several chapters, we’ll cover the various elements of PowerShell scripting. These aren’t nec-
essarily covered in any particular order; that is, you don’t necessarily need to know one thing before
another thing. And keep in mind that everything we’re covering related to scripting works fine when
you’re using the shell interactively. So, you can use everything we’re about to show you even if you’re not
planning on writing scripts at all. Here’s what we’ll cover:

Scripting Overview

157

Variables, arrays, and escape sequences, including associative arrays (also called dictionaries or hash •
tables). We’ve covered some of this information in earlier chapters, but a review will help you mas-
ter these concepts, and we’ll dive into a bit more depth with them.

Objects, which are the basis of PowerShell’s functionality. Again, we’ve touched on objects already, •
but now we’ll take the time to completely define them.

Operators, which allow PowerShell to manipulate and compare data. You’ve seen some operators •
in action already, but we’ll be covering more operators, and in more depth, than we have previously.

Regular expressions are a technique used for pattern-matching, and are often used to validate •
input—for example, making sure an e-mail address looks like an e-mail address.

Loops and decision-making constructs form the bulk of PowerShell’s scripting language, and allow •
your scripts to make decisions based on conditions you specify, and to repeat a given task over and
over.

Error handling is a key skill that allows you to anticipate and deal with errors that occur when your •
scripts run.

The PowerShell Debugger provides a simple way to debug scripts by following their execution line •
by line and examining the contents of variables and object properties as you go.

Finally, PowerShell for VB Scripters will introduce PowerShell using concepts familiar to VBScript •
developers. Think of this as kind of a “jump start” for using PowerShell, where you’ll be able to
leverage what you already know about VBScript to understand PowerShell more quickly.

Scope
Now that you’re going to begin working with scripts, you’re going to run up against a concept called
scope, which is very important in Windows PowerShell. So far, we’ve just been working interactively
in the shell, which is referred to as the global scope. When you’re just working interactively in the shell,
everything occurs in the global scope, so it’s like there’s no scope at all.

However, when you run a script, PowerShell creates a new script scope, which contains the script. The
script scope is a child of the global scope; the global scope is referred to as the script scope’s parent. Some
special rules govern interaction between the two scopes:

The parent scope cannot see “inside” of the child scope.•

The child scope can • read elements of the parent scope but can modify them only if a special syntax
is used.

If a child scope attempts to modify a parent scope element • without using the special syntax, then
a new element of the same name is created within the child scope, and the child scope effectively
“loses” access to the parent scope element of that name.

Elements, in the above rules, refer primarily to variables and functions. So, to reiterate these rules in a
variable-centric sense:

The parent scope cannot access variables, which are defined in a child scope.•

The child scope can • read variables defined in the parent scope but can modify them only if a special
syntax is used.

If a child scope attempts to modify a parent scope variable • without using the special syntax, then
a new variable of the same name is created within the child scope, and the child scope effectively
“loses” access to the parent scope variable of that name.

158

Windows PowerShell: TFM • 2nd Edition

When you create a function—either by defining it in the global scope or, more commonly, within a
script—the function itself is a local scope, and is considered a child of whatever scope it was created in.
Here’s a quick example—we haven’t discussed functions, yet, but this one isn’t complicated so we hope
it’ll help illustrate this scope stuff:

$var1 = "Hello"
Function MyFunction {1.
 Write-Host $var12.

 $var1 = "Goodbye"
 Write-Host $var13.
}4.
Write-Host $var15.
MyFunction6.
Write-Host $var17.

If you were to run this script, here’s the output you’d see:

Hello
Hello
Goodbye
Hello

Why is this true? The first executable line in this script is the first line, which sets the variable $var1
equal to the value “Hello”. Next, a function is defined—but not executed, yet. PowerShell skips over the
function definition to line 7, where the contents of $var1 are displayed—our first line of output. Next,
line 8 calls MyFunction. This enters the function, which is a child scope of the script scope. Line 3 dis-
plays the contents of $var1. Since $var1 hasn’t been defined in this scope, PowerShell looks to the parent
scope to see if $var1 exists there. It does, and so our second line of output is also “Hello”. Line 4 assigns
a new value to $var1. Because a scope cannot directly modify its parent’s variables, however, line 4 is
actually creating a new variable called $var1. When line 5 runs, $var1 now exists in the local scope, and
so our third line of output is “Goodbye”. When we exit the function, its scope is discarded. When line 9
runs, $var1 still contains its original value—the function never modified this $var1—and so our last line
of output is “Hello” again.

Now take a look at this slight revision:

$var1 = "Hello"
Function MyFunction {
 Write-Host $var1
 $script:var1 = "Goodbye"
 Write-Host $var1
}
Write-Host $var1
MyFunction
Write-Host $var1

Scripting Overview

159

We boldfaced the one line we changed. This time, all four lines of output will be “Hello”, because inside
the function we’ve used the special syntax that allows a child scope to explicitly modify its parent’s vari-
ables. There are four of these scope identifiers that PowerShell recognizes:

$global: works with objects in the global scope•

$script: works with objects in the parent script scope•

$local: works with objects in the local scope•

$private: works with objects in a private scope•

There’s another technique, called dot sourcing, which impacts scope. Take a look at our original example
script, this time with another modification:

$var1 = "Hello"
Function MyFunction {
 Write-Host $var1
 $var1 = "Goodbye"
 Write-Host $var1
}
Write-Host $var1
. MyFunction
Write-Host $var1

Notice how we’re calling the function on the second-to-last line of code? We’ve typed a period, followed
by a space, and then the function name. This is called dot sourcing, and it forces the function to run,
not in its own scope but rather right within the script scope. In other words, when you run something—a
script or a function—using dot sourcing, you tell PowerShell to forgo the step of creating a new scope
and to instead run all the commands in the current scope. In this revised example, all four lines of out-
put will be “Hello”, because the function runs in the script scope where $var1 was defined. So, when the
function tries to modify $var1, it’s able to do so because $var1 exists in the same scope that the function
is running in.

Dot sourcing is a useful trick. For example, you could write a script that does nothing but define a bunch
of utility functions—that is, functions that do some useful tasks that you use from time to time (almost
like cmdlets). By dot sourcing that script into the global scope, those functions become defined within
the global scope, making them available to you just like a cmdlet or global variable.

We’ll touch on scope more as appropriate in the following few chapters; if you’re confused about it then,
refer back to this chapter and walk through these short examples again to refresh your memory. Scope
in PowerShell is actually a lot more expansive than we’ve covered here; our goal in this chapter was to
introduce you to the concept, as it will impact most of your scripts. In the chapter “Scope in Windows
PowerShell,” we’ll dive into scope in much more detail.

Variables, Arrays, and Escape Characters

161

Chapter 14
Variables, Arrays, and Escape Characters

PowerShell’s power lies in its ability to manipulate objects and command output, parameters, strings,
variables, and more. By understanding how PowerShell accomplishes this, you’ll be better prepared to
manage your systems with PowerShell either straight from the command line or in a PowerShell script.
If you’re familiar with Microsoft Windows Cmd.exe shell, this power and flexibility will be new and
exciting because PowerShell is an object-oriented shell, while Cmd is text-oriented, which makes it
much more limited.

Variables
Variables play a key role in PowerShell as they do in most scripting technologies. A variable is a place-
holder for some value. The value of the placeholder might change based on script actions or intentional
changes. In other words, the value is variable.

In VBScript, variables are typically set with string values. Consider the following code fragment:

Set objNetwork=CreateObject("wscript.network")
strUserName=objNetwork.UserName
wscript.echo "Current user is " & strUsername

The variable strUserName contains the string value that is returned from the Username property of the
objNetwork object. It is often easier to use the variable strUserName instead of constantly calling obj-
Network.Username. We can use variables in PowerShell the same way.

PowerShell variable names must begin with $:

162

Windows PowerShell: TFM • 2nd Edition

PS C:\> $name="SAPIEN Technologies, Inc."
PS C:\> $name
SAPIEN Technologies, Inc.
PS C:\>

In this example, we have created a variable, $name, with a value of “SAPIEN Technologies, Inc.” We
can display the value of the variable by invoking the variable name. This variable will maintain this value
until we close the shell or set $name to something else.

There are two important things to note in this example.

We never had to formally 1. declare the variable.
We’re not writing a script.2.

PowerShell allows variables to be used “within the shell” or interactively without requiring you to write a
script. Variables used interactively stay in memory for the duration of the PowerShell session.

Variables can contain numbers as the following example demonstrates:

PS C:\> $pi=3.1416
PS C:\> [decimal]$R=Read-host "Enter a radius value"
Enter a radius value: 4
PS C:\> $Area=$pi*($R*$R)
PS C:\> Write-host "The Area of a circle with a radius of $R is $Area"
The Area of a circle with a radius of 4 is 50.2656
PS C:\>

The example is pretty straightforward. We begin by defining a variable called $pi. A value for the radius
variable, $R, is set by calling Read-Host. We specifically cast it as a decimal type otherwise $R will be
treated as a string, which would cause the mathematical expressions to not be properly interpreted. A
variable, $Area, is set with the appropriate mathematical formula. Finally, we use Write-Host to display
the results.

Note
If you’ve been coding VBScript for a while, you might get a little confused. PowerShell doesn’t
require any concatenation symbols like & or + to join strings and variables together. With
PowerShell, you simply wrap anything you want displayed in quotes and type out the expression.

If we want to run this again, all we need to do is press the up arrow a few times to reset $R and rerun
the Write-Host cmdlet. If you’re thinking this is a cumbersome method to use variables and repeat
code, then you’re right! A better approach would be to create a function, which we’ll cover in the “Script
Blocks, Functions, and Filters” chapter.

We can also set a variable to hold the results of a cmdlet:

PS C:\> $proc500=get-process | where {$_.handles -gt 500}
PS C:\> $proc500

Handles NPM(K) PM(K) WS(K) VS(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 684 7 1680 4580 27 3.96 868 csrss
 578 13 26112 38372 104 33.44 2024 explorer
 680 76 12024 4896 114 4.39 3916 Groove
 1926 54 47988 9536 187 39.28 1228 iTunes
 541 12 15092 9892 91 79.01 1896 Smc

Variables, Arrays, and Escape Characters

163

 1228 42 12900 19756 88 15.61 1860 svchost
 1141 0 0 220 2 23.15 4 System
 527 21 6716 3488 52 2.04 892 winlogon

PS C:\>

In this example, we create a variable called $proc500. The value of this variable is created by taking the
object output of a Get-Process cmdlet and piping it to the Where cmdlet. The Where cmdlet (techni-
cally, Where is an alias to Where-Object) filters any process with a handle count that is less than or
equal to 500 (that is, it “keeps” any processes with a handle count greater than 500). When you type
$proc500 at the next prompt, PowerShell displays the variable’s contents in formatted output. It is
important to remember that this is not a function or a cmdlet. The value of $proc500 is not reevaluated
every time it is invoked.

However, the value of $proc500 is more than a collection of strings. In fact, it is an object that can be
further manipulated. For example, if you run $proc500.count, PowerShell returns a value of 8, which is
the number of processes in $proc500. We’ll cover variables as objects in more detail later in this chapter.

PowerShell includes several cmdlets for working with variables that you can see by asking for help:

PS C:\> help *var*

Name Category Synopsis
---- -------- --------
Get-Variable Cmdlet Gets the variables in the curren
New-Variable Cmdlet Creates a new variable.
Set-Variable Cmdlet Sets the value of a variable. Cr
Remove-Variable Cmdlet Deletes a variable and its value
Clear-Variable Cmdlet Deletes the value of a variable.
Variable Provider Provides access to the Windows P
about_Automatic_Variables HelpFile Variables automatically set by t
about_Environment_Variable HelpFile How to access Windows environmen
about_Shell_Variable HelpFile Variables that are created and d
PS C:\>

Get-Variable
Recall that you can get a variable’s value by typing out the variable name. But what if you forgot the
variable name? If you can remember at least part of it, you can use Get-Variable to list all matching
variables and their values:

PS C:\> get-variable v*

Name Value
---- -----
var 9.42
VerbosePreference SilentlyContinue

PS C:\>

In this example, we are finding all the variables that begin with the letter “v”. Notice we didn’t’ need to
use $v*. The $ symbol is used in conjunction with the variable name when used in the shell.

Run Get-Variable * to see all the defined variables:

164

Windows PowerShell: TFM • 2nd Edition

PS C:\> get-variable *

Name Value
---- -----
Error {System.Management.Automation.ParseExce
DebugPreference SilentlyContinue
PROFILE C:\Documents and Settings\admin\My
HOME C:\Documents and Settings\admin
Host System.Management.Automation.Internal.H
MaximumHistoryCount 64
MaximumAliasCount 4096
pi 3.1416
input System.Array+SZArrayEnumerator
var 9.42
StackTrace at System.Number.StringToNumber(Stri
ReportErrorShowSource 1
proc {csrss, explorer, Groove,..
ExecutionContext System.Management.Automation.EngineIntr
true True
VerbosePreference SilentlyContinue
PSHOME C:\Program Files\Windows PowerShell\v1.
ShellId Microsoft.PowerShell
false False
null
MaximumFunctionCount 4096
ErrorActionPreference Continue
ConsoleFileName
ReportErrorShowStackTrace 0
r 5
? True
PWD C:\
^ get-variable
_
ReportErrorShowExceptionClass 0
ProgressPreference Continue
MyInvocation System.Management.Automation.Invocation
args {}
MaximumErrorCount 256
Area 13961.2704
WhatIfPreference 0

PS C:\>

You will recognize some of these variables from our earlier examples. However, note that variables such
as MaximumErrorCount or PSHOME are PowerShell’s automatic variables that are set by the shell. The
following table lists these variables. Keep in mind that you should not create a variable that uses one of
these default automatic variable names.

PowerShell Automatic Variables

Variable Description
$$ Contains the last token of the last line received by the shell.
$? Contains the success/fail status of the last operation.
$^ Contains the first token of the last line received by the shell.
$_ Contains the current pipeline object, used in script blocks, filters,

and the Where statement.
$Args Contains an array of the parameters passed to a function.

Variables, Arrays, and Escape Characters

165

Variable Description
$DebugPreference Specifies the action to take when data is written using write-

debug in a script or WriteDebug in a cmdlet or provider.
$Error Contains objects for which an error occurred while being pro-

cessed in a cmdlet.
$ErrorActionPreference Specifies the action to take when data is written using write-error

in a script or WriteError in a cmdlet or provider.
$foreach Refers to the enumerator in a foreach loop.
$Home Specifies the user’s home directory. Equivalent of

%homedrive%%homepath%.
$Input Use in script blocks that are in the middle of a pipeline.
$LASTEXITCODE Contains the exit code of the last Win32 executable execution.
$MaximumAliasCount Contains the maximum number of aliases available to the session.
$MaximumDriveCount Contains the maximum number of drives available, excluding

those provided by the underlying operating system.
$MaximumFunctionCount Contains the maximum number of functions available to the

session.
$MaximumHistoryCount Specifies the maximum number of entries saved in the command

history.
$MaximumVariableCount Contains the maximum number of variables available to the

session.
$PsHome The directory where Windows PowerShell is installed.
$Host Contains information about the current host.
$OFS Output Field Separator, used when converting an array to a string.

By default, this is set to the space character. The following example
illustrates the default setting and setting OFS to a different value:
&{ $a = 1,2,3; “$a”}
1 2 3
&{ $OFS=”-”; $a = 1,2,3; “$a”}
1-2-3

$ReportErrorShowExceptionClass When set to TRUE, shows the class names of displayed
exceptions.

$ReportErrorShowInnerException When set to TRUE, shows the chain of inner exceptions. The dis-
play Of each exception is governed by the same options as the root
Exception, that is, the options dictated by $ReportErrorShow* will
be used to display each exception.

$ReportErrorShowSource When set to TRUE, shows the assembly names of displayed
exceptions.

$ReportErrorShowStackTrace When set to TRUE, emits the stack traces of exceptions.
$StackTrace Contains detailed stack trace information about the last error.
$VerbosePolicy Specifies the action to take when data is written using Write-

verbose in a script or WriteVerbose in a cmdlet or provider.
$WarningPolicy Specifies the action to take when data is written using Write-

warning in a script or WriteWarning in a cmdlet or provider.

Set-Variable
PowerShell has a specific cmdlet for creating variables called Set-Variable, which has an alias of Set. The
syntax is as follows:

166

Windows PowerShell: TFM • 2nd Edition

PS C:\> set-variable var "Computername"
PS C:\> $var
Computername
PS C:>

This is the same as typing $var=”Computername”. This cmdlet has several parameters for which you
might find some need. For one thing, you can define a read-only, or constant, variable:

PS C:\> set-variable -option "constant" -name pi -value 3.1416
PS C:\> get-variable pi

Name Value
---- -----
pi 3.1416

PS C:\> $pi=0
Cannot overwrite variable pi because it is read-only or constant.
At line:1 char:4
+ $pi= <<<< 0
PS C:\>

By using the -option parameter, we specified that we wanted the variable to be a constant. Once set, you
cannot change the value or clear or remove the variable. It will exist for as long your PowerShell session
is running. If you close the shell and reopen it, the constant no longer exists.

Variable Already Exists
If you’ve been following along with the chapter in your own PowerShell session, you may already
have a variable called pi. If so, when you try to run the previous code, you’ll get an error that an
existing variable cannot be made constant. You can only set the constant option when the variable
is first created. In this instance, use Remove-Variable to delete pi and try to run this code again. It
should now work with no errors.

The -scope parameter allows you to define the variable’s scope or where it can be used. Typically, you
will set the scope to global, local, or script.

PS C:\>set-variable -scope "global" -name var -value 1

Although it is not required, you can create variables with additional parameters, such as -option and
-scope. We also recommend that you use -name and -value, which help remove any ambiguity about
your intentions.

Normally, you can assign the results of a PowerShell expression to a variable:

PS C:\>$stoppedServices= get-service |where {$_.status -EQ "stopped"}

However, if you want to specify additional Set-Variable parameters, such as its scope, then you need to
the expression to Set-Variable:

PS C:\> get-service |where {$_.status -EQ "stopped"} | set-variable
-scope "global" -name StoppedServices
PS C:\> get-variable stoppedServices

Variables, Arrays, and Escape Characters

167

Name Value
---- -----
StoppedServices {Alerter, ALG, AppMgmt, aspnet_state,…
PS C:\>

New-Variable
PowerShell does not have the equivalent of the VBScript Dim statement, nor is anything like it required
in PowerShell. However, you can use New-Variable to explicitly define a variable. This cmdlet is almost
identical to Set-Variable. You can specify the variable’s scope and option as follows:

PS C:\> new-variable -option "constant" -name myZip -value 13078
PS C:\> get-variable myzip

Name Value
---- -----
myZip 13078

However, if you attempt to use New-Variable again to create the same variable but with a different
value, PowerShell will refuse:

PS C:\> new-variable myZip 89123
new-variable : A variable with name 'myZip' already exists.
At line:1 char:13
+ new-variable <<<< myZip 89123

If you needed to change the variable value, you need to use Set-Variable. However, even that will not
work in this example because myZip was created as a constant.

You might wonder how you will know when various cmdlets should be used. The answer is that it prob-
ably depends on what type of variables you are creating and how they will be used. For example, you
may want to create all the empty variables you will need at the beginning of a script with New-Variable,
and then use Set-Variable to define them as needed. Using different cmdlets may help you keep track of
what is happening to a variable throughout the script.

Clear-Variable
The process of retaining a variable while changing its value is straightforward:

PS C:\> $var="apple"
PS C:\> $var
apple
PS C:\> $var="orange"
PS C:\> $var
orange
PS C:\>

This example creates the variable, $var, and then sets it to a value. In this case, the value was set it to
“apple.” Changing the value to “orange” is just as easy. If for some reason you want to retain the variable
but remove the value, you can use the Clear-Variable cmdlet:

PS C:\> clear-variable var
PS C:\> $var
PS C:\>

168

Windows PowerShell: TFM • 2nd Edition

Notice we didn’t need to use $var, just var. We also could have set $var=””:

PS C:\> $var
orange
PS C:\> $var=""
PS C:\> $var

PS C:\>

Technically Speaking
Technically, setting $var=”” is not the same thing as using the Clear-Variable cmdlet. The cmdlet
actually erases the value. The expression $var=”” is really setting the value of $var to a string
object with a length of 0. In most instances this shouldn’t be an issue, but if in doubt, use Clear-
Variable.

You can also clear multiple variables with a single command:

PS C:\> $var=1
PS C:\> $var2=2
PS C:\> $var3=3
PS C:\> get-variable var*

Name Value
---- -----
var 1
var3 3
var2 2

PS C:\> clear-variable var*
PS C:\> get-variable var*

Name Value
---- -----
var
var3
var2

PS C:\>

In this example, we created variables var, var2, and var3. We used Get-Variable to display the values, fol-
lowed by Clear-Variable var* to clear the values of any variables that started with var.

The last item to understand about Clear-Variable, is that invoking Clear-Variable in a child scope has
no effect on variables in the parent scope. In fact, this is typically true of most cmdlets. Refer back to the
chapter “Scripting Overview” for a refresher on PowerShell scopes.

PS C:\> $var=3
PS C:\> &{clear-variable var}
PS C:\> $var
3
PS C:\>

The first line of this example is considered the parent scope. Using the ampersand character invokes

Variables, Arrays, and Escape Characters

169

a child scope and attempts to clear var. But as you can see, that cmdlet had no effect. Var remains
untouched.

Remove-Variable
When you want to remove the variable and its value, then call the Remove-Variable cmdlet. The syntax
is essentially the same as Clear-Variable. You can remove a single variable:

PS C:\> $var="foobar"
PS C:\> $var
foobar
PS C:\> remove-variable var
PS C:\> $var
PS C:\>

Alternatively, you can remove multiple variables with a wildcard:

PS C:\> get-variable var*

Name Value
---- -----
var 5
var3 980
var2 78

PS C:\> remove-variable var*
PS C:\> get-variable var*
PS C:\>

Environment Variables
Windows has its own set of environmental variables, such as %Path% and %Windir%. You can access
these variables with the env provider in PowerShell. A provider acts as an interface between PowerShell
and an internal data source. In this case, you can access the environmental variables that are stored in the
registry. When accessing a variable in expression mode, you type $env:variablename. Don’t let this con-
fuse you—we’re just using the $ character to prefix the env: provider; PowerShell has a built-in variable,
$env, which is pre-set to connect to the env: provider. Note the colon at the end of the provider name.

Here is an example of how to use the provider:

PS C:\> $env:systemroot
E:\WINDOWS
PS C:\> $env:path
E:\Program Files\Windows Resource Kits\Tools\;E:\WINDOWS\system32;E:\WINDOWS;E:
\WINDOWS\System32\Wbem;E:\Program Files\Support Tools\;E:\Program
Files\Common Files\Roxio Shared\DLLShared;E:\Program Files\Common
Files\GTK\2.0\bin;E:\Program Files\Windows Power Shell\v1.0\
PS C:\>

When used with a cmdlet, you only need to use just env: instead of $env:.

If you want to see all of the current Windows environmental variables in PowerShell, type:

Get-Childitem env:

170

Windows PowerShell: TFM • 2nd Edition

This is the equivalent of the SET command in the traditional Cmd.exe shell. If you want the variables
sorted by name use:

Get-Childitem env: | sort {$_.key}

Variable Types
The fact that PowerShell is built on .NET gives it tremendous versatility that isn’t always obvious. Keep
in mind that any PowerShell variable can contain any type of data. This is true because all types of data
such as strings, integers, and dates are .NET classes, which means they all inherit from the base class
named Object. A PowerShell variable can contain anything that inherits from Object. However, as you
saw in earlier examples with a string, PowerShell can tell the difference between different classes that
inherit from Object.

You can force PowerShell to treat objects as a more specific type. When you do this, you are asking
PowerShell to cast a variable to a specific type. We’ve already done this with the [ADSI] type, in the
chapter “Using ADSI in Windows PowerShell.” For a simpler example, take a look at this sequence:

PS C:\> $one = 5
PS C:\> $two = "5"
PS C:\> $one + $two
10
PS C:\> $two + $one
55

Here we give PowerShell two variables. One variable contains the number five, while the other variable
contains the string character “5.” This might look the same to you, but this is a big difference to a com-
puter! Since we didn’t specify what type of data these variables are, PowerShell assumes they are both
the generic Object type. This caused PowerShell to decide it would figure out something more specific
when the variables are used.

When we added $one and $two or 5 + “5,” PowerShell said, “Aha, this must be addition. The first char-
acter is definitely not a string because it’s not in double quotes. The second character is in double quotes
but… Well, if I take the quotes away it looks like a number, so I’ll add them.” PowerShell’s logic cor-
rectly gave 10 as the result.

However, when we add $two and $one, reversing the order, PowerShell has a different decision to make.
In this case PowerShell said, “I see addition, but this first operand is clearly a string. The second one is a
generic Object, so let’s also treat it like a string, and concatenate the two.” This PowerShell logic gave us
the string “55,” which is just the first five tacked onto the second.

But what about:

PS C:\> [int]$two + $one
10

This is the same order as the example that resulted in “55.” However, this time we specifically told
PowerShell to cast the generic object in $two as an Int or integer, which is a type PowerShell knows. So,
it used the same logic as in the first example. It added the two to come up with 10.

You can force PowerShell to treat anything as a specific type. For example:

Variables, Arrays, and Escape Characters

171

PS C:\> int = [int]$"5"
PS C:\> $int | get-member

 TypeName: System.Int32

Name MemberType Definition
---- ---------- ----------
CompareTo Method System.Int32 CompareTo(Int32 value), System.Int
Equals Method System.Boolean Equals(Object obj), System.Boole
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
ToString Method System.String ToString(), System.String ToStrin

Here the value “5” would normally be either a String object or, at best, a generic Object. However, by
specifying the type [int], we forced PowerShell to try to convert “5” into an integer before storing it
in the variable $int. The conversion was successful because we can see where we piped $int to Get-
Member, which revealed the object’s type: System.Int32.

Note that once you apply a specific type to a variable, it stays that way until you specifically change it.
For example:

PS C:\> [int]$int = 1

This creates a variable named $int as an integer, and assigns it the value 1. The $int variable will be
treated as an integer from now on, even if you don’t include the type:

PS C:\> $int = 2

It is still using $int as an integer because it was already cast into a specific type. Once set up to be an
integer, you can’t put other types of data into it. Here’s an example of an error because we tried to put a
string into a variable that was already specifically cast as an integer:

PS C:\> [int]$int = 1
PS C:\> $int = 2
PS C:\> $int = "hello"
Cannot convert value "hello" to type "System.Int32". Error: "Input
string was not in a correct format."
At line:1 char:5
+ $int <<<< = "hello"
PS C:\>

However, you can recast a variable by reassigning a new, specific type:

PS C:\> [string]$int = "Hello"

That works fine, and $int will now be treated as a string by PowerShell.

PowerShell isn’t a miracle worker. For example, PowerShell will complain if you try to force it to convert
something that doesn’t make sense:

PS C:\> [int]$int = "Hello"
Cannot convert "Hello" to "System.Int32". Error: "Input string was
not in a correct format."

172

Windows PowerShell: TFM • 2nd Edition

At line:1 char:13
+ $int = [int]" <<<< Hello"

This occurred because “Hello” can’t sensibly be made into a number. The next example is even more fun
since it illustrates some of the advanced data types:

PS C:\> [xml]$xml = "<users><user name='joe' /></users>"
PS C:\> $xml.users.user

name

joe

Here we created a string, but told PowerShell it was of the type XML, which is another data type with
which PowerShell is familiar. XML data works sort of like an object in that we define a parent object
named Users, and a child object named User. The child object has an attribute called Name, with a value
of Joe. So, when we ask PowerShell to display $xml.users.user, it displays all the attributes for that user.
We can prove that PowerShell treated $xml as XML data by using Get-Member:

PS C:\> $xml | get-member

 TypeName: System.Xml.XmlDocument

Name MemberType Definition
---- ---------- ----------
ToString CodeMethod static System.Stri
add_NodeChanged Method System.Void add_No
add_NodeChanging Method System.Void add_No
add_NodeInserted Method System.Void add_No
add_NodeInserting Method System.Void add_No
add_NodeRemoved Method System.Void add_No
add_NodeRemoving Method System.Void add_No
AppendChild Method System.Xml.XmlNode
Clone Method System.Xml.XmlNode
CloneNode Method System.Xml.XmlNode
CreateAttribute Method System.Xml.XmlAttr
CreateCDataSection Method System.Xml.XmlCDat
CreateComment Method System.Xml.XmlComm
CreateDocumentFragment Method System.Xml.XmlDocu
CreateDocumentType Method System.Xml.XmlDocu
CreateElement Method System.Xml.XmlElem
...

This demonstrates not only that variables are objects, but also that PowerShell does understand different
types of data and provides different capabilities for them.

If you’re curious about what object types are available, here’s a quick list of more common types:

Variables, Arrays, and Escape Characters

173

Array Bool (Boolean)
Byte Char (a single character)
Char[] (Character array) Decimal
Double Float
Int (Integer) Int[] (Integer array)
Long (Long integer) Long[] (Long integer array)
Regex (Regular expression) Single
Scriptblock String
WMI XML

There are more types than those listed above. In fact, we’ll be popping in with details on the other types
as appropriate throughout this book. Some of them aren’t frequently used in administrative scripting, so
we don’t want to arbitrarily hit you with all of them at once. Instead, we’ll cover them in a context where
they’re used for something practical. Just remember that, unlike other scripting languages with which
you may be familiar, a PowerShell variable can contain more than a number or string.

Variable Precautions
One thing to be careful of is PowerShell’s ability to change the type of a variable if you haven’t explicitly
selected a type. For example:

PS C:\> Write-host $a.ToUpper()

This works fine if $a contains a string, as shown here:

PS C:\> $a = "Hello"
PS C:\> write-host $a.ToUpper()
HELLO
PS C:\>

However, you’ll get an error if $a was already set to an integer value:

PS C:\> $a = 1
PS C:\> write-host $a.ToUpper()
Method invocation failed because [System.Int32] doesn't contain a
method named 'ToUpper'.
At line:1 char:22
+ write-host $a.ToUpper(<<<<)
PS C:\>

This occurs because, as an integer, $a doesn’t have a ToUpper() method. Since this type of error can be
tricky to troubleshoot, you need to watch out for this when you’re writing scripts that take input from
other sources, such as a user or a file.

One way around it is to force PowerShell to treat the variable as the string you’re expecting it to be:

PS C:\> $a = 1
PS C:\> $a = [string]$a
PS C:\> write-host $a.ToUpper()
1

174

Windows PowerShell: TFM • 2nd Edition

PS C:\>

You don’t necessarily need to select a type up front for every variable you use, but you should be aware of
situations that can make a variable contain a type of data other than what you originally expected.

You should also take precautions with variable naming. PowerShell is pretty forgiving and will let you
use just about anything as a variable name:

PS C:\> $$="apple"
PS C:\> $$
apple
PS C:\> ${var}=100
PS C:\> ${var}
100
PS C:\>
PS C:\> $7="PowerShell Scripting"
PS C:\> $7
PowerShell Scripting
PS C:\>

However, if you attempt to create a variable with anything other than a number or letter, PowerShell
will complain:

PS C:\> $(j)="SAPIEN"
Invalid assignment expression. The left hand side of an assignment operator nee
ds to be something that can be assigned to like a variable or a property.
At line:1 char:6
+ $(j)=" <<<< SAPIEN"
PS C:\>

Using these types of variables names isn’t very practical or recommended. Instead, you should use vari-
able names that are meaningful to you. So, instead of:

PS C:\> $g=Get-Process

Use something like:

PS C:\> $Processes=Get-Process

It may require a bit more typing, but using meaningful variable names will definitely make it easier to
troubleshoot and maintain your PowerShell scripts.

Arrays
An array is essentially a container for storing things. For almost all administrative scripts, simple arrays
will suffice. When you think about a simple array, picture an egg carton with a single row. You can make
the egg carton as long as you want. With a simple array, you can put numbers, strings, or objects in each
compartment. Multi-dimensional arrays exist, but they are beyond the scope of what we want to cover
here.

Variables, Arrays, and Escape Characters

175

Array or Collection
When reading technical material, you may also come across the term collection, which is a type
of array that is usually created as the result of some query. For example, you might execute a
query to return all instances of logical drives on a remote server using Windows Management
Instrumentation (WMI). The resulting object will hold information about all logical drives in a col-
lection. This collection object is handled in the much same way as an array when it comes time to
enumerate the contents. For now, remember that when you see the term collection, think array. Or
vice-versa; it doesn’t really matter which term you use.

You can create an array by defining a variable and specifying the contents as delimited values:

PS C:\> $a=9,5,6,3

To view the contents of $a, all you need to do is type $a:

PS C:\> $a
9
5
6
3

The other technique you are more likely to use is the ForEach cmdlet:

PS C:\> foreach ($i in $a) {Write-host $i}
9
5
6
3
PS C:\>

This cmdlet looks inside the parentheses for what it should process. For every item in the parentheses,
the ForEach statement does whatever commands are in the curly braces. In the previous example we
used a variable name of $i. This example instructs the ForEach statement that for every $i variable in
the $a variable, our array, it should echo back the value of $i.

When we run this command the first time, the cmdlet gets the first value of the array ($a) and sets it to
$i. The cmdlet writes the value of $i to the console, and then runs through the array again getting the
next array element, 5. This process is repeated until the end of the array is reached.

If you want to create an array with a range of numbers, you should use the range operator (..):

PS C:\> $a=2..7
PS C:\> $a
2
3
4
5
6
7
PS C:\>

To create an array with strings, each element must be enclosed in quotes:

176

Windows PowerShell: TFM • 2nd Edition

PS C:\> $servers="dc1","app02","print1","file3"
PS C:\> foreach ($c in $servers) {$c}
dc1
app02
print1
file3
PS C:\>

If you used $servers=”dc1,app02,print1,file3” then the only element of the array would be
dc1,app02,print1,file3, because PowerShell only sees one set of double quotes. Therefore, there would be
only one item to make into an array.

PowerShell arrays can also contain objects. Consider this example:

PS C:\> $svc=get-service | where {$_.status -eq "running"}
PS C:\> $svc

Status Name DisplayName
------ ---- -----------
Running AudioSrv Windows Audio
Running Avg7Alrt AVG7 Alert Manager Server
Running Avg7UpdSvc AVG7 Update Service
Running AVGEMS AVG E-mail Scanner
Running CryptSvc Cryptographic Services
Running DcomLaunch DCOM Server Process Launcher
Running Dhcp DHCP Client
Running Dnscache DNS Client
Running Eventlog Event Log
Running EventSystem COM+ Event System
Running IISADMIN IIS Admin
Running iPodService iPodService
Running lanmanserver Server
...

We’ve created an array called $svc that contains all running services. We’ll work with this more a little
later.

When you work with individual elements in an array, the first important thing to remember is that
arrays start counting at 0. To reference a specific element the syntax is $arrayname[index]:

PS C:\> write-host $servers[0]
dc1
PS C:\> write-host $servers[3]
file3
PS C:\>

You can use the length property of the array to determine how many elements are in the array:

PS C:\> $servers.length
4
PS C:\>

If you go back and look at the contents, you’ll see that file3 is the last element of the array, yet it has an
index of [3]. What gives? Remember to start counting at 0.

It’s also easy to create an array from an existing source instead of manually typing a list of names. If you
already have a list of server names such as Servers.txt, you could read that file with the Get-Content
cmdlet and populate the array:

Variables, Arrays, and Escape Characters

177

PS C:\> $Serverlist =get-content servers.txt
PS C:\> $serverlist
Seattle1
Vegas02
XPLAP01
PS C:\>

In this example, servers.txt is a simple text file with a list of computer names. We create the array
$serverlist by invoking Get-Content. Invoking $serverlist merely displays the array’s contents. Armed
with this array, it’s a relatively simple matter to parse the array and pass the computer name as the
parameter for any number of commands:

PS C:\> foreach ($srv in $serverlist) {
>> write-host "Examining" $srv
>> #calling Get-WmiObject
>> Get-WmiObject -class win32_operatingsystem -computername $srv
>> }
>>
Examining Seattle1

SystemDirectory : C:\WINDOWS\system32
Organization : MyCompany
BuildNumber : 3790
RegisteredUser : MyCompany
SerialNumber : 69713-640-3403486-45904
Version : 5.2.3790

Examining Vegas02

SystemDirectory : C:\WINDOWS\system32
Organization : MyCompany.com
BuildNumber : 3790
RegisteredUser :
SerialNumber : 69723-540-7598465-549822
Version : 5.2.3790

Examining XPLAP01

SystemDirectory : C:\WINDOWS\system32
Organization : MyCo
BuildNumber : 2600
RegisteredUser : Admin
SerialNumber : 55274-640-1714466-23528
Version : 5.1.2600
PS C:\>

Using ForEach, we enumerate each element of the array and execute two cmdlets. Write-Host is called
to display a message about what PowerShell is doing. Then we call the Get-WmiObject cmdlet to
return operating system information from the specified server using WMI.

178

Windows PowerShell: TFM • 2nd Edition

$OFS
PowerShell has a special variable called $OFS which defines the Output Field Separator. By default this
is a space. When you convert an array into a string, be default you will get something like this:

PS C:\ > $a="Jeff","Don","Chris","Alex"
PS C:\ > [string]$a
Jeff Don Chris Alex

However, what if you preferred to separate the values with a comma?

PS C:\ > $ofs=","
PS C:\ > [string]$a
Jeff,Don,Chris,Alex

Here’s another way you might use this:

Function Get-LargeProcessList {
$ps=Get-Process | Where {$_.workingset -ge 50000000}

$ofs=","
$results=@()

foreach ($p in $ps) {$results+=$p.name + " (" +$p.id +")"}

return [string]$results

}

This function creates a variable of all processes where the workingset is greater or equal to 5000000
bytes:

$ps=Get-Process | Where {$_.workingset -ge 50000000}

The function defines a new Output Field Separator:

$ofs=","

It also defines an empty array object we’ll use a bit later:

$results=@()

The function then goes through each item in the process collection and populates the $results array with
the name and process id:

foreach ($p in $ps) {$results+=$p.name + " (" +$p.id +")"}

Finally, the function returns a string version of the results array:

return [string]$results

The end result is something like this:

Variables, Arrays, and Escape Characters

179

audiodg (1420),avgrssvc (1236),csrss (816),dwm (3720),explorer (3856),firefox
(13480),GROOVE (4248),msnmsgr (3300),OUTOOK (7936),POWERPNT (12284),powershell
(29160),PrimalScript (30332),procexp (1136),SearchIndexer (2708),sidebar (1588)
spoolsv (1996),sqlservr (2204),svchost (1148),svchost (1216),svchost (1252),svchost
(1296),svchost (1604),svchost (172),svchost (2028),TabTip (3476),WINWORD (12204),
WmiPrvSE (19612)

Associative Arrays
Associative arrays are special types of arrays. Think of them as a way of relating, or associating one piece
of data with another piece of data. For example, they’re useful for performing certain types of data
lookup that we’ll see in this chapter. You may also see associative arrays referred to as dictionaries or hash
tables.

An associative array is a data structure that stores multiple key-value pairs:

Key Value
Don Blue
Chris Pink
Jeffery Blue

The key is usually some piece of well-known or easily obtained information, while the value is the data
you want to look up. Keys are unique in the array, while values can be repeated as necessary. In our table
example, the associative array keys are a person’s name, while each corresponding value is the person’s
favorite color. Notice that the key names are unique while data values can be duplicated.

PowerShell uses the hash table data type to store the contents of an associative array because that data
type provides fast performance when looking up data. What’s really neat about associative arrays is that
the individual values can be of different types. In other words, one key might be connected to a string,
while another is connected to an XML document. This lets you store any kind of arbitrary data you want
in an array.

Creating an Associative Array
The @ operator is used to create an associative array as follows:

$aa = @{"Don"="Blue"; "Chris"="Pink"; "Jeffery"="Blue"}

This creates an associative array with three keys and three values, exactly as shown in the previous table.
Of course, the values don’t have to be simple strings. They can be numbers, the output from a cmdlet, or
even other associative arrays. We’ll take a closer look at this later in the chapter.

By the way, the @ operator can also be used to create a normal array:

PS C:\> $a = @(1,2,3,4,5)
PS C:\> $a
1
2
3
4
5

The difference is that only values were given to the @ operator; we didn’t give it key=value pairs, so it
created a normal one-dimensional array for us.

180

Windows PowerShell: TFM • 2nd Edition

Want to just create an empty hash table so that you can use a script or other process to add data to it?

PS C:\> $ht = new-object System.Collections.Hashtable

Using an Associative Array
You can display the entire contents of an associative array by calling its name:

PS C:\> $aa = @{"Don"="Blue"; "Chris"="Pink"; "Jeffery"="Blue"}
PS C:\> $aa

Name Value
---- -----
Jeffery Blue
Chris Pink
Don Blue

PS C:\>

However, normally you’d want to access a single element:

PS C:\> $aa."Don"
Blue
PS C:\>

Type the associative array variable name, a period, and then the key you want to retrieve. PowerShell
will respond by displaying the associated value. Note that keys and values, if the values are strings, can
be contained in single or double quotes just like any other string. Keys are always expected to be strings,
and so usually need to be enclosed in quotes.

However, the quotes can be omitted if the key doesn’t contain any spaces, periods, or other word-break-
ing characters:

PS C:\> $aa.Don
Blue
PS C:\>

To check and see what data type a particular key’s value is:

PS C:\> $aa.Don.GetType()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

A single value within an associative array can actually be another associative array:

PS C:\> $aa2 = @{Key1="Value1"; Colors=$aa}
PS C:\> $aa2.Colors

Name Value
---- -----
Jeffery Blue

Variables, Arrays, and Escape Characters

181

Chris Pink
Don Blue

PS C:\> $aa2.Colors.Don
Blue
PS C:\>

In this example, a new associative array is named $aa2. It has two keys: 1) Key1, which has a value
of “Value1”; and 2) Colors, which is assigned the associative array $aa we used earlier as its value.
Displaying $aa2.Colors displays the entire $aa associative array, while $aa2.Colors.Don accesses a
single key within the $aa associative array.

Let’s take a look at a more practical example. First, we’ll demonstrate that an associative array can con-
tain just about any type of value:

PS C:\> $systems=@{"XPLAP01"=Get-WmiObject -class win32_computersystem}

PS C:\> $systems

Name Value
---- -----
XPLAP01 \\XPLAP01\root\cimv2:Win32_ComputerSy

PS C:\> $systems.XPLAP01

Domain : myit.local
Manufacturer : Dell Computer Corporation
Model : Latitude D800
Name : XPLAP01
PrimaryOwnerName : Admin
TotalPhysicalMemory : 1609805824

Here we’ve created an associative array called $systems with a single element. The key is XPLAP01 and
the data value is a WMI object representing an instance of the Win32_Computersystem class. Invoking
just the array name displays the contents, which in this case is a single computer. If we want to see the
value of the XPLAP01 key we use $systems.XPLAP01.

If the key name has a space you will have to use:

PS C:\> $myArray.'Test User'

Alternatively, you can use:

PS C:\> $myArray.['Test User']

If we know the name of a specific WMI object attribute, we can return its value with a command like
this:

PS C:\> $systems.xplap01.totalphysicalmemory
1609805824
PS C:\>

This works because the value associated with key XPLAP01 is a WMI object. Therefore, we can use

182

Windows PowerShell: TFM • 2nd Edition

dotted notation to display a specific property value.

Let’s add a second system to the array:

PS C:\> $systems.DC01=Get-WmiObject -class "win32_computersystem"
–computername "MYIT-DC01"

We can easily define a new key and value by setting the value for the new key using dotted notation. If
you were to run $systems.count, it would return a value of 2. How did we know about the Count prop-
erty? We asked. Pipe an associative array to Get-Member to get a complete list of an associative array’s
methods and properties.

Now that we have more than one item in the array, we can use the Keys and Values properties to get
more than one key or value:

PS C:\> $systems.keys
DC01
XPLAP01
PS C:\> $systems.values

Domain : myit.local
Manufacturer : MICRO-STAR INTERNATIONAL CO., LTD
Model : KM400-8235
Name : DC01
PrimaryOwnerName : ADMIN
TotalPhysicalMemory : 1073168384

Domain : myit.local
Manufacturer : Dell Computer Corporation
Model : Latitude D800
Name : XPLAP01
PrimaryOwnerName : Admin
TotalPhysicalMemory : 1609805824
PS C:\>

Suppose we read a text list of computers and build the associative array. As we’ve shown, with this type
of array, you can get the associated data by specifying the key.

However, if we want to enumerate the array and display only the computer’s model as part of a hardware
inventory, we would use code like this:

PS C:\> $keys=$systems.Get_Keys()

This code stores the keys in a yet another array called $keys. Technically, $keys is a collection that is basi-
cally a list. We can now use the ForEach cmdlet to iterate through the associative array:

PS C:\> foreach ($key in $keys) {write-host $key $systems.$key.Model}
DC01 KM400-8235
XPLAP01 Latitude D800
PS C:\>

There’s a lot going on in this single command, so let’s take it apart. We start with the basic ForEach
cmdlet that says for each item in the $keys collection, set it to the $key variable. As we loop through,
$key becomes DC01 and XPLAP01 and so on, assuming we had a larger array. Then for each pass,
ForEach runs the code in the curly braces. The brace code calls the Write-Host cmdlet that displays the

Variables, Arrays, and Escape Characters

183

value of $key and the model property from the WMI object value of the corresponding key in $systems.

That last part can get a little confusing. Remember, the first time through the value of $key is DC01. So,
$systems.$key.model is the equivalent of typing $systems.dc01.model. As we discussed earlier, $systems.
dc01 returns the corresponding value that is a WMI Win32_Computersystem object. Since this is an
object, we can get the model property value merely by asking for it. This process is repeated for every
item in $keys.

In the traditional text-based shell, this type of coding would be complicated and involve a lot of string
parsing and manipulation. However, because PowerShell works with objects, even if they are in arrays,
we can manipulate the object and let PowerShell display the final results in just about whatever text for-
mat we want.

Programmatically Modifying and Enumerating an Associative Array
Even though we haven’t covered scripting, yet, we’re going to use a script for a quick example—you can
always refer back to this later, if you need it. What we want to do is create a new, blank associative array.
Next, we want to retrieve a list of local logical disks and add each drive letter as a key to the array, and
then add each drive’s free space to the array. Finally, we then want to enumerate through the array and
display all of that information. Here’s the script:

$ht = New-Object system.Collections.Hashtable

add drives to array
$drives = gwmi -query "SELECT * FROM Win32_LogicalDisk WHERE DriveType = 3"
foreach ($drive in $drives) {
 $ht.add($drive.deviceid, $drive.freespace)
}

enumerate through array
foreach ($key in $ht.keys) {
 Write-Host "$key has..."$ht.item($key) "bytes free"
}

We started by creating a new, blank associative array, or hash table. We execute a WMI query (see the
chapter “Using WMI in Windows PowerShell” for more information on that) to get a list of local drives
(the DriveType restriction in our query eliminates network drives, removable drives, and optical drives).
Then, we used the array’s Add() method to add new elements, simply specifying the key and value as the
method’s arguments. To enumerate through the array, we chose to enumerate through its Keys collec-
tion. Each key is a single drive letter; we use the Item property, specifying the key we’re interested in, to
retrieve that key’s value.

Removing a single key works similarly. For example, if we wanted to remove the C: drive from our array,
we’d do this:

$ht.Remove("C:")

We just specify the key we want removed. The Contains() method tells us whether the array contains a
particular key. For example, if we hadn’t removed our C: drive, we could do this:

PS C:\> $ht.contains("C:")
True

Finally, the Clear() method completely empties the array so that we can start over.

184

Windows PowerShell: TFM • 2nd Edition

Escape Characters
In PowerShell, if you aren’t executing a cmdlet, script, or executable, then you are displaying an expres-
sion. Remember from the “PowerShell Command-Line Parsing” chapter that PowerShell parses what
you type in either command mode or expression mode. Numbers are treated as numbers and strings should
be places in quotes. When you enter a string in quotes, PowerShell echoes it back to you:

PS C:\> "Hello, Reader"
Hello, Reader

If you don’t use quotes, PowerShell assumes you are trying to execute something, so it generates an error:

PS C:\> Hello,Reader
'Hello' is not recognized as a Cmdlet, function, operable program, or
script file.
At line:1 char:6
+ Hello, <<<< Reader

You can also use Write-Host to echo what you’ve typed back to the console. See if you can spot the
subtle differences in these two expressions:

PS C:\> write-host "Hello, Reader"
Hello, Reader
PS C:\> write-host Hello, Reader
Hello Reader
PS C:\>

In the first expression, the phrase “Hello, Reader” is written to the console screen exactly as you typed it
into the expression. In the second expression, PowerShell is smart enough to figure out that Hello and
Reader are both strings. However, it only writes back the two strings. Notice what’s missing. PowerShell
thinks the comma is a separator, so it writes back the two strings, which at first glance looks like the first
expression. We think you’ll be better served, though, if you use quotes for strings that you want to dis-
play. It will make it easier to separate text you have specified versus cmdlet results or expressions.

Occasionally you may want to display a literal value in a string such as the quotes. To accomplish this,
you need to insert a special escape character, the backward apostrophe, before the quote characters so
they are treated as literal values. The backward apostrophe is technically known as the grace accent but
often referred to as a back tick.

PS C:\> write-host '"Hello', Reader'"
"Hello, Reader"

In this example, we also escaped the comma since that’s part of the string expression and not a
PowerShell character. You are more likely to use this technique with folder paths. If you try to run this:

PS C:\ > get-childitem program files

You’ll get an error. Now, you could enclose the folder name in quotes, “program files”, or you can use the
escape character:

PS C:\ > get-childitem program` files

Which method you use is up to you. If you need something special, such as a beep or a tab, simply use

Variables, Arrays, and Escape Characters

185

one of PowerShell’s escape characters shown in this table:

Escape Characters

Sequence Result
`0 (null)
`a (alert)
`b (backspace)
`f (form feed)
`n (new line)
`r (carriage return)
`t (tab)
`v (vertical quote)

To see how this works, open a PowerShell window and run the following command:

PS C:\> Write-Host `a

Depending on your computer’s configuration, a beep should be emitted.

Objects

187

Chapter 15
Objects

An object is essentially a black box that has been designed by a developer to fill a certain need. The
Microsoft Windows operating system contains hundreds of objects. From an administrative scripting or
automation perspective, many of these objects can be exploited through scripting.

We’ve stressed many times that PowerShell is an object-oriented shell based on .NET. This means you
will manipulate objects in the shell and in PowerShell scripts.

Properties
All objects have properties. Some objects have more properties than other objects. The properties
depend on the object. Consider an automobile as an object. For many people, an automobile is essen-
tially a “black box.” Many people don’t fully understand how it works, but they do know how to use it.
An automobile “object” may have properties such as model, color, horsepower, and maximum speed.
These properties will have values such as Ferrari, red, 450, and 180.

Object properties that can be changed are called read-write properties. In the automobile example, the
color property might be read-write because you can change the color of the car by painting it. Other
properties that can’t be changed by the user are considered read-only properties. In the automobile object
example, horsepower and maximum speed are read-only properties because they can’t be changed by the
user.

Methods
An object’s methods are actions that the object can take. Depending on the object, some methods are
executed from the object, while other methods are executed on the object, usually to make a change to

188

Windows PowerShell: TFM • 2nd Edition

the object.

Continuing with the automobile object, it may have an Accelerate method that makes it do something.
Or it may have a ChangeTire method that makes a change to the object itself. Some methods can take
parameters to fine tune what the method will do. For example, the automobile’s accelerate method may
require two parameters: 1) a start speed; and 2) end speed.

Generally, an object’s methods and properties are specified using a dotted notation. Let’s say we created
a car object called objMyCar. We could set some properties using the dotted notation:

objMyCar.color=”blue”

objMyCar.horsepower=300

objMyCar.MaxSpeed=120

Calling a method can be as simple as:

objMyCar.Accelerate(0,60)

This pseudo-command calls the Accelerate method of the car object with a start speed parameter of 0
and an end speed parameter of 60.

That’s all fine with a metaphorical object, but you are probably wondering how this applies to things
you care about, like WMI or file system objects. So, let’s begin by discussing how you find out about the
properties and methods of objects. One way is to review the online documentation from Web sites such
as MSDN or by using solid reference books.

With the addition of .NET, PowerShell reflection can make this even easier. Now you can use the
Get-Member cmdlet to ask the object what it can do and how it can be configured. Once you have a
reference to an object, pass it to Get-Member through a pipeline:

PS C:\> $host |get-member

 TypeName: System.Management.Automation.Internal.Host.InternalHost

Name MemberType Definition
---- ---------- ----------
EnterNestedPrompt Method System.Void EnterNestedPrompt()
Equals Method System.Boolean Equals(Object obj)
ExitNestedPrompt Method System.Void ExitNestedPrompt()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
get_CurrentCulture Method System.Globalization.CultureInfo get
get_CurrentUICulture Method System.Globalization.CultureInfo get
get_InstanceId Method System.Guid get_InstanceId()
get_Name Method System.String get_Name()
get_PrivateData Method System.Management.Automation.PSObjec
get_UI Method System.Management.Automation.Host.PS
get_Version Method System.Version get_Version()
NotifyBeginApplication Method System.Void NotifyBeginApplication()
NotifyEndApplication Method System.Void NotifyEndApplication()
SetShouldExit Method System.Void SetShouldExit(Int32 exit
ToString Method System.String ToString()
CurrentCulture Property System.Globalization.CultureInfo Cur
CurrentUICulture Property System.Globalization.CultureInfo Cur
InstanceId Property System.Guid InstanceId {get;}
Name Property System.String Name {get;}
PrivateData Property System.Management.Automation.PSObjec
UI Property System.Management.Automation.Host.PS

Objects

189

Version Property System.Version Version {get;}

PS C:\>

If you only want to see an object’s properties, you can use Get-Member -membertype properties. You
still may need to refer to documentation to fully understand what all the output means. However, at
least you have an idea of what you’re looking for when you read the documentation.

With a little clever coding, you can even see what the values are for a given property. This can often help
when learning about a particular object:

PS C:\> $props=$host|get-member -membertype properties
PS C:\> foreach ($p in $props) {
>> Write-host "Property:" $p.name
>> $host.($p.name)
>> }
>>
Property: CurrentCulture

LCID Name DisplayName
---- ---- -----------
1033 en-US English (United States)
Property: CurrentUICulture
1033 en-US English (United States)
Property: InstanceId

Property: Name
ConsoleHost
Property: PrivateData

ErrorForegroundColor : Red
ErrorBackgroundColor : Black
WarningForegroundColor : Yellow
WarningBackgroundColor : Black
DebugForegroundColor : Yellow
DebugBackgroundColor : Black
VerboseForegroundColor : Yellow
VerboseBackgroundColor : Black
ProgressForegroundColor : Yellow
ProgressBackgroundColor : DarkCyan

Property: UI

RawUI : System.Management.Automation.Internal.Host.InternalHostRawUse

Property: Version

Major : 1
Minor : 0
Build : 0
Revision : 0
MajorRevision : 0
MinorRevision : 0

PS C:\>

In this example, we create a variable called $props that contains all the properties of the $host object.
Next we use ForEach to enumerate $props, displaying the name of each property $p.name, and then
displaying the value of each property with $host.($p.name). Putting $p.name in parentheses lets us cre-
ate the equivalent of $host.version or $host.name.

190

Windows PowerShell: TFM • 2nd Edition

Variables as Objects
Earlier we mentioned that PowerShell variables are actually objects. In .NET, string variables are
extremely robust and have a number of methods and properties. Take, for example, Split(), which is a
method that takes a string and creates an array (or list) by breaking the list on some character such as
comma or a space. Try this in PowerShell:

PS C\:> "1,2,3,4".Split(",")

This tells PowerShell to “take this string, and execute its Split() method. Use a comma for the method’s
input argument.” When PowerShell executes this commend, the method returns an array of four ele-
ments, each element containing a number. PowerShell displays the array it in a textual fashion, with one
array element per line:

1
2
3
4

There are other ways to use this. For example, PowerShell has a cmdlet called Get-Member that dis-
plays the methods and variables associated with a given object instance. Taking a string like “Hello,
World”, which is a String object, and piping it to the Get-Member cmdlet, displays information about
that String object:

PS C:\> "Hello, World" | get-member

 TypeName: System.String
Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method System.Int32 CompareTo(Object v
Contains Method System.Boolean Contains(String
CopyTo Method System.Void CopyTo(Int32 source
EndsWith Method System.Boolean EndsWith(String
Equals Method System.Boolean Equals(Object ob
IndexOf Method System.Int32 IndexOf(Char value
IndexOfAny Method System.Int32 IndexOfAny(Char[]
Insert Method System.String Insert(Int32 star
LastIndexOf Method System.Int32 LastIndexOf(Char v
LastIndexOfAny Method System.Int32 LastIndexOfAny
PadLeft Method System.String PadLeft(Int32 tot
PadRight Method System.String PadRight(Int32 to
Remove Method System.String Remove(Int32 star
Replace Method System.String Replace(Char oldC
Split Method System.String[] Split(Params Ch
StartsWith Method System.Boolean StartsWith(Strin
Substring Method System.String Substring(Int32 s
ToCharArray Method System.Char[] TSystem.Char[] To
ToLower Method System.String ToLower(), Syste
ToString Method System.String ToString(), Syste
ToUpper Method System.String ToUpper(), System
Trim Method System.String Trim(Params Char[
TrimEnd Method System.String TrimEnd(Params Ch
TrimStart Method System.String TrimStart(Params
Chars ParameterizedProperty System.Char Chars(Int32 inde
Length Property System.Int32 Length {get;}

Objects

191

Even though this output is truncated a bit to fit in this book, you can see that it includes every method
and property of the String. It also correctly identifies “Hello, World” as a “System.String” type, which is
the unique type name that describes what we informally call a String object. You can pipe nearly anything
to Get-Member to learn more about that particular object and its capabilities.

One of the most frequently used object variables is the $_ variable. We’ve used it repeatedly in our
examples. $_ is an automatic variable that stands for the current object. Here’s an example:

PS C:\> get-process | where {$_.workingset -gt 10000*1024}

Handles NPM(K) PM(K) WS(K) VS(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 604 14 23856 37308 112 32.26 2236 explorer
 114 5 6540 12380 52 3.12 2444 i_view32
 617 10 56252 52784 172 7.02 632 PS
 246 5 8672 12300 45 3.02 1512 MsMpEng
 201 12 11528 19400 71 1.24 3452 Skype
 198 6 26016 12816 1584 1.07 544 sqlservr
 1416 49 17768 26312 131 5.25 1556 svchost
 405 14 37140 58236 287 111.07 3900 WINWORD

This pipes the output of Get-Process to the Where cmdlet and only displays those processes where
the workingset property of the current object ($_) is greater than 10240000. We use dotted notation to
define the object and property: $_.workingset.

How Did We Know That?
The output of the Get-Process cmdlet is a System.Diagnostic.Process object. One of this object’s
properties is workingset. You can find the properties yourself by running:

PS C:\> get-process | get-member -membertype property

Let’s go back and look at the array of service objects we created earlier in this chapter. We used the fol-
lowing expression to create the object:

PS C:\> $svc=get-service | where {$_.status -eq "running"}

Since we know the array contains service objects, it might help to know more about these objects. Let’s
look at the first element of the array:

PS C:\> $svc[0]

Status Name DisplayName
------ ---- -----------
Running AudioSrv Windows Audio

We know the first running service in the array is Windows Audio. We’re going to learn about this object
using this service as an example, even if we’re not interested in that specific service. We’ll pass the first
element of the array to Get-Member and display the object’s properties.

PS C:\> $svc[0] |get-member -membertype properties

192

Windows PowerShell: TFM • 2nd Edition

 TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition
---- ---------- ----------
Name AliasProperty Name = ServiceName
CanPauseAndContinue Property System.Boolean CanPauseAndCont
CanShutdown Property System.Boolean CanShutdown {ge
CanStop Property System.Boolean CanStop {get;}
Container Property System.ComponentModel.IContain
DependentServices Property System.ServiceProcess.ServiceC
DisplayName Property System.String DisplayName {get
MachineName Property System.String MachineName {get
ServiceHandle Property System.Runtime.InteropServices
ServiceName Property System.String ServiceName {get
ServicesDependedOn Property System.ServiceProcess.ServiceC
ServiceType Property System.ServiceProcess.ServiceT
Site Property System.ComponentModel.ISite Si
Status Property System.ServiceProcess.ServiceC

Not every property is necessarily populated, nor is it of interest. However, we want to show you where
this information comes from and how it is connected to the object.

The easier way to learn property names is by sending the output of the array element to Format-List:

PS C:\> $svc[0] |format-list

Name : AudioSrv
DisplayName : Windows Audio
Status : Running
DependentServices : {}
ServicesDependedOn : {RpcSs, PlugPlay}
CanPauseAndContinue : False
CanShutdown : False
CanStop : True
ServiceType : Win32ShareProcess

As you can see, everything in PowerShell is an object, with properties and methods that you can use
directly—you don’t necessarily need a cmdlet to do everything, since many objects have their own
built-in capabilities that you can call upon. If an object is stored in a variable, then the variable represents
that object and has the same properties and methods as the object itself.

Operators

193

Chapter 16
Operators

As with any shell or scripting language, you need a set of operators to do stuff. You need to be able to
compare objects, perform arithmetic operations, perform logical operations, and more.

Assignment Operators
PowerShell uses assignment operators to set values to variables. We’ve been using the equal sign, but
there are many other operators as well. The following table lists PowerShell assignment operators:

 PowerShell Assignment Operators

Operator Description
= Sets a value of a variable to the specified value
+= Increases the value of a variable by the specified value or appends to the existing value
-= Decreases the value of a variable by the specified value
*= Multiplies the value of a variable by the specified value or appends to the existing value
/= Divides the value of a variable by the specified value
%= Divides the value of a variable by the specified value and assigns the remainder (modulus) to

the variable

In addition to the traditional uses of =, in PowerShell this operator has a few extra bells and whistles
that might be of interest to you. First, when you assign a hexadecimal value to a variable, it is stored as
its decimal equivalent:

194

Windows PowerShell: TFM • 2nd Edition

PS C:\> $var=0x10
PS C:\> $var
16
PS C:\>

You can also use a type of shorthand to assign a variable a multiple byte value. By using kb, mb, and
gb, which are known as numeric constants, you store actual kilobyte, megabyte, and gigabyte values
respectively:

PS C:\> $var=10KB
PS C:\> $var
10240
PS C:\> $var=2MB
PS C:\> $var
2097152
PS C:\> $var=.75GB
PS C:\> $var
805306368
PS C:\>

In the first example, we set $var to 10KB or 10 kilobytes. Displaying the contents of $var shows the
actual byte value of 10 kilobytes. We repeat the process by setting $var to 2 megabytes and then .75
gigabytes. In each example, we display the value of $var. By the way, there is no numeric constant for
anything greater than a gigabyte.

The += operator increases the value of a given variable by a specified amount:

PS C:\> $var=7
PS C:\> $var
7
PS C:\> $var+=3
PS C:\> $var
10
PS C:\>

The variable $var begins with a value of 7. We then use += to increment it by 3, which changes the value
of $var to 10.

The -= operator decreases the value of a given variable by a specified amount. Let’s continue with the
previous example:

PS C:\> $var-=3
PS C:\> $var
7
PS C:\>

$var starts out with a value of 10. Using the -= operator, we decrease its value by 3, which returns us to 7.

What if we want to multiply a variable value by a specific number? This calls for the *= operator. Let’s
continue with the same $var that currently has a value of 7:

PS C:\> $var*=3
PS C:\> $var
21
PS C:\>

Operators

195

We can also divide by use the /= operator:

PS C:\> $var/=7
PS C:\> $var
3
PS C:\>

Finally, we can use %= to divide the variable value by the assigned value and return the modulus or
remainder:

PS C:\> $var=9
PS C:\> $var%=4
PS C:\> $var
1
PS C:\>

In this example, we start with a $var value of 9. Using the modulus assignment operator with a value of
4 means we’re diving 9 into 4. The remainder value is then assigned to $var, which in this example is 1.

You need to be careful with assignment operators and variable values. Remember PowerShell does a
pretty good job at deciding if what you typed is a number or a string. If you put something in quotes,
PowerShell treats it as a string. If you’re not careful, you can get some odd results:

PS C:\> $var="3"
PS C:\> $var+=7
PS C:\> $var
37
PS C:\>

In this example, we think we set $var to 3 and increased it by 7 using the += operator. However, “3” is a
string, so the += operator simply concatenates instead of adds, which is why we end up with a $var value
of 37. If you are ever unsure about what type of object you’re working with, you can use the GetType()
method:

PS C:\> $var.gettype()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object

PS C:\>

One final comment on assignment operators: It is possible to assign values to multiple variables with a
single statement:

PS C:\> $varA,$varB,$varC="Apple",3.1416,"Windows"
PS C:\> get-variable var?

Name Value
---- -----
varC Windows
varB 3.1416
varA Apple

196

Windows PowerShell: TFM • 2nd Edition

PS C:\>

The assigned values are set to their respective variables. If you have more values than variables, then the
extra values are assigned to the last variable:

PS C:\> $varA,$varB,$varC="Apple",3.1416,"Windows","Linux"
PS C:\> get-variable var?

Name Value
---- -----
varC {Windows, Linux}
varB 3.1416
varA Apple

PS C:\>

Our recommendation is to be careful with this type of statement because you can end up with uninten-
tional variable values. PowerShell will wait, so set and modify variables one at a time.

Arithmetic Operators
Arithmetic operators allow you to perform mathematical calculations with numeric values from vari-
ables or parameters. With these operators, you can add, subtract, multiply, and divide. You can then pass
the result as a parameter to another process or cmdlet. The following table lists these operators.

PowerShell Arithmetic Operators

Operator Description Example
+ Adds two values together. PS C:\> 5+4

9

- Subtracts one value from another. PS C:\> 134-90
44

- Changes a value to a negative number. PS C:\>-6
-6

* Multiplies two values together. PS C:\> 3*4.5
13.5

/ Divides one value by another. PS C:\> 6/4
1.5

% Returns the remainder from a division. This is also known as
the modulus.

PS C:\Temp> 6%4
2

As you see from the examples in the table, results are not limited to integer values. In fact, you can
obtain some pretty detailed results:

PS C:\> 3.1416*3
9.4248
PS C:\> 3.1416/12345
0.000254483596597813
PS C:\>

Operators

197

Extra Credit
In PowerShell, you also have access to the .NET Framework Math class. If you need more
sophisticated mathematical operations such as square root or raising a number to a power, those
methods can be invoked like this:

PS C:\> [system.math]::pow(2,16)
65536
PS C:\> [system.math]::sqrt(5)
2.23606797749979

See http://msdn2.microsoft.com/en-us/library/xaz41263.aspx for a full list of available methods for
the Math class.

Precedence
As you probably learned in elementary school, there is an order for evaluating arithmetic operators.
Suppose you have an expression like 5+1/2*3. Would you be surprised that the answer is 6.5? Take a
moment and look at the order of precedence:

- (for a negative number)•

*, /, %•

+, - (for subtraction)•

Expressions are evaluated left to right following the order above. So, when 5+1/2*3 is evaluated, 1
divided by 2 is first, which gives us .5. This value is then multiplied by 3, which equals 1.5. Next, 1.5 is
added to 5 for a result of 6.5.

We use parentheses to override the precedence. In this case, (5+1)/(2*3) will equal 1. Parenthetical ele-
ments are evaluated first, and then the rest of the expression is evaluated. In the new example, 5+1=6
and 2*3=6, then 6 divided by 6 equals 1.

Variables
Using arithmetic operators with variables is no different from using numbers, as long as the variable
contains a number:

PS C:\> $var1="Windows"
PS C:\> $var2=100
PS C:\> $var1+var2
You must provide a value expression on the right-hand side of the '+' operator.
At line:1 char:7
+ $var1+v <<<< ar2
PS C:\>

In this example, we set two variables, but one of them is a string. When we try to use the + operator,
PowerShell throws an error. Here is a valid example:

PS C:\> $var1=5
PS C:\> $var2=1
PS C:\> $var3=2
PS C:\> $var4=3
PS C:\> ($var1+$var2)/($var3*$var4)

198

Windows PowerShell: TFM • 2nd Edition

1
PS C:\>

This is essentially the same example we used earlier, except that we substituted variables. Here’s a more
practical example:

PS C:\> $proc=Get-process
PS C:\> $total=0
PS C:\> foreach ($p in $proc) {$total+=$p.workingset}
PS C:\> $total
584568832
PS C:\>

This example gets the total number of bytes for all running processes allocated to processes working
set. First we send the output of Get-Process to a variable and initialize the total variable to zero. We
then use a simple foreach loop and add the working set size of each process object to the running total.
Finally, we display the value of $total.

Since the value of $total is in bytes, we might want to display it in KB or MB:

PS C:\> $total/1KB
570868
PS C:\> $total/1MB
557.48828125
PS C:\>

Be careful when trying to mix numbers and text, such as when using Write-Host. This cmdlet will
expand variables but not perform any arithmetic operations:

PS C:\> write-host "Total working set size="$total/1KB "KB"
Total working set size= 584568832/1KB KB

PS C:\>

That’s not really what we’re after. By enclosing $total/1024 in parenthesis, the expression is evaluated
and written to the screen as expected:

PS C:\> write-host "Total working set size="($total/1KB) "KB"
Total working set size= 570868 KB
PS C:\> write-host "Total working set size="($total/1MB) "MB"
Total working set size= 557.48828125 MB
PS C:\>

Unary Operators
A subtype of the arithmetic operator is a unary operator, which is used to increment or decrement a
variable’s value. PowerShell uses ++ to increase a value by one and to decrease it:

PS C:\> $var=10
PS C:\> $var++
PS C:\> $var
11
PS C:\> $var--
PS C:\> $var

Operators

199

10
PS C:\>

$var starts with a value of 10. Using the ++ operator doesn’t appear to do anything, but it actually
increased the value of $var by 1. Using the - operator decreases the value by 1.

Logical Operators
PowerShell logical operators are used to test or validate an expression. Typically, the result of these oper-
ations is TRUE or FALSE. Here are the operators:

PowerShell Logical Operators

Operator Description Example
-and All expressions must evaluate as TRUE. (1 -eq 1) -and (2 -eq 2) returns TRUE
-or At least one expression must evaluate as TRUE. (1 -eq 1) -or (2 -eq 4) returns TRUE
-not Evaluates the inverse of one of the expressions. (1 -eq 1) -and -not (2 -gt 2) returns

TRUE
! The same as -not. (1 -eq 1) -and ! (2 -gt 2) returns TRUE

Logical operators should be used when you want to evaluate multiple conditions. While you can evalu-
ate several expressions, your scripts and code will be easier to debug or troubleshoot if you limit the
operation to two expressions:

PS C:\> $varA=5
PS C:\> $varB=5
PS C:\> if (($varA -eq $varB) -and ($varB -gt 20))
>>{
>>Write-Host "Both conditions are true."
>>}
>>else
>>{
>>Write-Host "One or both conditions are false."
>>}
>>
One or both conditions are false.
PS C:\>

Here’s the same example using -or:

PS C:\> if (($varA -eq $varB) -or ($varB -gt 20))
>> {
>> Write-Host "At least one condition is true."
>> }
>> else
>> {
>> Write-Host "Both conditions are false."
>> }
>>
At least one condition is true.
PS C:\>

We get a different result if we change $varA to 20:

200

Windows PowerShell: TFM • 2nd Edition

PS C:\> $varA=20
PS C:\> if (($varA -eq $varB) -or ($varB -gt 20))
>> {
>> Write-Host "At least one condition is true."
>> }
>> else
>> {
>> Write-Host "Both conditions are false."
>> }
>>
Both conditions are false.
PS C:\>

Bitwise Operators
If you find yourself needing binary or bitwise operations, PowerShell has the requisite operators as
shown:

PowerShell Bitwise Operators

Operator Definition
-band binary and
-bor binary or
-bnot binary not

The underlying binary math is beyond the scope of this book. However, here are some examples if you
need to perform a bitwise comparison:

PS C:\> 255 -band 255
255
PS C:\> 255 -band 150
150
PS C:\> 32 -bor 16
48
PS C:\>

In each case, the value that is returned from the comparison is the digital equivalent of the underlying
bitwise operation.

Special Operators
PowerShell has several special operators that are capable of specialized tasks that can’t be easily accom-
plished any other way.

Replace Operator
The -replace operator can be used to substitute characters in a string. The operator essentially uses pat-
tern matching to find a target string or character. If it is found, the substitution is made. The -replace
syntax is:

"String-to-search" -replace "Search-for","Replace-with"

You can search and replace a single character or part of a word:

Operators

201

PS C:\> "PowerShell" -replace "e","3"
Pow3rSh3ll
PS C:\> "PowerShell" -replace "shell","tool"
Powertool
PS C:\> "PowerShell" -replace "k","m"
PowerShell
PS C:\>

In the first example, all instances of the letter e are replaced with the number 3. In the second, the string
“shell” is replaced with “tool”. The last example shows that if no successful match is made, the string
remains untouched. You can use the -replace operator with variables, but be careful:

PS C:\> $var="PowerShell"
PS C:\> $var -replace "p","sh"
showerShell
PS C:\> $var
PowerShell
PS C:\>

The -replace operator doesn’t change the original variable—instead, it only displays the replaced result.
When we look at $var again, we see it hasn’t changed. If you want to change the variable value, you
should use something like this:

PS C:\> $var=$var -replace "p","sh"
PS C:\> $var
showerShell
PS C:\>

All we need to do is redefine $var by setting its value to the output of the
-replace operation. The operator can also make replacements within collections and arrays:

PS C:\> $var=@("aaa","bbb","abab","ccc")
PS C:\> $var
aaa
bbb
abab
ccc
PS C:\> $var=$var -replace "a","z"
PS C:\> $var
zzz
bbb
zbzb
ccc
PS C:\>

We start with a simple array, then redefine $var using the -replace operator to change all occurrences of
a to z.

There’s really no limit when using this operator. You can even use it to make changes to text files:

PS C:\> $var=get-content "boot.ini"
PS C:\> $var -replace "windows","WIN"
[boot loader]
timeout=15
default=multi(0)disk(0)rdisk(0)partition(2)\WIN
[operating systems]
multi(0)disk(0)rdisk(0)partition(2)\WIN="Microsoft WIN XP

202

Windows PowerShell: TFM • 2nd Edition

Professional" /fastdetect /NoExecute=OptIn
multi(0)disk(0)rdisk(0)partition(1)\WIN="WIN Server 2003, Enterprise"
/noexecute=optout /fastdetect
C:\CMDCONS\BOOTSECT.DAT="Microsoft WIN Recovery Console" /cmdcons
PS C:\>

Here we dumped the contents of our boot.ini file to $var and then replaced all instances of “Windows”
with “WIN”. Granted, this may not be the best production-oriented example, but it demonstrates the
point.

Keep in mind that the -replace operator is case-insensitive. However, if you want to use this operator to
make a case-sensitive search and replace, you can use the
-creplace operator. The next table lists the replace special operators.

PowerShell Replace Operators

Operator Definition Example
-replace Replace. “PowerShell” -replace “s”,”$”
-ireplace Case-insensitive replace. Essentially the same as

-replace.
“PowerShell” -replace “s”,”$”

-creplace Case-sensitive replace. “PowerShell” -creplace “p”,”t”

When using -creplace, the replacement is only made when a case-sensitive match is made:

PS C:\> "PowerShell" -creplace "p","t"
PowerShell
PS C:\> "PowerShell" -creplace "P","t"
towerShell
PS C:\>

In the first example, since no lower case “p” is found, no replacement is made. However, in the second
example a match is made, so the operator replaces “P” with “t”.

In the “Regular Expressions” chapter, we will discuss how you can also use regular expressions for
matching and replacing.

Type
If you’ve been following along, by now you surely know that PowerShell is an object-oriented shell. As
such, we may need to check if a variable is a particular type of object. PowerShell includes three type
operators, as shown:

PowerShell Type Operators

Operator Definition Example
-is Checks if object IS a specific type. $var -is [string]
-isnot Checks if object IS NOT a specific

type.
$var -isnot
[string]

-as Converts object to specified type. 3.1416 -as string

The operation result will be either TRUE or FALSE for -is and -isnot.

Operators

203

PS C:\> $now=get-date
PS C:\> $now -is [datetime]
True
PS C:\> 1024 -is [int]
True
PS C:\> "Microsoft" -isnot [string]
False
PS C:\>

In the first example, we create the variable $now from the output of the Get-Date cmdlet. Now we can
use -is to validate that it is DateTime object. We do the same thing by verifying that 1024 is an inte-
ger. Both operations return TRUE. In the last example, we checked to see if “Microsoft” is not a string.
Since it is a strong, the operation returns FALSE.

The -as operator converts the object to the specified type:

PS C:\> $var=get-date
PS C:\> $var.gettype()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True DateTime System.ValueType

PS C:\> if ($var -isnot [string]) {
>> $var=$var -as [string]
>> $var.gettype()
>> $var.PadLeft(25)
>> }
>>

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True String System.Object
 5/21/2006 7:53:02 PM
PS C:\>

In this example, we created a DateTime object. To do this, we called the GetType() method to show we
have nothing hidden up our sleeves. However, we want to call the Padleft method of the string object.
We check to see if $var is not a string. If so, then we use the -as operator to recreate $var as a string
object. Again, we call GetType() to show the successful change and finally the Padleft() method.

ToString
It is easier to convert an object to a string by using the ToString() method. Most objects have this
method. The end result is essentially the same as using the -as operator.

Range Operator (..)
The Range operator (..) is used to indicate a range of values. Keep in mind that you must specify the
beginning and end points of the range:

PS C:\> $var=@(1..5)
PS C:\> $var
1
2

204

Windows PowerShell: TFM • 2nd Edition

3
4
5
PS C:\>

Here, we created an array variable whose contents are 1 through 5 inclusive. The range operator only
works with integer values. If you try this with string characters, PowerShell will complain:

PS C:\> $var=@("a".."j")
Cannot convert value "a" to type "System.Int32". Error: "Input string
was not in a correct format."
At line:1 char:13
+ $var=@("a".." <<<< j")
PS C:\>

Call Operators (&)
Call operators are used when you want to execute a command. Sometimes PowerShell can’t tell if what
you typed is a command. To force PowerShell to execute a statement, use the ampersand (&) character.
For example, we might want to execute all PowerShell scripts in the current directory:

PS C:\> $all=get-childitem *.ps1
PS C:\> foreach ($s in $all) {&$s}
PS C:\> #each Powershell script executes

You can also use the call operator to create a variable that holds the results of a cmdlet:

PS C:\> $j=get-process | where {$_.workingset -gt 5000000}
PS C:\> &$j
PS C:\> #an array of all processes with a workingset size greater than 5000 is returned.

In this example, when we force $j to run the output is little unfriendly. We can get a nicer output from
$j using a command like this:

PS C:\> foreach ($item in $j) {$item.name}

In both of these examples, the variable we are creating is the output of the cmdlet we ran. In a signifi-
cant manner, this is slightly different than the following:

PS C:\> $j="get-process"
PS C:\> $j
get-process
PS C:\> &$j | where {$_.workingset -gt 5000000}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 209 6 3696 6768 56 25.65 416 avgcc
 873 21 34840 16820 161 1,282.25 1256 explorer
 1056 24 97188 116708 464 247.16 4972 firefox
 806 81 16636 21764 143 17.18 5264 Groove
 659 20 28224 5284 264 75.64 1488 iexplore
 234 10 10912 6116 68 17.09 1420 mmc
 251 5 9308 4920 47 251.73 1552 MsMpEng
 63 3 1696 5604 37 0.54 1372 notepad

Operators

205

 1772 69 112832 31536 712 200.94 2304 OUTLOOK
 553 11 49156 48388 163 7.16 532 powershell
 393 61 15164 9952 89 94.55 596 Skype
 559 12 16192 12808 97 5,118.91 1676 Smc
 298 13 14816 6464 88 177.96 576 StatBar
 1549 51 24640 15220 166 366.55 1596 svchost
 351 30 14612 551216 653 3,497.73 5412 vmware-vmx
 446 17 33656 53764 282 25.21 2600 WINWORD
 592 21 21564 15984 106 11.52 4636 wmplayer

PS C:\>

In this instance, we set $j to a string of a cmdlet name. When we use the call operator, the value of $j is
evaluated and executed. Notice that we added our workingset filter to the line where $j is executed. This
is because the $_ variable doesn’t exist until the cmdlet is run. All we’ve really done here is essentially
create another alias for the Get-Process cmdlet.

Don’t get too hung up on this operator. The only time you are likely to use it is when calling a
PowerShell command from outside of PowerShell:

C:\powershell &c:\scripts\showservices.ps1

This command is run from a Windows Cmd.exe prompt. Using the & operator tells PowerShell to
execute c:\scripts\showservices.ps1. This is one way you can integrate your PowerShell scripts into your
Windows Cmd.exe environment.

Format Operator (-f)
The PowerShell format operator (-f) let’s you format strings using the .NET string object format
method. The syntax is a little backwards compared to what we worked with so far:

PS C:\ > FormatString -f "string to format"

.NET formatting is a way of specifying the format of a particular object. For example, a DateTime
object could be formatted as a short date (5/22/2007) or a long date (Monday, May 22, 2007). You
can format a number as currency, number, or percent. To get the most out of this operator, you need to
become very familiar with .NET formatting, most of which is outside the scope of this book. However,
we’ll provide a few examples that you will find useful.

PS C:\ > $now=get-date
PS C:\> $now

Monday, May 22, 2007 1:10:59 PM
PS C:\> "{0:d}" -f $now
5/22/2007
PS C:\> "{0:D}" -f $now
Monday, May 22, 2007
PS C:\> "{0:t}" -f $now
1:10 PM
PS C:\> "{0:T}" -f $now
1:10:59 PM
PS C:\>

In this example, we created the variable $now that holds the current date and time. We can format

206

Windows PowerShell: TFM • 2nd Edition

this variable in a number of ways. First, we can use the format pattern {0:d} to display $now as a short
date. Alternatively, we can use {0:D} to format $now as a long date. This is another example where
PowerShell is case-sensitive. Using {0:t} or {0:T} will format for short or long time, respectively. Let’s
look at the examples of numeric formatting that are included below.

PS C:\> $var=12345.6789
PS C:\> "{0:N}" -f $var
12,345.68
PS C:\> "{0:N3}" -f $var
12,345.679
PS C:\> "{0:F}" -f $var
12345.68
PS C:\> "{0:F3}" -f $var
12345.679
PS C:\>

The numeric variable is being formatted in these examples. In the first example, the formatting patter
{0:N} formats the variable as a number with a thousands separator. The default for this formatter for
most English language systems is to specify two decimal places. This can be changed by using a preci-
sion modifier. In the second example, {0:N3} instructs PowerShell to format $var as a number to three
decimal places. Using the F formatting string tells PowerShell to format the number in a fixed format.
{0:F} is practically the same as {0:N}, except there is no thousands separator. We can also specify a preci-
sion modifier, such as {0:F3}, to control the number of decimals. Here’s a practical example:

PS C:\> $proc=get-process | where {$_.workingset -gt 5000000}
PS C:\> foreach ($p in $proc) {
>> $ws="{0:N4}" -f ($p.workingset/1MB)
>> write-host $p.name 't $ws "MB"
>> }
>> $n=get-date
>> $d="{0:T}" -f $n
>> write-host "run at" $d
>>
avgcc 6.8984 MB
avgemc 17.5781 MB
explorer 32.0117 MB
firefox 216.0430 MB
Groove 11.1250 MB
iexplore 76.4063 MB
MsMpEng 5.0898 MB
powershell 21.6094 MB
Skype 11.8594 MB
Smc 9.3828 MB
StatBar 6.7344 MB
svchost 30.1836 MB
THUNDE~1 49.9141 MB
WINWORD 54.8281 MB
wmplayer 17.7539 MB
wuauclt 19.0352 MB
run at 10:07:47 PM
PS C:\>

In this example, we looped through $proc and displayed the process name, set its workingset size in MB
to four decimal places, and end with a time stamp. You will find it easier to create new variables when
formatting. In the example below, we create $ws as the value of the working set size divided by 1MB
and formatted to four decimal places:

Operators

207

$ws="{0:N4}" -f ($p.workingset/1MB)

We perform a similar formatting task by setting $n to the current date and time, and then formatting $n
in a short time pattern:

$d="{0:T}" -f $n

So, exactly how does the formatting operator work? Or, more specifically, how do those .NET
Framework formatting strings work?

The examples we’ve used so far all look something like “{0:N4}”, which is composed of two distinct
parts: The argument number, and the formatting directive. Essentially, this example says, “take the argu-
ment in the first position, and format it according to the N4 style.” N4 means numeric, with 4 digits
after the decimal. The first position is numbered zero, which is where the zero comes from in the for-
matting string. Here’s another example:

PS C:\> $v1 = 1.23456
PS C:\> $v2 = 6.54321
PS C:\> "{0:N4} {1:N3}" -f $v1,$v2
1.2346 6.543

Here, we’ve created two variables, each with decimal values. This time, our formatting string is tak-
ing the first item and formatting it in the N4 style, and the second item is being numbered in the
N3 style—that is, numeric, with three digits after the decimal. After the -f operator, we’ve provided a
comma-separated list (technically, an array) with our two values. And, as you can see in the output, each
was formatted according to the strings: Position one (index number zero) has four decimal places, and
position two (index number one) has three.

So, if the first part of a formatting directive indicates which input value is to be formatted, and the sec-
ond indicates what type of formatting to use, then what types of formatting are available? Here’s a list:

Numeric Formats

C or c – Currency; C2 would include two digits after the decimal•

D or d – Decimal; D2 would indicate at least two digits, with zeros added to the beginning if •
necessary

E or e – Scientific notation; E2 indicates two digits after the decimal•

F or f – Fixed-point; F2 indicates two digits after the decimal•

G or g – Uses the most compact available method—either fixed-point or scientific notation•

N or n – Basic number; N2 indicates two digits after the decimal•

P or p – Percentage; P2 indicates two digits after the decimal•

R or r – Round-trip; only supported for [single] and [double] numbers•

X or x – Hexadecimal; H2 indicates a minimum of 2 digits in the output; the case (X or x) deter-•
mines the case of the output

Date and Time Formats

d – Short date•

D – Long date•

208

Windows PowerShell: TFM • 2nd Edition

f – Full date/time (short)•

F – Full date/time (long)•

g – General date/time (short)•

G – General date/time (long)•

M or m – Month-day pattern (MMMM dd)•

o – Round-trip day/time•

R or r – RFC1123 date (ddd, dd MMM yyyy HH:mm:ss GMT)•

s – Sortable (ISO 8601)•

t – Short time•

u – Universal sortable date/time (no timezone conversion)•

U – Universal sortable date/time (uses Coordinated Universal Time, or UTC)•

Y or y – Year-month pattern (yyyy MMMM)•

Note that the “round trip” formats are intended to produce output that can be successfully converted
back into its original non-string data type. In the case of a date, for example, it includes a time zone
indicator. Also note that these are just the standard formats; it’s possible to create custom formats, but
doing so generally requires specialized .NET Framework programming and is beyond the scope of
this book.

Online Help
Microsoft’s official documentation on .NET formatting is available at http://msdn2.microsoft.com/
en-us/library/26etazsy.aspx.

Comparison Operators
PowerShell has several types of comparison operators that you can use to evaluate expressions. These
operators are listed in the following table.

PowerShell Comparison Operators

Operator Description Algebraic Equivalent
-eq Equals A=B
-ne Not equal A<>B
-gt Greater than A>B
-ge Greater than or equal to A>=B
-lt Less than A<B
-le Less than or equal to A<=B

Operators

209

Note
These operators are all case-insensitive, meaning that “HELLO” is the same as “hello”, as far as
PowerShell is concerned. Case-sensitive operators are available: -ceq, -cne, -cgt, -cge,
-clt, and -cle all perform case-sensitive comparisons when you’re comparing strings.

You are probably familiar with most of these operators or at least their algebraic equivalent. In
PowerShell, these operators are used to evaluate an expression and return either TRUE or FALSE.

PS C:\> $varA=100
PS C:\> $varB=200
PS C:\> $varA -eq $varB
False
PS C:\> $varA -ne $varB
True
PS C:\> $varA -lt $varB
True
PS C:\>

After we define some variables, we compare them with a few of the comparison operators that return
either TRUE or FALSE.

These comparison operators work just fine for simple numeric comparisons. For string comparisons we
can use -like and -match. If your comparison needs are simple, the -like operator may be all you need:

PS C:\> "10.10.10.1" -like "10.10.10.*"
True
PS C:\> "10.10.10.25" -like "10.10.10.*"
True
PS C:\> "10.10.11.1" -like "10.10.10.*"
False
PS C:\>

Note
The -like and -match operators are also case-insensitive; -clike and -cmatch are their case-sensi-
tive counterparts.

In this example, we’re comparing an IP address (10.10.10.1) to a pattern that uses the wildcard character
(*). This comparison returns the Boolean value TRUE. The second comparison also matches, but the
third fails. The operator returns FALSE because the third octet no longer matches the pattern.

Depending on the logic of your script, you may want to check the inverse. In other words, you may want
to determine whether the address is not like the pattern. For an inverse type of comparison, use the
-notlike operator.

PS C:\> "10.10.11.1" -notlike "10.10.10.*"
True
PS C:\>

This is essentially the same comparison, except this operator returns TRUE because 10.10.11.1 is not
like 10.10.10.*.

210

Windows PowerShell: TFM • 2nd Edition

The asterisk is a multiple character wildcard that can be used if we need something more granular. For
example, we can use the “?” operator if we want to match any subnet of 10.10.10.x to 10.10.19.x.

PS C:\> "10.10.11.1" -like "10.10.1?.*"
True
PS C:\> "10.10.15.1" -like "10.10.1?.*"
True
PS C:\> "10.10.25.1" -like "10.10.1?.*"
False
PS C:\>

In this example, you can see the first two comparisons are TRUE, but the last one does not meet the
pattern so it returns FALSE.

Text Comparison only
Make sure you understand the IP address comparisons are merely looking at the IP address string.
We are not calculating or comparing network address with subnet masks or the like.

Let’s look at some text comparison examples.

PS C:\> "sapien" -like "SAPIEN"
True
PS C:\> "sapien" -like "sap*"
True
PS C:\> "sapien" -like "sap?"
False
PS C:\> "sapien" -like "sapie[a-p]"
True
PS C:\>

The first example is a pretty basic comparison that also demonstrates that the -like operator is not case-
sensitive. The second example uses the wildcard character, which means it will return TRUE for a string
like “sapien”. However, it will also return TRUE for “sapsucker” and “sapling”. The third example returns
FALSE because the “?” character means any single character after “sap”. The last example is a bit differ-
ent. We can use brackets to denote a range of characters with which to compare. In this case, the -like
operator will return TRUE for anything that starts with “sapie” and ends with any character between “a”
and “p”.

The -like operator limits your comparisons essentially to a few wildcards. If you need something that
will compare a pattern, then use the -match operator. This operator also returns TRUE if the string
matches the specified pattern.

At its simplest, -match returns TRUE if any part of the string matches the pattern:

PS C:\> $var="XPDesktop01"
PS C:\> $var -match "XP"
True
PS C:\> $var -match "desk"
True
PS C:\> $var -match "01"
True
PS C:\>

In this example, we set a variable to the value “XPDesktop01” and compared it with a variety of patterns

Operators

211

using -match. As you can see, they all return TRUE because pattern such as “desk” exist somewhere in
the string. However, sometimes we need to be more particular such as only returning TRUE if the name
starts with “XP”. In this case, we can use “^” to indicate we want to match the beginning characters:

PS C:\> $var -match "^XP"
True
PS C:\> $var -match "^Win2K"
False
PS C:\>

If we want to match something at the end of the string, then we use the $ character:

PS C:\> $var -match "01$"
True
PS C:\> $var -match "02$"
False
PS C:\>

In the first example, we get a positive match because $var, which is XPDesktop01, ends in 01. The sec-
ond attempt is FALSE because $var does not end in 02.

Other times, we may be looking for something in between such as a range of characters. In this case, we
can use brackets and match anything that falls within the range:

PS C:\> "hat" -match "h[aeiou]t"
True
PS C:\> "hit" -match "h[aeiou]t"
True
PS C:\> "hyt" -match "h[aeiou]t"
False
PS C:\>

In this example, “hat” and “hit” match the pattern because the middle character is included in the brack-
eted set. The last example fails to match because “y” is not in the set.

One final comment on -match is that the matching results are automatically stored in an array called
$matches:

PS C:\> "CHI-SRV-02" -match "^chi"
True
PS C:\> $matches

Name Value
---- -----
0 CHI
PS C:\> "NYD-SRV-03" -match "^NY[a-d]"
True
PS C:\> $matches

Name Value
---- -----
0 NYD
PS C:\>

In the first example, the match pattern is looking for a string that begins with “chi”. Since the string
includes “chi”, it returns TRUE. The $matches array is automatically populated with the matching text.

212

Windows PowerShell: TFM • 2nd Edition

In the second example, we’re looking for something that starts with NY and the third character can be a,
b, c, or d. The $matches array shows us that NYD matched.

The 0 element of the array always returns the matched string. However, it is also possible to group
results and save them as named groups:

PS C:\> "Computer system=XPDesk02" -match "^comp.*=(?<sysname>.*)"
True
PS C:\> $matches

Name Value
---- -----
sysname XPDesk02
0 Computer system=XPDesk02
PS C:\> $matches.sysname
XPDesk02
PS C:\>

In this example, we have a string, “Computer system=XPDesk02” that is being matched against a pat-
tern that will match up with “Computer system=”. To create a named group, we enclose the name of our
group in parentheses. In this case, sysname and a matching pattern (.*) will be enclosed in parentheses.
The syntax for defining the named group is ?<name>. If we have a match, then the $matches array will
not only have element 0, but also our named element sysname. Until we use -match again, this array
remains intact, and we can get the sysname property with dotted notation as we did with $matches.sys-
name in the example above.

Almost all of our examples have been fairly basic and theoretical. Here’s an example of how we might
use -match in a production setting:

PS C:\> $sys=Get-WmiObject -class "win32_computersystem"
PS C:\> $sys.name
XPDESK01
PS C:\> if ($sys.name -match "^xp") {
>> write-host "Running audit code"
>> #audit code can run here
>> }
>> else
>> {
>> write-host "Skipping system"
>> }
>>
Running audit code
PS C:\>

This code could be part of a larger script. Essentially, it sets the variable $sys to an instance of the
Win32_ComputerSystem WMI object. We’re displaying the object’s name property so you’ll under-
stand how the rest of the code works. Next we build an IF statement that says, “If the name property
starts with XP, then display a message and run something. Otherwise, just display a message that the
system is being skipped”. At this point, do not be concerned about understanding the IF statement
since it will be covered in the chapter “Loops and Decision-Making Constructs.” As you see, the name
matches so the appropriate message is displayed.

The -match operator is also used with regular expressions, which will be discussed in the “Regular
Expressions” chapter.

Regular Expressions

213

Chapter 17
Regular Expressions

How often have you tried searching through log files looking for a particular piece of information or
searching for all information that meets a certain format like an IP address? A regular expression is a
text pattern that is used to compare against a string of text. If the string of text matches the pattern,
then you’ve found what you’re looking for. For example, we know that an IP address has the format
xxx.xxx.xxx.xxx. We don’t know how many integers each octet has, only that there should be four sets
of three numbers that are separated by periods. Conceptually, xxx.xxx.xxx.xxx is our pattern, and if it’s
found in the string we are examining, a match is made. Regular expressions can be very complex and
confusing at first. We don’t have space in this chapter for an exhaustive review of this topic, but we will
give you enough information to use basic regular expressions in your PowerShell scripts.

Up to this point, pattern matching has been pretty simple and straightforward. But what if we want to
validate that a string was in a particular format such as a UNC path or an IP address? In this case, we
can use special regular expression characters to validate a string. The following table lists several of the
more common special characters.

 Regular Expression Special Characters

Character Description
\w Matches a word (alpha-numeric and the underscore character)
\d Matches any digit (0-9)
\t Matches any tab
\s Matches any whitespace, tab, or newline

214

Windows PowerShell: TFM • 2nd Edition

There are additional special characters, but these are the ones you are most likely to use. By the way,
each of these characters has an inverse option you can use simply by using the capital letter version. For
example, if you want to match a pattern for anything that was not a digit, you would use \D. This is an
example of when PowerShell is case-sensitive.

PowerShell supports the quantifiers available in .NET regular expressions, as shown in the next table:

Regular Expression Qualifiers

Format Description
Value Matches exact characters anywhere in the original value
. Matches any single character
[value] Matches at least one of the characters in the brackets
[range] Matches at least one of the characters within the range; the Use of a hyphen (-) allows specifi-

cation of contiguous character
[^] Matches any character except those in brackets
^ Matches the beginning characters
$ Matches the end characters
* Matches zero or more instances of the preceding character
? Matches zero or more instances of the preceding character
\ Matches the character that follows as an escaped character
+ Matches repeating instances of the specified pattern such as abc+
{n} Specifies exactly n matches
{n,} Specifies at least n matches
{n,m} Specifies at least n, but no more than m, matches.

By combining pattern matching characters with these quantifiers, it is possible to construct some very
complex regular expressions.

Writing Regular Expressions
Let’s look at some simple regular expression examples:

PS C:\> "SAPIEN Press" -match "\w"
True
PS C:\> $matches

Name Value
---- -----
0 S

PS C:\> "SAPIEN Press" -match "\w*"
True
PS C:\> $matches

Name Value
---- -----
0 SAPIEN

PS C:\> "SAPIEN Press" -match "\w+"
True
PS C:\> $matches

Regular Expressions

215

Name Value
---- -----
0 SAPIEN

PS C:\> "SAPIEN Press" -match "\w* \w*"
True
PS C:\> $matches

Name Value
---- -----
0 SAPIEN Press

PS C:\>

The first example compares the string “SAPIEN Press” to the pattern \w. Recall that comparison results
are automatically stored in the $matches variable. As you can see, \w matches “S”. Why doesn’t it match
“SAPIEN” or “SAPIEN Press”? The \w pattern means any word, even a single-character word. If we
want to match a complete word, then we need to use one of the regular expression qualifiers. For exam-
ple, you can see the second and third examples use \w* and \w+ respectively. In this particular example,
these patterns return the same results.

If we want to match a two word phrase, then we would use an example like the last one using \w* \w*. If
we were testing a match for “SAPIEN Press PowerShell”, then we’d use something like this:

PS C:\> "SAPIEN Press Powershell" -match "\w* \w*"
True
PS C:\> $matches

Name Value
---- -----
0 SAPIEN Press

PS C:\>

This also matches, but as you can see it only matches the first two words. If we want to specifically
match a two-word pattern, then we need to qualify our regular expression so it starts and ends with a
word:

PS C:\> "SAPIEN Press Powershell" -match "^\w* \w*$"
False
PS C:\> "SAPIEN Press" -match "^\w* \w*$"
True
PS C:\>

The recommended best practice for strict regular expression evaluation is to use the ^ and $ qualifiers to
denote the beginning and end of the matching pattern.

Here’s another example:

PS C:\> "1001" -match "\d"
True
PS C:\> $matches

Name Value

216

Windows PowerShell: TFM • 2nd Edition

---- -----
0 1

PS C:\> "1001" -match "\d+"
True
PS C:\> $matches

Name Value
---- -----
0 1001

PS C:\>

In the first example, the digit matching pattern is used to get a TRUE result. However, $matches shows
it only matched the first digit. Using \d+ in the second example returns the full value.

If we want the number to be four digits, then we can use a qualifier like this:

PS C:\> "1001" -match "\d{4,4}"
True
PS C:\> "101" -match "\d{4,4}"
False
PS C:\>

The qualifier {4,4} indicates that we want to find a string with at least four matches. In this case, that
would be an integer (\d) and no more than 4. When we use the regular expression to evaluate 101, it
returns TRUE.

The following example shows a regular expression that is evaluating a simple UNC path string:

PS C:\> "\\file01\public" -match "^\\\\\w*\\\w*$"
True
PS C:\> $matches

Name Value
---- -----
0 \\file01\public

PS C:\>

This example looks a little confusing, so let’s break it apart. First, we want an exact match so we’re using
^ and $ to denote the beginning and end of the regular expression. We know the server name and path
will be alphanumeric words, so we can use \w. Because we want the entire word, we’ll use the * quali-
fier. All that’s left are the \\ and \ characters in the UNC path. Remember that \ is a special character in
regular expressions. If we want to match the \ character itself, then we need to “escape” it using another
\ character. In other words, each \ will become \\. So, the elements of the regular expression break down
to:

^ (beginning of expression)

\\ becomes \\\\

\w* (servername)

\ becomes \\

Regular Expressions

217

\w* (sharename)

$ (end of expression)

Putting this all together, we end up with ^\\\\\w*\\\w*$. As you can see in the example, this is exactly
what we get.

Notice that $matches indicates the match at index 0, which is fine assuming we want a complete match.
But we can also use regular expressions to match individual components by grouping each pattern:

PS C:\ > "\\server01\public" -match "(\\\\\w*)\\(\w*)"
True
PS C:\ > $matches

Name Value
---- -----
2 public
1 \\server01
0 \\server01\public

You’re probably thinking, “So what?” Well, regular expressions in PowerShell support a feature called
named captures. This allows us to define a name for the capture instead of relying on the index number.
The format is to use “?<capturename>” inside parentheses of each pattern.

PS C:\ > "\\server01\public" -match "(?<server>\\\\\w*)\\(?<share>\w*)"
True
PS C:\ > $matches

Name Value
---- -----
server \\server01
share public
0 \\server01\public

We still have the complete match at index 0, but notice there are now names associated with the other
matches. Now I can reference these elements directly by name:

PS C:\ > $matches.server
\\server01
PS C:\ > $matches.share
public

Using named captures makes it much easier to work with the matches object. One final note on this
particular pattern is that it will not match a longer UNC like \\File01\Public\Scripts.

Let’s look at another example. Here’s a regular expression pattern to match an IP address:

PS C:\> "192.168.100.2" -match "^\d+\.\d+\.\d+\.\d+$"
True
PS C:\> $matches

Name Value
---- -----
0 192.168.100.2

PS C:\> "192.168.100" -match "^\d+\.\d+\.\d+\.\d+$"

218

Windows PowerShell: TFM • 2nd Edition

False
PS C:\>

This should begin to look familiar. We’re matching digits and using the \ character to escape the period
character, since the period is a special regular expression character. By using the beginning and end of
expression characters, we also know that we’ll only get a successful match on a string with four numbers
that are separated by periods. Of course, there’s more to an IP address than four numbers. Each set of
numbers can’t be greater than three digits long. Here’s how we can construct a regular expression to vali-
date that:

PS C:\> "192.168.100.2" -match "^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$"
True
PS C:\> "172.16.1.2543" -match "^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}$"
False
PS C:\>

The first example matches because each dotted octet is between 1 and 3 digits. The second example fails
because the last octet is 4 digits.

PowerShell regular expressions also support named character sets, using a named character set:

PS C:\ > "powershell" -match "\p{Ll}"
True
PS C:\ > $matches

Name Value
---- -----
0 p

The named character set syntax is to use \p and the set name, in this case {Ll} to indicate all lowercase
letters. This functionally the same as:

PS C:\ > "powershell" -match "[a-z]"

This may not seem like much of an improvement, but using character classes can simplify your regular
expression:

PS C:\ > "PowerShell" -match "\p{L}+"
True
PS C:\ > $matches

Name Value
---- -----
PowerShell

The {L} character class indicates any upper or lowercase character. We could get the same result with
this:

PS C:\ > "PowerShell" -match "[a-zA-z]+"

The character set requires a little less typing. As your expressions grow in length and complexity, you will
appreciate this.

You can use any of these Unicode character sets:

Regular Expressions

219

Regular Expression Unicode Character Sets

Character Set Description

Cc Other, Control
Cf Other, Format
Cn Other, Not Assigned (no characters have this property)

Co Other, Private Use
Cs Other, Surrogate
Ll Letter, Lowercase
Lm Letter, Modifier
Lo Letter, Other
Lt Letter, Titlecase (ie Microsoft Windows)
Lu Letter, Uppercase
Mc Mark, Spacing Combining
Me Mark, Enclosing
Mn Mark, Nonspacing
Nd Number, Decimal Digit
Nl Number, Letter
No Number, Other
Pc Punctuation, Connector
Pd Punctuation, Dash
Pe Punctuation, Close
Pf Punctuation, Final quote

Pi Punctuation, Initial quote

Po Punctuation, Other
Ps Punctuation, Open
Sc Symbol, Currency
Sk Symbol, Modifier
Sm Symbol, Math
So Symbol, Other
Zl Separator, Line
Zp Separator, Paragraph
Zs Separator, Space

The .NET Framework also provides other grouping categories for the character sets shown above.

220

Windows PowerShell: TFM • 2nd Edition

Additional Regular Expression Groupings

Character Set Grouping
C All control characters Cc, Cf, Cs, Co, and

Cn.
L All letters Lu, Ll, Lt, Lm, and Lo.
M All diacritic marks Mn, Mc, and Me.
N All numbers Nd, Nl, and No.
P All punctuation Pc, Pd, Ps, Pe, Pi, Pf, and

Po.
S All symbols Sm, Sc, Sk, and So.
Z All separators Zs, Zl, and Zp.

You might have to experiment with these sets because they may not all be self-evident. For example:

PS C:\ > "<tag>" -match "\p{P}"

Will return FALSE because < is not considered but rather a symbol:

PS C:\ > "<tag>" -match "\p{S}"

This expression will return TRUE.

Select-String
PowerShell includes a pattern matching cmdlet called Select-String. The intent is that you’ll be able
to select strings from text files that match pattern. The pattern can be as simple as “ABC” or a regular
expression like “\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}”.

SYNTAX
 Select-String [-pattern] <string[]> -inputObject <psobject> [-include <string[]>] [-
exclude <string[]>] [-simpleMatch] [-caseSensitive] [-quiet] [-list] [<CommonParameters>]

 Select-String [-pattern] <string[]> [-path] <string[]> [-include <string[]>] [-exclude
 <string[]>] [-simpleMatch] [caseSensitive] [-quiet] [-list] [<CommonParameters>]

This cmdlet is like the grep and findstr commands.

For example, you might have an audit file of user activity and you want to find all lines that include the
user account for Tybald Rouble:

PS C:\ > get-content audit.txt | select-string -pattern "mydomain\trouble"

Every line with the pattern “mydomain\trouble” would be displayed.

When used with Get-ChildItem, you can quickly search an entire directory of files for specific strings.
Jeff finds this especially useful. Despite his best efforts, Jeff ’s script library is a little disorganized. Often,
Jeff will know he has code to do something but can’t remember what script or scripts might include it.
Using a command like this, he can quickly find what scripts include the code snippet he’s after:

PS C:\ > get-childitem s:*.* -include *.vbs | Select-String "Security_.AuthenticationLevel"

Regular Expressions

221

A list of every script and line number, including the matching text, will be displayed. These results are
stored in a MatchInfo object:

 TypeName: Microsoft.PowerShell.Commands.MatchInfo

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
get_Filename Method System.String get_Filename()
get_IgnoreCase Method System.Boolean get_IgnoreCase()
get_Line Method System.String get_Line()
get_LineNumber Method System.Int32 get_LineNumber()
get_Path Method System.String get_Path()
get_Pattern Method System.String get_Pattern()
RelativePath Method System.String RelativePath(String directory)
set_IgnoreCase Method System.Void set_IgnoreCase(Boolean value)
set_Line Method System.Void set_Line(String value)
set_LineNumber Method System.Void set_LineNumber(Int32 value)
set_Path Method System.Void set_Path(String value)
set_Pattern Method System.Void set_Pattern(String value)
ToString Method System.String ToString(), System.String ToString(String directory)
Filename Property System.String Filename {get;}
IgnoreCase Property System.Boolean IgnoreCase {get;set;}
Line Property System.String Line {get;set;}
LineNumber Property System.Int32 LineNumber {get;set;}
Path Property System.String Path {get;set;}
Pattern Property System.String Pattern {get;set;}

Knowing the outgoing object allows us to accomplish tasks like this:

PS C:\ > get-childitem s:*.* -include *.vbs | Select-String "Security_.AuthenticationLevel" '
| select filename,LineNumber | format-table -auto

Filename LineNumber
-------- ----------
CompSysClass.vbs 15
DiskClass.vbs 84
DiskUsagetoXML.vbs 95
GetEventsLogsAsynch-Msg.vbs 39
GetEventsLogsAsynch.vbs 23
GetPercentFreeDrive.vbs 25
MailstoreFileSizeReport.vbs 151
ScriptFunctionLibrary.vbs 30
ScriptFunctionLibrary.vbs 60
wmiphysicalmemquery-v2.vbs 26

Now Jeff can open each file and jump right to the line with his “missing” code sample. But if you look
at the results closely, you’ll see that one file made two matches. For a short example like this, it is trivial,
but it might make a difference when searching thousands of lines of text in a directory. The Select-
String cmdlet has a -List parameter that will stop searching a file at the first match. This is very handy
when you don’t need every match in file.

By the way, if you’re using PrimalScript, you don’t need to use this technique because the “Find In Files”
feature returns the same type of results.

What about something more administrative?

222

Windows PowerShell: TFM • 2nd Edition

PS C:\ > get-eventlog -logname system -newest 100 | select message,timewritten '
|select-string -pattern "Windows Installer"

This example will search the local event log for the last 100 events and display those with the pattern
“Windows Installer” in the message.

Select-String can also use regular expression patterns:

PS C:\ > cat c:\iplist.txt | select-string "(172.16.)\d{2,3}\.\d{1,3}"

This expression will select all strings from IPList.txt that start with 172.16 and where the third
octet has either two or three digits. This pattern will match on strings like 172.16.20.124, but not on
172.16.2.124.

Regex Object
When you use the -match operator, even with a regular expression pattern, the operation only returns
the first match found:

PS C:\> $var="Sapien Press PowerShell TFM"
PS C:\> $var -match "\w+"
True
PS C:\> $matches

Name Value
---- -----
0 Sapien
PS C:\>

To match all instances of the pattern, you need to use the Regex object. In this example, notice that the
match method returns all matches in $var:

PS C:\> $regex=[regex]"\w+"
PS C:\> $regex.matches($var)

Groups : {Sapien}
Success : True
Captures : {Sapien}
Index : 0
Length : 6
Value : Sapien

Groups : {Press}
Success : True
Captures : {Press}
Index : 7
Length : 5
Value : Press

Groups : {PowerShell}
Success : True
Captures : {PowerShell}
Index : 13
Length : 10
Value : PowerShell

Groups : {TFM}

Regular Expressions

223

Success : True
Captures : {TFM}
Index : 24
Length : 3
Value : TFM
PS C:\>

We create an object variable called $regex and cast it to a regex object using [regex], specifying the
regular expression pattern. We can now call the matches method of the regex object using $var as a
parameter. The method returns all instances where the pattern matches, as well as where they were
found in $var.

A more direct way to see all the matches is to use the Value property:

PS C:\> foreach ($i in $regex.matches($var)) {$i.value}
Sapien
Press
PowerShell
TFM
PS C:\>

The results of $regex.matches($var) is a collection. Using a ForEach loop, we can enumerate the collec-
tion and display the Value property for each item in the collection.

This object has several methods and properties with which you will want to become familiar:

PS C:\> $regex|get-member

 TypeName: System.Text.RegularExpressions.Regex

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
get_Options Method System.Text.RegularExpressions.RegexOpt
get_RightToLeft Method System.Boolean get_RightToLeft()
GetGroupNames Method System.String[] GetGroupNames()
GetGroupNumbers Method System.Int32[] GetGroupNumbers()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GroupNameFromNumber Method System.String GroupNameFromNumber(Int32
GroupNumberFromName Method System.Int32 GroupNumberFromName(String
IsMatch Method System.Boolean IsMatch(String input), S
Match Method System.Text.RegularExpressions.Match Ma
Matches Method System.Text.RegularExpressions.MatchCol
Replace Method System.String Replace(String input, Str
Split Method System.String[] Split(String input), Sy
ToString Method System.String ToString()
Options Property System.Text.RegularExpressions.RegexOpt
RightToLeft Property System.Boolean RightToLeft {get;}

PS C:\>

In order to see the current value of $regex , we need to use the ToString() method:

PS C:\> $regex.ToString()
\w+
PC C:\>

224

Windows PowerShell: TFM • 2nd Edition

IsMatch()will return either TRUE or FALSE if any match is made:

PS C:\> if ($regex.IsMatch($var)) {
>> write-host "found" ($regex.Matches($var)).Count "matches"
>> }
>>
found 4 matches
PS C:\>

In this example, we check to see if IsMatch() is TRUE. If it is TRUE, the number of matches found in
the string will be displayed. By the way, the Count() method is not a property of the $regex object, but
the result of evaluating $regex.Matches($var), which returns a collection object:

PS C:\> ($regex.Matches($var)).gettype()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True True MatchCollection System.Object

PS C:\>

You can also use regular expressions to perform a find and replace operation. Simple operations can be
done with the -Replace operator:

PS C:\ > $text="The quick brown fox jumped over the lazy cat"
PS C:\ > $text=$text -replace "cat","dog"
PS C:\ > $text
The quick brown fox jumped over the lazy dog

In this example, I’ve replaced all patterns of “cat” with “dog”. We can also use this operator with the
Regex object:

PS C:\ > [regex]$regex="timeout=\d{1,3}"
PS C:\ > $boot=get-content c:\boot.ini
PS C:\ > $boot -match $regex
timeout=30
PS C:\ > $boot=$boot -replace $regex,"timeout=10"

In this example, my regular expression pattern is looking for the phrase “timeout=”, followed by 1 to 3
digits. To see how this might work, I save the contents of my boot.ini to $boot and attempt a regular
expression match.

PS C:\ > $boot -match $regex

timeout=30

There is a match on the line “timeout=30”. Now I can replace that line with a new line:

PS C:\ > $boot=$boot -replace $regex,"timeout=10"

$Boot will now have an updated version of my boot.ini, which I could then write back to a file.

But this example doesn’t’ really take advantage of the Regex object because there was only one match.

Regular Expressions

225

Consider this:

PS C:\ > [regex]$regex="[\s:]"
PS C:\ > $c=(get-date).ToLongTimeString()
PS C:\t > $c
3:20:07 PM
PS C:\ > $d=$regex.replace($c,"_")
PS C:\ > $d
3_20_07_PM

The regular expression pattern is searching for any space character or colon (:). We’re going to use it
against a variable that holds the result of Get-Date. The idea is that we want to use the time stamp as a
filename, but this means we need to replace the colon character with a legal filename character. For the
sake of consistency, we’ll replace all instances with the underscore character:

PS C:\ > $d=$regex.replace($c,"_")

The value of $d can now be used as part of a filename.

With regular expressions it is critical that you are comparing apples to apples. In order for a regular
expression pattern to match, it must match the pattern but also not match something else. For example,
consider this variable:

PS C:\ > $a="Windows 2003 PowerShell 101"

Suppose we want to match a number:

PS C:\ > [regex]$regex="\d+"

The Regex object will match all numbers in $a:

PS C:\> $regex.matches($a)

Groups : {2003}
Success : True
Captures : {2003}
Index : 8
Length : 4
Value : 2003

Groups : {101}
Success : True
Captures : {101}
Index : 24
Length : 3
Value : 101

But if the only number we want to match is at the end, then we need a more specific regular expression
pattern like this:

PS C:\ > [regex]$regex="\d+$
PS C:\ > $regex.matches($a)

226

Windows PowerShell: TFM • 2nd Edition

Groups : {101}
Success : True
Captures : {101}
Index : 24
Length : 3
Value : 101

Now, we are only obtaining a match at the end of the string. Let’s go through one more example to
drive this point home. Here’s a regular expression pattern that matches a domain credential:

PS C:\ > [regex]$regex="\w+\\\w+"

This will return TRUE for expressions like these:

PS C:\ > $regex.IsMatch("sapien\jeff")
True
PS C:\ > $regex.IsMatch("sapien\jeff\oops")
True

Clearly the second string is not a valid credential. To get a proper match we need a regular expression
like this:

PS C:\ > [regex]$regex="^\w+\\\w+$"
PS C:\ > $regex.IsMatch("sapien\jeff")
True
PS C:\ > $regex.IsMatch("sapien\jeff\oops")
False

Now the match is more accurate because the pattern uses ^ to match at the beginning of the string and
$ to match at the end.

Regular Expression Examples
Before we wrap up this quick introduction to regular expressions, let’s review of regular expressions that
you’re likely to need and use.

E-mail Address
It’s not unreasonable that you might want to search for a string of text that matches an email address
pattern. Here is one such regular expression:

^([\w-]+)(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]{2,7}$

The selection is a sequence consisting of:

A start anchor (^).
The expression ([\w-]+) that matches any word string and the dash character.
The expression (\.[\w-]+)* that matches a period and then any word string and the dash.
The @ character.
The expression ([\w-]+\.)+ that matches any word string that ends in a period.
The expression [a-zA-Z]{2,7} that matches any string of letters and numbers at least two characters

Regular Expressions

227

long and no more than seven. This should match domain names like .ca and .museum.
An end anchor ($).

The expression [a-zA-Z]{2,7} will return any character string that is at least two characters and no more
than seven. This should allow domain names such as .ca and .museum.

There’s More than One Way
There are many different regular expression patterns for an e-mail address. Even though this
particular pattern should work for just about any address, it is not 100% guaranteed. We used this
pattern because it is relatively simple to follow.

Here’s how we might use this expression:

PS C:\> $regex=[regex]"^([\w-]+)(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]{2,7}$"
PS C:\> $var= ("j.hicks@sapien.com","oops@ca",`
>> "don@sapien.com","alex@dev.sapien.com")
PS C:\> $var
j.hicks@sapien.com
oops@ca
don@sapien.com
alex@dev.sapien.com
PS C:\> $var -match $regex
j.hicks@sapien.com
don@sapien.com
alex@dev.sapien.com
PS C:\> $var.count
4
PS C:\>

We start by creating a regex object with our e-mail pattern and define an object variable with some
e-mail names to check. We’ve introduced one entry that we know will fail to match. The easiest way to
list the matches is to use the -match operator that returns all the valid email addresses.

If you try expressions like these:

PS C:\> $regex.matches($var)
PS C:\> $regex.IsMatch($var)
False
PS C:\>

You will see that nothing or FALSE is returned. This occurs because $var is an array. We need to enu-
merate the array and evaluate each element against the regular expression pattern:

PS C:\> foreach ($item in $var) {
>> if ($regex.IsMatch($item)) {
>> write-host $item "is a valid address"
>> }
>> else {
>> write-host "$item is NOT a valid address" }
>> }
>>
j.hicks@sapien.com is a valid address
oops@ca is NOT a valid address
don@sapien.com is a valid address
alex@dev.sapien.com is a valid address

228

Windows PowerShell: TFM • 2nd Edition

PS C:\>

In this example ,we’re enumerating each item in $var. If the current variable item matches the regular
expression pattern, then we display a message confirming the match. Otherwise, we display a non-
matching message.

String with No Spaces
Up to now, we’ve been using regular expressions to match alphanumeric characters. However, we can
also match whitespaces such as a space, tab, new line, or the lack of whitespace. Here’s a regex object that
uses \S that is looking to match non-whitespace characters:

PS C:\> $regex=[regex]"\S"
PS C:\> $var="The-quick-brown-fox-jumped-over-the-lazy-dog."
PS C:\> $var2="The quick brown fox jumped over the lazy dog."
PS C:\>

In this example, we have two variables—one with whitespaces and the other without. Which one will
return TRUE when evaluated with IsMatch?

PS C:\> $regex.IsMatch($var)
True
PS C:\> $regex.IsMatch($var2)
True
PS C:\>

Actually, this is a trick question because both return TRUE. This happens because \S is looking for
any non-whitespace character. Since each letter or the dash is a non-whitespace character, the pattern
matches. If our aim is to check a string to find out if it contains any spaces, then we really need to use a
different regular expression and understand that a finding of FALSE is what we’re seeking:

PS C:\> $regex=[regex]"\s{1}"
PS C:\> $regex.Ismatch($var)
False
PS C:\> $regex.Ismatch($var2)
True
PS C:\>

The regular expression \s{1} is looking for a whitespace character that occurs only one time. Evaluating
$var with IsMatch returns FALSE because there are no spaces in the string. The same execution with
$var2 returns TRUE because there are spaces in the string. So, if we wanted to take some action based
on this type of negative matching, we might use something like this:

NegativeMatchingTest.ps1

$var="The-quick-brown-fox-jumped-over-the-lazy-dog."
$var2="The quick brown fox jumped over the lazy dog."
$regex=[regex]"\s{1}"
$var
if (($regex.IsMatch($var)) -eq "False")
{
write-host "Expression has spaces"
}
else

Regular Expressions

229

{
write-host "Expression has no spaces" }

$var2
if (($regex.IsMatch($var2)) -eq "False")
{
write-host "Expression has spaces"
}
else
{
write-host "Expression has no spaces" }

This action produces the following output:

The-quick-brown-fox-jumped-over-the-lazy-dog.
Expression has no spaces
The quick brown fox jumped over the lazy dog.
Expression has spaces
PS C:\>

The purpose of this example is to illustrate that there may be times when you want to match on some-
thing that is missing or a negative pattern.

Domain Credential
Let’s look at a regular expression example to match a Windows domain name that is in the format
Domain\username:

PS C:\> $regex=[regex]("\w+\\\w+")

PS C:\> $var=@("sapien\jeff","sapien\don","sapien\alex")
PS C:\> $regex.matches($var)

Groups : {sapien\jeff}
Success : True
Captures : {sapien\jeff}
Index : 0
Length : 11
Value : sapien\jeff

Groups : {sapien\don}
Success : True
Captures : {sapien\don}
Index : 12
Length : 10
Value : sapien\don

Groups : {sapien\alex}
Success : True
Captures : {sapien\alex}
Index : 23
Length : 11
Value : sapien\alex

PS C:\>

230

Windows PowerShell: TFM • 2nd Edition

Again, we create our regex object and an object variable with some domain names. Invoking the
Matches() method shows the results. As we’ve demonstrated earlier, you can display the match values in
at least two different ways:

PS C:\> foreach ($m in $regex.matches($var)) {$m.value}
sapien\jeff
sapien\don
sapien\alex

PS C:\> $var -match $regex
sapien\jeff
sapien\don
sapien\alex
PS C:\>

Which method you choose will depend on what you want to do with the information.

Telephone Number
Matching a phone number is pretty straightforward. We can use the pattern \d{3}-\d{4} to match any
basic phone number without the area code:

PS C:\> $regex=[regex]"\d{3}-\d{4}"
PS C:\> "555-1234" -match $regex
True
PS C:\> $matches

Name Value
---- -----
0 555-1234

PS C:\> "5551-234" -match $regex
False
PS C:\> $regex.IsMatch("abc-defg")
False
PS C:\> $regex.IsMatch("123-0987")
True
PS C:\>

We hope these examples are looking familiar. First, we defined a regular expression object and then we
test different strings to see if there is a match. You can see that only three digits (\d{3}) plus a dash (-)
plus four digits (\d{4}) make a match.

IP Address
For our final example, let’s look at a likely use for a regular expression. We want to examine a Web log
and pull out all the IP addresses. Here’s the complete set of commands. We’ll go through them at the
end:

PS C:\Logs> $var=get-content "ex060211.log"
PS C:\Logs> $regex=[regex]"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}"
PS C:\Logs> $regex.Matches($var)
Groups : {192.168.10.1}
Success : True
Captures : {192.168.10.1}

Regular Expressions

231

Index : 15679
Length : 12
Value : 192.168.10.1

Groups : {217.58.174.3}
Success : True
Captures : {217.58.174.3}
Index : 15728
Length : 12
Value : 217.58.174.3

PS C:\Logs> $regex.Matches($var)| select-object -unique -property "value"

Value

192.168.10.1
69.207.16.195
61.77.118.73
69.207.43.227
59.16.161.193
221.248.23.251
202.196.222.222
216.127.66.128
64.252.96.72
213.97.113.25
85.124.110.222
59.11.81.103
59.13.34.109
220.195.3.86
38.119.239.197
217.58.174.3
220.135.88.151
69.241.39.66
213.152.142.15

PS C:\Logs>

The first thing we do is dump the contents of the log file to the variable $var. Next we create an object
variable that will be a regular expression object by casting it as type regex and specifying the matching
pattern.

PS C:\Logs> $regex=[regex]"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}"

Remember, we need to use a regular expression object because the -match operator only checks for the
first instance of a match. In an IIS log, the first IP listed is usually the host Web server and we want the
visitor’s IP address that comes second. Everything we’ve covered up to now about patterns and regular
expressions is still valid. We’re just going to use an object with built-in regular expression functionality.
You’ll also notice that our IP address pattern does not use ^ and $. That’s because the IP addresses we’re
looking for don’t start or end each line of the log file.

Invoking the Matches() method of the regex object essentially takes our matching pattern and com-
pares it to the contents of $var:

PS C:\Logs> $regex.Matches($var)

Whenever a match is found, it will be displayed. We’ve edited the output to only show a few representa-
tive examples.

232

Windows PowerShell: TFM • 2nd Edition

Alone that might be sufficient. But we’ll take this one step further and send the output of the Matches()
method to the Select-Object cmdlet.

PS C:\Logs> $regex.Matches($var)| select-object -unique -property "value"

With this cmdlet we can select only the value property of each regular expression match and also return
a list of unique values.

Regular Expression Reference
We’ve only scratched the surface on regular expressions. This is a very complex topic that extends well
beyond the scope of this book. Even so, we want to make sure you know where you can go quench your
thirst for more information on regular expressions.

In PowerShell, you can run Help about_regular_expression to view PowerShell’s documen-
tation on the topic. If you’d like a book recommendation, Mastering Regular Expressions by Jeffrey Friedl
(O’Reilly) is now in its third edition and is considered by many to be a definitive reference.

As you might expect, there are many excellent online resources. Here is a short list of our favorites:

The official Microsoft documentation can be found at http://msdn2.microsoft.com/en-us/library/•
az24scfc(vs.71).aspx.

Regexlib.com has an online regular expression tester and a terrific one page “cheat sheet”.•

Wikipedia has a great article on regular expressions including historical background at http://•
en.wikipedia.org/wiki/Regular_expression.

http://www.regular-expressions.info offers some nice tutorials and general information about regu-•
lar expressions.

Finally, there are a number of free tools you can download that will help you evaluate and test regular
expressions:

Regex Coach• (http://www.weitz.de/regex-coach/)

Regular Expression Workbench 3.1 (http://www.gotdotnet.com/Community/UserSamples/•
Details.aspx?SampleGuid=BC2B09E3-7E83-4B0A-93D9-A2EC8B207849)

Expresso (http://www.codeproject.com/dotnet/expresso.asp)•

RegEx Buddy (http://www.regexbuddy.com)—this is a commercial tool, meaning you’ll have to •
purchase it if you like it.

Loops and Decision-Making Constructs

233

Chapter 18
Loops and Decision-Making Constructs

One advantage PowerShell has over the traditional Cmd.exe shell is that you can create loops and logic
structures directly from the console. If you’ve read this book from the beginning, you’ve seen examples
like this:

PS C:\> foreach ($i in (1,2,3,4,5)) {
>> write-host "Current value is "$i
>> }
>>
Current value is 1
Current value is 2
Current value is 3
Current value is 4
Current value is 5
PS C:\>

The curly brace { at the end of the first line tells PowerShell there is more to the ForEach command.
When we press Enter, PowerShell changes the prompt to >>, which indicates it is waiting for the rest of
command. Once we enter the last element and press Enter for a new line, the command is parsed and
executed.

We mention this because many of our examples in this chapter are presented as PowerShell scripts. The
benefit is that it is easier to edit and re-run a script than to retype an entire logic construct, since that
provides another opportunity for you to make a typing mistake.

Let’s start our exploration with the logic construct we just used.

234

Windows PowerShell: TFM • 2nd Edition

If
The If statement also executes a block of code if some condition is met. However, this construct can also
execute a block of code if the condition is not met. For this reason, If is more of a decision-making con-
struct instead of a looping one:

if (<condition>)
 {<code_block1>}
[else
 {<code_block2>}]

The Else section is optional. Here’s a quick one line example:

PS C:\> $i=1
PS C:\> if ($i -le 10) {write-host "less than 10"}
less than 10
PS C:\>

This example says that if the condition contained within the parentheses is TRUE, then execute the
code in the braces. Since $i is less than 10, the code is executed.

If we want a block of code to run if the condition is not TRUE, then we introduce the Else operator.

PS C:\> $i=11
PS C:\> if ($i-le 10) {
>> "Less than 10"
>. }
>> else
>. {
>>"Greater than 10"
>> }
>>

In simple English, if $i is less than 10, then execute the first block of code; otherwise, execute the second
block of code. By the way, you are very likely to see code snippets where the If Else statement is all on a
single line like this:

PS C:\> $var=Get-WmiObject -class win32_logicaldisk | '
>> where {$_.deviceid -eq "C:"}
>>
PS C:\> if ($var.freespace -le 5GB) {"Low space"} else {"OK"}
Low space
PS C:\> if ($var.freespace -le 1GB) {"Low space"} else {"OK"}
OK
PS C:\>

The If statement in this example is checking if the free space on drive C:, which we obtained through
WMI, is less than some value. If so, then a “Low Space” message is displayed. Otherwise, an “OK” mes-
sage is displayed.

Loops and Decision-Making Constructs

235

Formatting the Expression
As long as you have the proper syntax with parentheses and braces, it is up to you on how you
format the expression. You can either break it into different lines as we did in IfTest.ps1 or stick to
a single line as we did in the example above. If you have several lines of code or commands that
you want to execute, you’ll find it easier to write and troubleshoot by breaking the statement into
multiple lines.

But what about a situation where if a condition is not true you want it to check for other conditions
before resorting to an Else statement? PowerShell supports an ElseIf component to the If statement:

if (<condition>)
 {<code_block1>}
Elseif (<condition2>)
 {<code_block2>)
else
 {<code_block3>}

Here, our previous example is expanded to demonstrate:

PS C:\> $i=45
PS C:\> if ($i -le 10) {
>> write-host "Less than 25"
>> }
>> elseif ($i -le 50)
>> {
>> write-host "Less than 50"
>> }
>> else
>> {
>> write-host "Greater than 50"
>>}
>>

The logic of this example is that if $i is less than 10, and then execute the first block of code. If it is
not, then the ElseIf condition is evaluated. If this condition is TRUE, then the second block of code is
executed. If even this condition is FALSE, then the last Else statement is reached and the last block of
code is run.

You can have as many ElseIf statements as you want. However, from a practical perspective more than
one or two will make your code a little harder to troubleshoot. If you want to evaluate multiple condi-
tions, a better operator to use is Switch, which is discussed below.

Finally, even though it may not be technically required, if you include ElseIf, you should end your If
statement with an Else clause. Let’s look at a practical example that combines several logic constructs
in a single script. The script checks the CPU time for each running process. If the CPU time is less than
300 seconds, the script displays the process name and CPU time in green. If the CPU time is greater
than 301 and less than 1000, the process displays the information with no color coding. Otherwise, the
process information is displayed in red:

236

Windows PowerShell: TFM • 2nd Edition

ProcessCPU.ps1

#ProcessCPU.ps1
$process=get-process
$low=0 #counter for low cpu processes
$med=0 #counter for medium cpu processes
$high=0 #counter for high cpu processes
foreach ($p in $process) {
[int]$cpuseconds="{0:F0}" -f $p.cpu

 if ($cpuseconds -le 300) {
 write-host $p.name $cpuseconds "seconds" -foregroundcolor "Green"
 $low++
 }
 elseif (($cpuseconds -ge 301) -AND ($cpuseconds -le 1000)) {
 write-host $p.name $cpuseconds "seconds"
 $med++
 }
 else
 {
 write-host $p.name $cpuseconds "seconds" -foregroundcolor "Red"
 $high++
 }
}
#display a summary message
write-host `n"Process Summary"
write-host "-->" $low "low CPU processes"
write-host "-->" $med "medium CPU processes"
write-host "-->" $high "high CPU processes"

This script uses a number of PowerShell elements that we’ve covered up to this point. The script begins
by initializing some variables, including one that holds the output of the Get-Process cmdlet. We then
use ForEach to enumerate each element of the $process object. Remember, it is a collection. Within
this construct, we use If and ElseIf statements to evaluate a condition as follows. Determine whether
the value of $cpuseconds is greater or less than some value. For example, if the value of $cpuseconds is
less than or equal to 300, then we display a message in green and increase the $low variable by one. If
that isn’t true, then the ElseIf statement is evaluated. If this condition is true, then the number of CPU
seconds is between 301 and 1000, which means the process information is displayed. Otherwise, the
Else clause is reached and the number of CPU seconds is greater than 1000, so we display the message
in red.

Formatting Details
We want to point out some special characters that were used in the ProcessCPU.ps1 script.
First, we specifically cast $cpuseconds as an integer type by using [int]. We did this so that our
comparisons with -le and -ge would work as expected. We also used -f to format the value of
$p.cpu that contains the number of seconds, and then format it to a fixed type with no decimal
places. This changes a value like 180.7899632 to 181. Finally, the `n instructs PowerShell to write
a blank line to the console. It helps separate the summary section from the rest of the output.

Here’s an excerpt of the script’s output:

svchost 73 seconds
svchost 47 seconds
svchost 1133 seconds
svchost 27 seconds

Loops and Decision-Making Constructs

237

svchost 261 seconds
svchost 24 seconds
System 5645 seconds
wcescomm 12747 seconds
wdfmgr 9 seconds
winlogon 55 seconds
WINWORD 71 seconds
WISPTIS 4 seconds
WLTRAY 168 seconds
WLTRYSVC 9 seconds
wmiapsrv 654 seconds

Process Summary
--> 42 low CPU processes
--> 4 medium CPU processes
--> 15 high CPU processes
PS C:\>

You’ll have to run the full script on your system to see the actual colorized output.

Switch
If you find yourself needing to check multiple conditions or otherwise create a lengthy If and ElseIf
statement, then you need to use PowerShell’s Switch statement. This statement acts like many If state-
ments. If you have experience with VBScript, you’ll recognize this construct as a Select Case statement.
By default, Switch is not case-sensitive. Here’s a quick example:

PS C:\> $var=5
PS C:\> switch ($var) {
>> 1 {"Option 1"}
>> 2 {"Option 2"}
>> 3 {"Option 3"}
>> 4 {"Option 4"}
>> 5 {"Option 5"}
>> }
>>
Option 5
PS C:\>

The Switch statement evaluates the contents contained within parentheses, and then the condition
or value is matched against a set of expressions contained within braces. Each expression has a corre-
sponding block of code in braces. If the expression matches, then command processing switches to the
corresponding code.

In this example, the code that corresponds to the matching expression is executed, since the value of
$var is 5. If there is no match, then nothing will be displayed. However, you can use default at the end
of the Switch statement to execute code in the event that no other matches are made:

PS C:\> $var=5
PS C:\> switch ($var) {
>> 1 {"Option 1"}
>> 2 {"Option 2"}
>> 3 {"Option 3"}
>> Default {"No match"}
>> }
>>
No match
PS C:\>

238

Windows PowerShell: TFM • 2nd Edition

In this variation, the default code block is executed since there is no matching expression for the value of
$var.

Typically, you will write out Switch statements in separate lines to make it easier to read and trouble-
shoot. However, you could just as easily write a statement like this:

Switch ($i) {1 {"Option 1"} 2 {"Option 2"} 3{"Option 3"}}

This statement will evaluate $i by looking for 1, 2, or 3, and then executing the corresponding code.

The Switch statement also supports additional options that are outlined in the following table:

Switch Options

Option Description
-casesensitive If the match clause is a string, modify it to be case-sensitive. If the variable to be

evaluated is not a string, this option is ignored.
-exact Indicates that if the match clause is a string, it must match exactly. Use of this

parameter disables -wildcard and -regex. If the variable to be evaluated is not a
string, this option is ignored.

-file Take input from a file (or representative) rather than statement. If multiple -file
parameters are used, the last one is be used. Each line of the file is read and passed
through the switch block.

-regex Indicates that the match clause, if a string, is treated as a regular expression string.
Using this parameter disables -wildcard and -exact. If the variable to be evaluated is
not a string, this option is ignored.

-wildcard Indicates that if the match clause is a string, it is treated as a -wildcard string. Use
of this parameter disables -regex and -exact. If the variable to be evaluated is not a
string, this option is ignored.

The complete switch syntax can be one of the following:

switch [-regex|-wildcard|-exact][-casesensitive] (pipeline)

or

switch [-regex|-wildcard|-exact][-casesensitive] -file filename {
"string"|number|variable|{ expression } { statementlist }
default { statementlist
}

Let’s look at a quick example.

PS C:\> $var="PowerShell123","PowerShell","123","PowerShell 123"
PS C:\> Switch -regex ($var) {
>> "^\w+[a-zA-Z]$" {write-host $_" is a word"}
>>"^\d+$" {write-host $_" is a number"}
>>"\s" {write-host $_" has a space"}
>>Default {write-host "No match found for"$_}
>>}
>>

Loops and Decision-Making Constructs

239

In this script, we set a variable with several different values. The Switch statement uses the regex option,
which tells PowerShell we will be matching based on regular expressions. A different message is dis-
played, depending on the match:

No match found for PowerShell123
PowerShell is a word
123 is a number
PowerShell 123 has a space
PS C:\>

If a Switch statement will result in multiple matches, then each match block of code will be executed.
If this is not your intention, then you need to use the Break or Continue keywords, which are covered
below.

For
The For loop is similar to the ForEach loop. With this statement, we can keep looping while some con-
dition is met and execute a block of code each time through the loop. The condition could be a counter.
For example, we might need a loop that says, “Start counting at one and execute some block of code
each time until you reach ten.” Or we might need a loop that says, “As long as some statement is true,
keep looping and execute a block of code each time.”

If you’ve used the For loop in VBScript, conceptually PowerShell’s implementation is no different.
However, the syntax of PowerShell’s For loop may confuse you at first:

for (<init>; <condition>; <repeat>) {<command block>}

This syntax essentially instructs PowerShell that for (some set of conditions) {do this block of commands}.

Let’s break this down. The <init> element is one or more sets of commands that are separated by com-
mas. These commands are run before the loop begins. Typically, this is where you initialize a variable
with some starting value. This variable is usually checked by some statement or code, <condition>, that
returns a Boolean value of TRUE or FALSE. If the condition is TRUE, then the code in the command
block code that is enclosed in braces, <command block>, is executed. The <repeat> element is one or
more sets of commands that are separated by commas, and are run each time through the loop.

Traditionally, these commands are used to modify the init variable. Each element in parentheses is sepa-
rated by a semicolon or a carriage return. Thus, you could have a For statement that looks like this:

for (<init>
 <condition>
 <repeat>){
 <command_block>
 }

Here’s a very basic example:

PS C:\> for ($i=1;$i -le 10;$i++) {write-host "loop #"$i}
loop # 1
loop # 2
loop # 3
loop # 4
loop # 5
loop # 6

240

Windows PowerShell: TFM • 2nd Edition

loop # 7
loop # 8
loop # 9
loop # 10
PS C:\>

The initial command sets $i to a value of 1. The condition that is checked each time is to see if $i is
less than 10. If it is, then we use the Write-Host cmdlet to display a message. Each time the loop is
executed, $i is incremented by 1 by using $i++.

This is a very complete example. However, it’s possible to reference other variables from within the same
scope. The following command is essentially the same, except $i is defined outside of the For statement.

PS C:\> $i=1
PS C:\> for (;$i -le 10;$i++) {write-host "loop #"$i}
loop # 1
loop # 2
loop # 3
loop # 4
loop # 5
loop # 6
loop # 7
loop # 8
loop # 9
loop # 10
PS C:\>

Notice the For statement’s condition, which is the portion in parentheses, has an empty init value. Even
so, we still include the semi-colon delimiter.

Runaway Loop
Be careful with the For syntax. If you do not properly specify an expression to evaluate each time
through the loop, it will run an infinite number of times until you press Ctrl-Break or Ctrl-C, or kill the
PowerShell process.

While
The While statement is similar to the For statement. This logical construct also executes a block of code
as long as some condition is TRUE:

while (<condition>){<command_block>}

However, the syntax is a little more direct. Here’s essentially the same loop as we used before, only it has
been rewritten to use the While operator:

PS C:\> $i=1
PS C:\> while ($i -le 10)
>> {
>> write-host "loop #"$i
>> $i++
>> }
>>
loop # 1

Loops and Decision-Making Constructs

241

loop # 2
loop # 3
loop # 4
loop # 5
loop # 6
loop # 7
loop # 8
loop # 9
loop # 10
PS C:\>

In this example, we’ve broken the While operation into separate lines to make it easier to follow.
However, this could have been written as one line:

while ($i -le 10){write-host "loop #"$i;$i++}

Do While
A variation on While is Do While. In the While operation, the condition is checked at the beginning
of the statement. In the Do While operation, it is checked at the end:

PS C:\> $i=0
PS C:\> do {
>> $i++
>> write-host "`$i="$i
>> }
>> while ($i -le 5)
>>
$i= 1
$i= 2
$i= 3
$i= 4
$i= 5
$i= 6
PS C:\>

In this example, you can see what happens when you check at the end. The loop essentially says,
“Increase $i by one and display the current value as long as $ is less than or equal to 5.”

However, notice that we end up with a sixth pass. This occurs because when $i=5, the while condition is
still TRUE, so the loop repeats, including running the increment and display code. But now when the
while clause is evaluated, it is FALSE, which causes the loop to end. This is not necessarily a bad thing.
This type of loop will always run at least once until the While clause is evaluated. It will continue loop-
ing for as long as the condition is TRUE.

Do Until
A similar loop is Do Until. Like Do While, the expression is evaluated at the bottom of the loop. This
construct will keep looping until the expression is TRUE:

PS C:\> do {
>> $i++
>> write-host "`$i="$i
>> }
>> until ($i -ge 5)
>>

242

Windows PowerShell: TFM • 2nd Edition

$i= 1
$i= 2
$i= 3
$i= 4
$i= 5
PS C:\>

This is almost the same code block that we used with Do While. However, the conditional expression
uses -ge instead of -le. The advantage of using Do Until is that the loop ends when we expect it to,
because when one $i equals 5, the loop exits. Again, we want to stress that there is nothing wrong with
using Do loops instead of While. It all depends on what you are trying to achieve.

ForEach
The ForEach statement is used for stepping through a collection of objects. Usually, some block of code
is executed for each step when the ForEach statement is used. In other words, “take these steps for each
thing in the collection of things.” Here’s the syntax for this statement:

foreach ($<item> in $<collection>){<command_block>}

This statement is expecting a variable and a collection in parenthesis. The command block that is con-
tained in the braces will be executed for each variable, each time it goes through the collection. The
command block can be as simple as something like this:

PS C:\> $var=("apple","banana","pineapple","orange")
PS C:\> foreach ($fruit in $var) {$fruit}
apple
banana
pineapple
orange
PS C:\>

We first create an array of fruits. Remember that an array is a collection. The ForEach statement says
that for each fruit variable in the fruit collection ($var), display the value of the fruit variable.

Here’s a slightly more involved example:

ForEachFruit.ps1

#ForEachFruit.ps1
$var=("apple","banana","pineapple","orange")
foreach ($fruit in $var) {
$i++ #this is a counter that is incremented by one each time through
write-host "Adding" $fruit
}
write-host "Added" $i "pieces of fruit"

When this script is run, it produces the following output:

Adding apple
Adding banana
Adding pineapple
Adding orange
Added 4 pieces of fruit
PS C:\>

Loops and Decision-Making Constructs

243

We can even nest other logic constructs within a ForEach statement:

ForEachFile.ps1

#ForEachFile.ps1
set-location "C:\"
$sum=0
foreach ($file in get-childitem) {
#$file.GetType()
 if (($file.GetType()).Name -eq "FileInfo") {
 write-host $file.fullname `t $file.length "bytes"
 $sum=$sum+$file.length
 $i++
 }
}
write-host "Counted" $i "file for a total of" $sum "bytes."

In this script, we’re using the Get-ChildItem cmdlet to return all items in C:\. We can do this because
the results of the Get-ChildItem cmdlet return a collection object. So, even though we don’t know the
contents of the collection, we can still enumerate on the fly. For each $file variable in the collection,
if the object type name is FileInfo, then we display the name and file size (using the length property).
We’ve also added code to calculate a running total of the sum of all the files using $sum, and we use $i
as a counter that increases by one each time.

When the script is run, it generates the following output:

C:\AUTOEXEC.BAT 0 bytes
C:\AVG7QT.DAT 12283633 bytes
C:\COMLOG.txt 0 bytes
C:\CONFIG.SYS 0 bytes
C:\docs.csv 24938 bytes
C:\DVDPATH.TXT 55 bytes
C:\EventCombMT_Debug.log 854 bytes
C:\hpfr5550.xml 488 bytes
C:\IALog.txt 271 bytes
C:\log.csv 10734 bytes
C:\Log.txt 72 bytes
C:\mtaedt22.exe 2650696 bytes
C:\netdom.exe 142848 bytes
C:\new-object.txt 10240 bytes
C:\out-grid.ps1 811 bytes
C:\out-propertyGrid.ps1 1330 bytes
C:\processes.html 118828 bytes
C:\servers.txt 19 bytes
C:\showprocessinfo.ps1 710 bytes
C:\showservices.ps1 477 bytes
C:\test.ps1 88 bytes
C:\txt.csv 22995 bytes
Counted 22 file for a total of 15270087 bytes.
PS C:\>

244

Windows PowerShell: TFM • 2nd Edition

Alias Alert
The ForEach statement is also an alias for the ForEach-Object cmdlet. We’re pointing this out in
case you find examples using the cmdlet, because this particular alias works a bit differently than
the cmdlet. PowerShell has a special parsing mode that detects the alias and lets you use it as
we’re showing. If you were to simply replace “foreach” in the examples above with “foreach-object”,
the script wouldn’t run.

We covered the use of ForEach-Object—the cmdlet, not the alias—earlier. Typically, you’ll use
ForEach (the alias) in a script and ForEach-Object (the cmdlet) in a one-liner at the command
line.

To make things more confusing, PowerShell defines another alias, % (just the percent sign). It is
interchangeable with the ForEach-Object cmdlet, but not with ForEach. For that reason, we’ll
often refer to ForEach as a statement rather than a cmdlet—but you’ll see other folks refer to it
however they prefer, so be prepared.

Break
The Break statement very simply terminates just about any logic construct we’ve covered in this chapter,
including For, ForEach, While, and Switch. When a Break statement is encountered, PowerShell exits
the loop and runs the next command in the command block or script:

PS C:\> $i=0
PS C:\> $var=10,20,30,40
PS C:\> foreach ($val in $var)
>> {
>> $i++
>> if ($val -eq 30){break}
>> }
>> write-host "found a match at item $i"

found a match at item 3
PS C:\>

In this example, we’re searching an array of numbers for 30. When it is found, we want to stop looking,
exit the ForEach loop, and display the message. Even though the Switch statement is not a loop, Break
also is used within a code block to force an exit from the entire Switch statement.

Continue
The Continue statement is essentially the opposite of Break. When the Break statement is encoun-
tered, PowerShell returns immediately to the beginning of a loop like For, ForEach, and While. You
can also use Continue with Switch.

Here’s a script that doesn’t use Continue:

SwitchNoContinue.ps1

#SwitchNoContinue.ps1
$var="PowerShell123","PowerShell","123","PowerShell 123"
Switch -regex ($var) {

Loops and Decision-Making Constructs

245

"\w" {write-host $_" matches \w"}
"\d" {write-host $_" matches \d"}
"\s" {write-host $_" matches \s"}
Default {write-host "No match found for"$_ }
}

When this script is run, all matching code blocks are run, since there are multiple possible matches:

PowerShell123 matches \w
PowerShell123 matches \d
PowerShell matches \w
123 matches \w
123 matches \d
PowerShell 123 matches \w
PowerShell 123 matches \d
PowerShell 123 matches \s
PS C:\>

If we want the switch statement to only run code after the first match, then we can use Continue,
which will keep processing each element in $var:

SwitchContinue.ps1

#SwitchContinue.ps1
$var="PowerShell123","PowerShell","123","PowerShell 123"
Switch -regex ($var) {
"\w" {write-host $_" matches \w" ;
 continue}
"\d" {write-host $_" matches \d" ;
 continue}
"\s" {write-host $_" matches \s" ;
 continue}
Default {write-host "No match found for"$_ ;
 }
}

This is the same script except with the addition of Continue. When run, the script produces the follow-
ing output:

PowerShell123 matches \w
PowerShell matches \w
123 matches \w
PowerShell 123 matches \w
PS C:\ >

Because each element of $var matches the \w regular expression, only the block of code associated with
that part of the Switch statement is executed.

Script Blocks, Functions, and Filters

247

Chapter 19
Script Blocks, Functions, and Filters

Modularization is generally thought of as a way to break code down into discrete, more or less self-con-
tained segments. These segments, or modules, can be transported between scripts so they can be reused
again and again with minimal modification. In this chapter, we’ll look at some of the ways PowerShell
code can be modularized.

Script Blocks
A script block is a series of PowerShell statements enclosed in curly braces. A script block can be assigned
to a variable as shown here:

PS C:\> $sb = {
>> $x = 10
>> $y = 10
>> $x * $y }
>>

Note that this script was typed interactively. When it saw the { character, PowerShell knew we were
typing a script block. The special >> prompt indicated that PowerShell was waiting for additional input.
Pressing Enter on a blank >> prompt ended the input. You can prove that the script block text is in the
$sb variable by checking it as follows:

PS C:\> $sb
$x = 10
$y = 10
$x * $y

248

Windows PowerShell: TFM • 2nd Edition

PS C:\>

The script block can be executed with the invoke operator, which is an ampersand “&”:

PS C:\> &$sb
100
PS C:\>

When invoked as part of a pipeline, a script block has access to a special variable called $input that
contains all of the objects passed through the pipeline. For example, the Get-Process cmdlet returns
an object for each running process. These objects are all stored in $input and can be enumerated with a
foreach construct:

PS C:\> $sb = {
>> foreach ($process in $input) {
>> $process.ProcessName }
>> }
>>
PS C:\> get-process | &$sb
acrotray
alg
ati2evxx
ati2evxx
BTSTAC~1
BTTray
btwdins
csrss
dllhost
explorer
firefox
Groove
Hpqgalry

Again, this was all typed interactively. Notice that when the Get-Process is called, its output is piped to
$sb, which was invoked using the & operator. This may be clearer in the following script:

Blocktest.ps1

$sb = {
 foreach ($process in $input) {
 $process.ProcessName
 }
}

get-process | &$sb

Running this script produces the same output:

PS C:\> test\blocktest
acrotray
alg
ati2evxx
ati2evxx
BTSTAC~1
BTTray
btwdins
csrss

Script Blocks, Functions, and Filters

249

dllhost
explorer
firefox
Groove
Hpqgalry

Script blocks are a simple way to modularize code and allow it to be reused. However, script blocks
become more important when used in conjunction with other modularization techniques, such as func-
tions and filters.

Functions
Functions are a construct common to most programming languages that provide the basic modulariza-
tion programmers have used for decades. PowerShell allows you to create a function by declaring it as
follows:

Use the 1. Function keyword.

Provide the name of your function.2.

Enclose the function’s code within {curly braces}.3.

A very basic function might look like this:

function myFunction {
 write-host "Hello"
}

Functions are nearly identical to script blocks except for two differences: 1) functions are explicitly
declared using the Function keyword, and 2) functions have a name. Otherwise, functions are practi-
cally the same as a script block.

This particular function doesn’t accept any input arguments, nor does it really return any kind of value. It
simply displays “Hello” on the screen. In languages like VBScript, this function might have been written
as a Sub, since functions typically return some value in VBScript. However, in PowerShell, there is not
a separate construct if a value isn’t being returned. Instead, you simply have the function not return any-
thing if you don’t need it to.

Note that you can interactively declare functions without writing a script. Try typing the following into
PowerShell at the prompt:

PS C:\> function myFunction { write-host "Hello" }

This is the same function as the first example, but it is declared all on one line. Because it was entered
into the command prompt within PowerShell, this function becomes available globally. In other words,
it lives within the global scope. Scope controls the availability of functions, and it applies to the avail-
ability of variables (we covered scope for the first time in the chapter “Scripting Overview”). With
myFunction declared globally, any child scopes such as scripts will be able to call the function. However,
if you declare a function within a script, then only that script and its child scopes will be able to “see” the
function and use it.

Functions can also be nested:

250

Windows PowerShell: TFM • 2nd Edition

Function Outer1 {
 Function Inner1 {
 #code A here
 }
 Function Inner2 {
 #code B here
 }
 #code C here
}
Function Outer2 {
 Function Inner3 {
 #code D here
 }
 Function Inner4 {
 #code E here
 }
 #code F here
}

If this were included in a script, then the entire script would be able to call either Outer1 or Outer2.
However, the script would not be able to directly call any of the Inner functions, since those exist within
the Outer functions’ private scopes. Any code within Outer1 (code C) is be able to call Inner1 and
Inner2. However, the code within Outer2 (code F) is not be able to access Inner1 and Inner2 because
those two functions are contained within the private scope of Outer1.

Input Arguments
Functions have two ways of accepting input arguments. Here’s the first:

Function add2 {
 [int]$args[0] + [int]$args[1]
}

This could be called like this:

PS C:\> Add2 10 20
30

This output shows that the two input arguments, 10 and 20, were successfully added. Inside the function
these arguments were accessed by using the special $args variable. The $args variable is an array in which
each element in the array represents one argument passed to the function. Even though this is a fairly
informal technique for accepting input arguments, it may be difficult to follow when you read the script
months later. A more formal, easier-to-maintain way to work with input arguments looks like this:

Function add2 ([int]$x, [int]$y) {
 $x + $y
}

You would call this in exactly the same way. Up front, it defines that two input arguments of the Integer
type are required.

A third way to declare this function is as follows:

Function add2 {
 Param ([int]$x, [int]$y)

Script Blocks, Functions, and Filters

251

 $x + $y
}

This is the same idea; however, the parameters are defined in a special Param section that must be the
first line of code in the function, instead of defining the arguments as a part of the function declaration
itself.

Once again, you can call the function as follows:

PS C:\> Add2 10 20
30

However, when you specifically define and name arguments using either of the above techniques, you
can also call the function by naming the arguments as you pass them in:

PS C:\> Add2 -x 10 -y 20
30

This passes the value 10 specifically to the $x argument, and 20 to the $y arguments. It does not make a
difference in the math, but for more complex functions, this technique provides more control and allows
you to pass in arguments out of order, if necessary.

You can also declare a default value for an argument. In this case, if the function is called without a value
for the argument, the function may be able to proceed using a default value:

Function add2 {
 Param ([int]$x = 10, [int]$y = 10)
 $x + $y
}

Calling the function with no input arguments results in a value:

PS C:\> Add2
20

Returning a Value
Returning a value from a function is fairly easy—whatever the function outputs to the default output
stream (typically using Write-Output) is also its return. So, really, all of the sample functions we’ve
looked at so far have returned a value. For example:

PS C:\> $result = add2 10 10
PS C:\> $result
20

Here, our Add2 function was called with 10 and 10 as input arguments. The result of the function was
stored in $result. Anything output from the function becomes part of its result, not just the last thing it
outputs. For example:

252

Windows PowerShell: TFM • 2nd Edition

Functiontest.ps1

$a = "Hello"

function foo ($b) {
 $b.ToUpper()
 $b.ToLower()
}
$x = foo $a
$x

The function foo outputs both the uppercase and lowercase versions of the input argument. $x is set
equal to foo’s output. Notice that the function doesn’t explicitly use Write-Output; instead, it’s simply
allowing the default cmdlet to write to the default output stream. The result of this is:

PS C:\> test\functiontest
HELLO
Hello

This shows that $x contains both pieces of information output by the function.

You can also use the Return keyword to explicitly return a value:

$a = "Hello"

function foo ($b) {
 return $b.ToUpper()
 $b.ToLower()
}
$x = foo $a
$x

There’s a caveat, though: Once you use Return, the function exits immediately. So, in the above example,
$b.ToLower() would never execute, because it comes after the Return.

If a function produces output and uses Return, the value on the Return line is simply appended to any
other output. Consider this function:

$a = "Hello"

function foo ($b) {
 $b.ToUpper()
 Return $b.ToLower()
}
$x = foo $a
$x

The result is identical to the first version of this function:

PS C:\> test\functiontest
HELLO
Hello

The idea of having a function return anything output from that function is neat, but it can also be con-
fusing. We recommend that you concatenate all of your intended output into a variable and use the
Return keyword to return that value from the function. That way your function is only returning data

Script Blocks, Functions, and Filters

253

through one technique, and it’s a technique that’s easy to spot when you’re reviewing the code later.

Piping to Functions
The examples you’ve seen so far in this chapter have demonstrated that you can call functions outright.
However, you can also pipe the output of other commands into a function. When you do this, the
piped-in data is stored in the special $input variable. If multiple objects are piped to a function, then the
function is called only once. In this case, all of the objects are placed into $input at the same time. Here’s
a very simple example of a function that simply outputs whatever’s piped in:

function foo {
 $input
}

Piping this function generates same output for the Get-Process cmdlet as the Get-Process generates
by itself:

PS C:\> get-process | foo

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 37 3 1080 3624 31 0.05 2208 acrotray
 104 5 1144 3384 32 0.02 492 alg
 61 2 548 2136 19 0.52 1076 ati2evxx
 90 3 1152 4664 31 0.72 3960 ati2evxx
 228 7 6316 8688 65 0.64 3216 BTSTAC~1
 182 5 4004 7420 56 98.94 2216 BTTray
 55 3 2060 3044 31 0.16 1508 btwdins
 1093 9 2020 3964 31 51.44 816 csrss
 218 5 2896 7716 45 0.30 5836 dllhost
 697 15 18696 7036 108 160.30 604 explorer

However, consider this revised function:

function foo {
 $input | get-member
}

The function is now piping its input to the Get-Member cmdlet, which changes the output as follows:

PS C:\> get-process | foo

 TypeName: System.Diagnostics.Process

Name MemberType Definition
---- ---------- ----------
Handles AliasProperty Handles = Handlecount
Name AliasProperty Name = ProcessName

Even though this output is truncated, it shows that $input was recognized as an object of the System.
Diagnostics.Process type.

Here’s another example:

254

Windows PowerShell: TFM • 2nd Edition

function foo {
 foreach ($i in $input) {
 $i.ProcessName
 }
}

Below is the partial output from this function when Get-Process is piped to it:

PS C:\> get-process | foo
acrotray
alg
ati2evxx
ati2evxx
BTSTAC~1
BTTray
btwdins
csrss
dllhost

The function takes the output of Get-Process into the $input variable. It then goes through each object
in $input and displays just the ProcessName property of each.

Function Phases
Functions can include up to three special script blocks that execute during different phases of execution.
When filters are discussed in the next section, you’ll see this applies to filters also. These script blocks use
special names to identify themselves:

Begin:•	 This script block is executed only once when the function or filter is first called.

Process:•	 If multiple objects are passed into the function or filter through the pipeline, this script
block is executed once for each object.

End:•	 This script block is executed after all pipeline objects have been dealt with by the Process
script block.

Understanding how these script blocks work might take a little time. With a function, everything in
the pipeline is normally lumped together into the $input variable. However, if the function contains a
Process block, then $input is null. Instead, the Process block uses the special $_ variable to access the
current pipeline object. Here’s an example:

function foo {
 Begin {
 "Running processes:"
 }
 Process {
 $_.ProcessName
 }
 End {
 "Complete"
 }
}

This produces the following output when Get-Process is piped to it:

PS C:\> get-process | foo
Running processes:

Script Blocks, Functions, and Filters

255

acrotray
alg
ati2evxx
ati2evxx
BTSTAC~1
BTTray
btwdins
csrss
dllhost
explorer
firefox
Groove
hpqgalry
hpqtra08
hpwuSchd2
HPZipm12
Complete

The Begin block runs first. For each object in the pipeline, Process is executed once, with the current
object being put into the $_ variable. End is executed when all objects have been processed. Note that
when using any of these blocks, no code can appear outside a block. Any code within the function that’s not
within a block will result in an error. For example:

function foo {
 "Starting function foo"
 Begin {
 "Running processes:"
 }
 Process {
 $_.ProcessName
 }
 End {
 "Complete"
 }
}

Results in this:

PS C:\> get-process | foo
Starting function foo
'begin' is not recognized as a cmdlet, function, operable program,
or script file.
At C:\test\blocktest.ps1:3 char:8
+ Begin <<<< {
Get-Process : Cannot evaluate parameter 'Name' because its argument
is specified as a script block and there is no input. A script
block cannot be evaluated without input.
At C:\test\blocktest.ps1:6 char:10
+ Process <<<< {
'end' is not recognized as a cmdlet, function, operable program,
or script file.
At C:\test\blocktest.ps1:9 char:6
+ End <<<< {
PS C:\>

This occurs because code exists outside a script block when script blocks are in use.

256

Windows PowerShell: TFM • 2nd Edition

Filters
Filters are essentially the same as functions. The big differences are that: 1) filters are declared using the
Filter keyword, and 2) when objects are piped to a filter, the filter executes one time for each object in
the pipeline, rather than just one time for the entire pipeline. Basically, a filter is like a function that con-
tains only a Process script block.

Filters make use of the special $_ variable that represents the current pipeline object. Here’s an example:

filter foo {
 $_.ProcessName
}

When the output of Get-Process is piped to this filter, the filter executes one time for each object that
Get-Process produces. You can see how this differs from a function, which gets all of the objects in one
big chunk through the $input variable. The filter can be used just like you might use a function:

PS C:\> get-process | foo
acrotray
alg
ati2evxx
ati2evxx
BTSTAC~1
BTTray
btwdins

Because the filter only gets one object at a time from the pipeline, it doesn’t need to use a foreach con-
struct the way our earlier function example did.

Functions vs. Filters
The differences between a function and a filter can be summarized as follows:

When something is piped to a function, the piped data goes into the special $input variable and •
the function is executed once.

When something is piped to a filter, the filter is executed one time for each object in the piped •
data. The current object is available in the special $_ variable, and there’s no $input variable.

One thing that can make it difficult to understand these differences is that you can write functions that
behave exactly the same way filters behave. For example, consider this filter:

filter ext {
 $_.Extension
}

Now, use Get-ChildItem to retrieve the child items (files) of the C: drive, and pipe the child items
(files) to the newly-created Ext filter:

PS C:\> get-childitem c: | ext
.wsf
.sql
.BAT
.txt
.SYS
.pdf

Script Blocks, Functions, and Filters

257

.log

.xml

.Log

.wsf

.log

.wsf

.log

.txt

As you can see, the Get-ChildItems cmdlet returns several child objects—all files—that were piped to
Ext. The Ext filter executed one time for each item in the pipeline. For each item in the pipeline, Ext dis-
played its Extension property.

Let’s try the exact same thing with a function:

function ext2 {
 $_.Extension
}

Now run it the same way:

PS C:\> get-childitem c: | ext2
PS C:\>

Why is there no output? The answer is because it’s a function, so it’s executed only one time. It’s not
passed each child item one at a time. Instead, it’s passed an entire collection of child objects in one big
chunk. So, using $_ to access the pipeline object is really accessing that collection, which doesn’t have an
Extension property.

With this in mind, let’s revise our function:

function ext2 {
 foreach ($file in $input) {
 $file.Extension
 }
}

Now we’ll get the same output as with the original filter:

PS C:\> get-childitem c: | ext2
.wsf
.sql
.BAT
.txt
.SYS
.pdf
.log
.xml
.Log
.wsf
.log
.wsf
.log
.txt

This time the function is taking $input and going through each item inside the function.

258

Windows PowerShell: TFM • 2nd Edition

Here’s another way to write the function to get the exact same result:

function ext2 {
 Process {
 $_.Extension
 }
}

This time the function is using the special Process script block, which means the function itself is called
only once:

PS C:\> get-childitem c: | ext2
.wsf
.sql
.BAT
.txt
.SYS
.pdf
.log
.xml
.Log
.wsf
.log
.wsf
.log
.txt

The special Process script block automatically takes $input and executes the script block one time for
each object within $input, making each object accessible via the $_ variable, which is exactly the same as
a filter would do.

So, you may be wondering how to know when you should write a filter and when you should use a func-
tion that uses script blocks. Really, it’s up to you. Whatever is easier for you to understand and use, then
that’s the one you should use. A function containing a Process script block is functionally identical to a
filter.

Cmdlets and Snap-ins
Cmdlets are the basic commands available within PowerShell. As such, they encapsulate code that
performs useful work. This code is normally written by Microsoft. Cmdlets are normally written in a
higher-level .NET Framework language such as VB.NET or C#. For example, the PowerShell docu-
mentation provides this C# example of a cmdlet that generates a random number:

 using System;
 using System.Management.Automation;
 // GetRandom.cs
 /// <summary>
 /// an implementation of a random number generator
 /// </summary>
 [Cmdlet("get", "random")]
 public class GetRandomCommand : Cmdlet
 {
 protected override void EndProcessing()
 {
 Random r = new Random();
 WriteObject(r.Next());
 }

Script Blocks, Functions, and Filters

259

 }

This code would then be compiled using Csc.exe, which is the C# compiler provided with the .NET
Framework Software Development Kit (SDK). Once compiled, it would be called from within
PowerShell as follows:

PS C:\> (new-object random).next()

As explained in the first chapter, snap-ins are more or less collections of cmdlets. You can see which
snap-ins, if any, are available but not active by running Get-PSSnapin and using the -registered
parameter; in a base installation of PowerShell. Nothing will be shown because only the core PowerShell
snap-ins exists that were loaded into the shell by default. However, if you’ve installed third-party snap-
ins, they’ll be displayed. You can subsequently load them into the shell using Add-PSSnapIn:

PS C:\> Add-pssnapin MySnapInName

Creating new snap-ins is fairly complex and typically requires a high-level .NET language, such as
VB.NET or C#. It’s beyond the scope of this book to cover cmdlet or snap-in creation. However, these
examples are provided so you can see a bit of what goes into them and how they’re used to encapsulate
more complex, high-level code for use within PowerShell.

Modularization Tricks
While it’s useful to have script blocks, functions, and filters available for copying and pasting between
scripts, you can also make them a persistent part of your global shell environment by adding them to
your profile. For example, if you’ve created a function that performs some useful task that you’re calling
on again and again, simply add the function into your profile to make it available as soon as PowerShell
starts. In fact, Microsoft uses this trick. The PowerShell Help command is actually a function that is
predefined in the default profile that ships with PowerShell. To add a function to your profile, just open
your profile, which is a text file, and paste the function into your profile.

Error Handling

261

Chapter 20
Error Handling

Error handling is sort of proactive debugging: Using special techniques, you build scripts that anticipate
certain errors and deal with them on the fly, instead of just crashing. PowerShell divides errors into two
categories:

Terminating•	 . Causes your script or command to stop executing.

Non-terminating•	 . Even though a problem still exists, the script or command is allowed to con-
tinue running.

When an error occurs, the error itself is represented by an object called ErrorRecord. This object
contains an exception, which is essentially a fancy word for error. An exception also includes other infor-
mation about why and where the error occurred. Like any other object, ErrorRecord has properties that
you can examine:

Exception•	 . This is the error that occurred. It’s an object in and of itself. For example, Exception.
Message contains an English description of the error.

TargetObject•	 . This is the object that was being operated when the error occurred. This may be
Null if there was no particular object involved.

CategoryInfo•	 . This divides all errors into a few dozen broad categories.

262

Windows PowerShell: TFM • 2nd Edition

FullyQualifiedErrorId•	 . This property identifies the error more specifically. In fact, it is the most
specific identifier.

ErrorDetails•	 . May be Null, but when present contains additional information. It’s actually a
subobject called ErrorDetails.Message. One of its properties is the most specific possible English
description of the error.

InvocationInfo•	 . Tells you the context in which the error occurred, such as a cmdlet name or script
line. May be Null.

A special variable, $error, is used to store the most recent ErrorRecord objects. In fact, by default the
most recent 256 errors are stored. The $error variable is an array. For example, $error[0] contains the
most recent error and $error[1] is the one before that. Each element of $error is an ErrorRecord object.
For example, to see the error text for the most recent error, you would examine:

PS C:\> $error[0].Exception.Message

When an error occurs, you can examine $error to determine whether your script can do anything about
the error. However, before your script has the opportunity to do so, you will have to trap the error.

Error Actions
Most cmdlets support the ubiquitous -ErrorAction argument, which is aliased as just EA. This argu-
ment specifies what should happen if the cmdlet encounters a non-terminating error. The default
behavior is Continue, which means the cmdlet displays the error and tries and continue executing the
cmdlet or script. Other options include:

Stop. Makes the cmdlet stop executing

Inquire. Asks the user what to do

SilentlyContinue. Continues without displaying any clues as to what went wrong

Here’s an example of SilentlyContinue:

PS C:\> $a = Get-WmiObject Win32_OperatingSystem -ea stop

This executes Get-WmiObject. If something goes wrong, it will stop rather than continuing. However,
if you’ve defined a trap handler, which we’ll discuss next, then the trap handler will still execute after
the cmdlet stops. Essentially, the -ea stop is telling the cmdlet, “Hey, if an error occurs, raise an excep-
tion for me.” This exception is the key to making error trapping work: When an exception is raised,
PowerShell will look for a trap handler that’s set up to handle that particular type of exception. If it
finds one, it will execute the handler. So, without an exception, you can’t trap errors in PowerShell.

Note that if you tell a cmdlet to “SilentlyContinue”, then no exception is raised when a problem occurs;
without an exception, PowerShell won’t try to look for a trap handler, and you’ll never be able to “han-
dle” the problem.

Trapping Errors
Trapping in PowerShell can be fairly complicated. When an error occurs in a script, an exception is
“thrown” or “raised.” That exception is delivered to an exception handler, which is called the trap handler.
Following the execution of the handler, the session state established by ErrorPolicy settings is checked
to determine whether or not the script should continue running. If a specific trap handler has not been

Error Handling

263

defined, the exception will simply be delivered to the output mechanism. This usually means the excep-
tion will be displayed and the script will halt. If a trap handler is defined, it may reset the ErrorPolicy,
which determines whether or not the script will continue after the error is resolved.

Let’s briefly summarize how this works. If a trap handler has been defined, the handler is executed when
an error occurs. The handler has access to $error to see what went wrong. It can also set the ErrorPolicy
to determine whether or not the script continues. Defining the trap handler looks a bit like this:

Trap [ExceptionType] {
 # statements go here
 # $_ represents the ErrorRecord that was thrown
 Return [argument] | break | continue
}

The [ExceptionType] is the type of exception you want to trap. This allows you to define a differ-
ent trap handler for different types of errors or exceptions. However, you do not have to include
[ExceptionType]. If you don’t, the trap handler will handle any exceptions that occur. You can actually
define multiple traps for the same exception. If that exception occurs, all of the traps will execute in the
order in which they’re defined.

Within the trap handler, the special $_ variable represents the ErrorRecord that caused the trap handler
to be executed in the first place.

At the end of the trap handler, you have three options:

Continue•	 . This causes script execution to continue at the line of code following the line that
caused the error.

Break•	 . This causes the current scope to stop executing.

Return•	 [argument]. This exits the current scope, optionally returning whatever argument you
specify.

If multiple trap handlers are executed, then the Continue/Break/Return of the last-executed handler is
the one that takes effect.

Understanding how these three options work requires you to understand a bit about trap scope. If you
don’t specify any of these three options, then the trap handler will exit returning $_, which is the error
that caused the trap handler to be called in the first place.

Trap Scope
Remember that PowerShell supports scopes (which we discussed in the chapter “Scripting Overview”).
Essentially, the shell is the global scope. Running a script begins a new scope in which the script itself
runs. In addition, each function that’s executed is a unique scope. You can define a unique trap handler
within each of these scopes. Scripts can have trap handlers, while functions can have self-contained
trap handlers that are private to the function. When an exception is thrown, a trap handler in the cur-
rent scope is executed if one is available. For example, if an error occurs in a script, PowerShell looks for
a trap handler defined within the script. If it can’t find one, the error is raised to the parent scope, and
PowerShell looks for a trap handler there.

When you exit a trap handler using Continue, the next line of code in the same scope as the trap handler
is executed. The Break keyword exits the current scope and goes up one level to the parent scope, pass-
ing the exception up to the parent scope. If another trap handler is defined in the parent scope, it can be
called at this point.

264

Windows PowerShell: TFM • 2nd Edition

The Return keyword does more or less the same thing, except that the specified argument is passed to
the parent scope and no exception is thrown. So, if the trap handler lives inside a function, the Return
keyword will append to the function’s return value and the function exits normally as if nothing bad
occurred.

Throwing Your Own Exceptions
You can use the Throw keyword to throw an exception. This is basically the same thing that happens
when a line of script causes an error, except you’re sort of causing the error on purpose. This can be used
to pass the error up to a parent scope for handling. For example:

Script1.ps1

trap {
 write-host "YIKES!!!"
 throw $_
}
script2

Script2.ps1

trap {
 write-host "In Script2"
 break
}
$a = get-content C:\nofile.txt -erroraction stop

Here, Script1 calls Script2. Script2 defines a trap handler and then attempts to get the content of a non-
existent file. Note that the Get-Content cmdlet is run with the
-erroraction argument, specifying that should an error occur, the cmdlet should stop. The default action
is to Continue. Other choices would be SilentlyContinue or Inquire (e.g., ask the user what to do). So,
when an error occurs, since C:\nofile.txt doesn’t exist, an exception is thrown by Get-Content. It stops
running, and the exception is picked up by the trap handler in Script2. This trap handler outputs “In
Script2” and then breaks. This break causes execution of Script2 to stop, and execution to return to the
parent scope, which is Script1.

The Break keyword passes the exception up to Script1, which has its own trap handler defined. It out-
puts “YIKES!!!” and then throws an exception. The exception it throws is $_, which is the exception that
caused the trap handler to run. Throwing an exception is kind of like using Break—the current scope
exits and the specified exception is passed to the calling scope. Assuming Script1 was launched interac-
tively from within PowerShell, then the global scope is the calling scope and will receive the exception
in $_.

The output looks like this:

PS C:\> script1
In Script2
YIKES!!!
The path 'nofile.txt' does not exist.

At c:\ps\scripts\script2.ps1:6 char:17
+ $a = get-content <<<< C:\nofile.txt -erroraction stop

Error Handling

265

You can see where Script1 was executed from a PowerShell prompt. Script2 was called, and its trap
handler output “In Script2” before passing the exception back to Script1. Script1’s trap handler outputs
“YIKES!!!” before passing the exception back up the line to the global scope. PowerShell’s behavior is to
display the error, “The path ‘nofile.txt’ does not exist” and then list the original location where the error
occurred.

You can also use Throw to throw a text error:

Throw "this is my error"

PowerShell constructs an actual ErrorRecord object out of this. The exception is a generic
RuntimeException, the ErrorID is the string you provided (which will also go into the exception’s
Message property), the ErrorCategory is OperationStopped, and the targetObject is the string you
provided.

If you just call Throw with no argument, the ErrorRecord’s exception is RuntimeException. The
ErrorID is “ScriptHalted,” which also goes into the exception’s Message property. The ErrorCategory is
OperationStopped, and the targetObject property is Null.

Tips for Error Trapping
Take a look at TrapTest.ps1:

TrapTest.ps1

function CheckWMI ($computer) {

 trap {
 write-host "An error occured: "
 write-host "ID: " $_.ErrorID
 write-host "Message: "$_.Exception.Message
 throw "Couldn't check $computer"
 }

 $a = Get-WmiObject Win32_OperatingSystem `
 -property ServicePackMajorVersion `
 -computer $computer -ea stop
 write-host "$computer : " $a.ServicePackMajorVersion

}

write-host "Service Pack Versions:"
CheckWMI("DON-PC")
CheckWMI("TESTBED")

Assuming DON-PC exists and TESTBED doesn’t, this produces the following output:

PS C:\> test\traptest
Service Pack Versions:
DON-PC : 2
An error occured:
ID:
Message: Command execution stopped because the shell variable
"ErrorActionPreference" is set to Stop: The RPC server is unavailable.
(Exception from HRESULT: 0x800706BA)
Couldn't check TESTBED

266

Windows PowerShell: TFM • 2nd Edition

At C:\test\traptest.ps1:8 char:10
+ throw <<<< "Couldn't check $computer"

Notice that -ea stop was specified for the cmdlet, ensuring that it would stop execution and allow the
trap to execute. Let’s make one small change to the original script: Remove the -ea argument, allowing
the default of Continue to take place.

Here’s the revised output:

PS C:\> test\traptest
Service Pack Versions:
DON-PC : 2
Get-WmiObject : The RPC server is unavailable. (Exception from
HRESULT: 0x800706BA)
At C:\test\traptest.ps1:11 char:21
+ $a = Get-WmiObject <<<< Win32_OperatingSystem `
TESTBED :
PS C:\>

See the difference? The trap didn’t get to execute in this case—the error occurred right at the cmdlet. So,
whenever possible, make sure you’re executing cmdlets with an appropriate ErrorAction argument, and
defining a trap to handle whatever errors might crop up.

The PowerShell Debugger and Debugging Techniques

267

Chapter 21
The PowerShell Debugger and Debugging Techniques

Debugging is the process of removing bugs, or errors, from your script. There are really two types of
errors: Simple syntax errors, which are usually just typos, and logic errors, which mean your script won’t
behave like you think it should—even though it might not actually give you any error messages. In this
chapter, we’ll show you a few different types of errors, and walk you through a methodology that helps
locate the error quickly, so that you can fix it and move on.

The Debugging Process
Debugging can be tricky. The best way to debug is to have a thorough understanding of what your script
is doing and how PowerShell is executing it. Let’s work with an example: Without actually running this
script, can you predict where the error will occur?

TrickyDebugging.ps1

$foo = "this is the original text"
1.

function f1($str)2.
{3.

"Calling f1..."
$str.toUpper()4.
}5.

6.
function f2($value)7.
{8.

"Calling f2... what is value?"
$value | get-member9.

268

Windows PowerShell: TFM • 2nd Edition

""
"Before f1 value is: " + $value
"Before f1 foo is: " + $script:foo

$script:foo = f1 $value10.
"after f1 value is: " + $value
"after f1 foo is: " + $script:foo

}11.
12.
""
"BEFORE PASS 1, WHAT IS FOO?"

$foo | get-member13.
""
14.
"PASS 1"

f2 $foo15.
16.
""
"AFTER PASS 1, WHAT IS FOO?"

$foo | get-member17.
""
18.
""
"PASS 2"

f2 $foo19.
20.
""
"global value"

$foo21.

Here’s What We Do
When we’re trying to follow a script like this, we take a piece of paper and a pen, and a printout of
the script, and start reading. We use the paper to keep track of the values inside variables, in much
the same way that PowerShell keeps track of them in memory. Usually, a methodical approach like
that reveals the bug in no time.

After you read through this script, try running it in PowerShell. Then, load the script into an editor like
PrimalScript that offers line numbering, and let’s walk through exactly what’s happening. This is the pro-
cess you’ll have to do anytime you want to debug something.

First the variable, $foo, is assigned a value. This occurs in the script’s scope, which is a child of the shell’s
global scope. Then, two functions, f1 and f2, are defined but not yet executed.

The action starts on line 21, where two literal strings are output and $foo is piped to the Get-Member
cmdlet. This displays the type of object $foo is. If you’ve run the script, you’ll see that it’s a System.
String. Remember this piece of information.

Next, on line 24, a blank line is output. On line 27, $foo is passed to the fg2 function. That function
is defined on line 9; you can see it’s accepting input—whatever was in $foo—into the variable $value.
Line 12 passes $value to Get-Member. Notice anything? The $value variable isn’t recognized as a string
since it’s a generic System.Object. On line 14, $value is output, as is the script-level $foo variable. You’ll
notice in the script’s output that these two match. This is exactly what should occur at this point.

The f1 function is called, passing $value as its input argument. The function places that input into the
$str variable. It outputs “Calling f1…” and then outputs the result of $str.toUpper. We didn’t check, but
we can expect that $str was received as a System.Object, but that PowerShell was able to coerce it into
being a System.String so the ToUpper() method would work. Everything output by function f1 becomes

The PowerShell Debugger and Debugging Techniques

269

its “return value,” which is placed into the script-level $foo object back on line 16. Lines 17 and 18 con-
firm that $value and $foo are now different, since $foo has been replaced with an uppercase version of
$value.

So far so good. However, on line 31, the output indicates that $foo isn’t a System.String anymore; it’s
now a System.Object. Line 36 repeats the whole process, but gets an error on line 6 when f1 is called
a second time, because $str is now an Object that can’t be coerced into a String. As such, it has no
ToUpper() method to call, which is what the error indicates if you run the script.

So, the problem is that at some point PowerShell stopped coercing $str into a String and left it as an
Object. Why? The answer is on the first call to f1. Remember, f1’s output was “Calling f1…” followed by
a carriage return, followed by the result of $str.toUpper. That carriage return is the culprit since it pre-
vents PowerShell from recognizing a string. Instead the carriage return causes it to recognize an array of
two strings. This means the second time f1 is called, $str appears to contain an array, which doesn’t have
a ToUpper() method.

The proper way to have a function output text without having that text become part of the function’s
return value is to use Write-Host. Modify line 5 as follows:

Write-Host "Calling f1..."

When you run the script again, you’ll see it works fine! That’s because the output of f1 never contains a
carriage return, which allows the string to be recognized as a System.String by PowerShell.

Another fix would be to modify line 1 as follows:

[string]$foo = "this is the original text"

Again, just this change makes the script work because the decision on whether or not the string is a
String or an Object is no longer PowerShell’s choice. In fact, $foo is explicitly declared as a String and
stays that way throughout. Strings can contain carriage returns. However, keep in mind when something
is not specifically declared as a string that contains a carriage return, it will be interpreted as an Object.

This is just one example of how nitty-gritty you need to get when you’re debugging. Walk through every
line of code. As in this example, add extra code to help you figure out what’s what, such as when we
used Get-Member to see how data type variables were being treated. This isn’t to say that debugging
is simple. However, the best way to debug is by following your script one line at a time and seeing what
PowerShell is doing.

Please, Believe Us
Nobody believes us when we say, “walk through your script one line at a time.” Invariably, we’ll
watch administrators struggle with a script, glancing at it, thinking they know what the problem is,
and making a change that doesn’t help. You can’t debug like that—we call it “shotgun debugging,”
because your “fixes” are all over the place, and you wind up blasting holes in your script. Trust us,
a methodical, line-by-line approach might seem more time-consuming, but in the end, it isn’t.

Debug Mode and Tracing
As the previous debugging example illustrated, it’s critical to understand what your script is doing and
with what data it’s working. The contents of variables change as your script jumps in and out of func-
tions. So, knowing exactly what’s going on allows you to mentally follow the script’s progress and spot

270

Windows PowerShell: TFM • 2nd Edition

the problems that are causing bugs. Unfortunately, PowerShell v1 lacks a full debugger. In fact, v1 lacks
any means for a third-party debugging to “plug in” and help you. That means you’re more or less on your
own when it comes to figuring out what your scripts are doing.

Fortunately, PowerShell does include a “debug mode” that gives you some ability to see what’s going on
inside your script. Your primary tool is the Set-PSDebug cmdlet that allows you to trace the execution
of your script. This means that by writing status information throughout the script, you can see what’s
happening as your script executes.

Set-PSDebug is a fairly complicated cmdlet that allows you to control the trace level of script execution.
It also allows you to turn on line-by-line script execution, pausing execution after each line so you can
examine the contents of variables to see what your script is doing. We’ll use the DebugTest.ps1 script in
the following example to see how this works:

DebugTest.ps1

function F1 {
 param ($n, $a)
 if (F2($a)) {
 "$n is old enough to vote"
 } else {
 "$n is too young to vote"
 }
}

function F2 {
 param ($var)
 if ($var -gt 17) {
 $true
 } else {
 $false
 }
}

[string]$name = "Joe"
[int]$age = 25

F1 $name, $age

Looking at this script, you’d expect it to display “Joe is old enough to vote.” Walk through the script in
your head to make sure you agree with that before you proceed.

However, running the script produces this output:

PS C:\> test\debugtest
Joe 25 is too young to vote

Clearly this output is not correct. So, what went wrong? The best way to find out is to start debugging in
order to find out what’s in the variables and what execution path the script is taking.

We’ll start by running Set-PSDebug and specifying a trace level. We’ll also turn on step-by-step execu-
tion. There are three possible trace levels:

0: No tracing.•

1: Trace script lines as they execute.•

2: Also trace variable assignments, function calls, and scripts.•

The PowerShell Debugger and Debugging Techniques

271

Level 2 is the most detailed, which is what we want. Actually, specifying the -step argument implies
-trace 1, so we’ll need to explicitly specify -trace 2 to get the detail we want. After running Set-
PSDebug, we’ll run our script.

As you can see, PowerShell now asks on a line-by-line basis if we’re ready to execute that line:

PS C:\> set-psdebug -trace 2 -step
PS C:\> test\debugtest

Continue with this operation?
 1+ test\debugtest
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

If you’re following along, hit “Y” for each of the following lines as we move through this script one line
at a time:

You’ll notice that the first three lines are merely asking for permission to execute the script itself, •
and to recognize the two functions. Press Enter three times to move to line 19 of the script.

After setting a variable, PowerShell confirms the value that’s gone into the variable. This is shown •
by default in yellow text after the line of script is run:

Continue with this operation?
 19+ [string]$name = "Joe"
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):
DEBUG: 19+ [string]$name = "Joe"
DEBUG: ! SET $name = 'Joe'.

Continue with this operation?
 20+ [int]$age = 25
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

We then set the $age variable, which is confirmed.•

Next we call the F1 function.•

Now we’re on line 3 inside of function F1, which calls function F2.•

This is a good point to see what actually got passed into F1 for input arguments. Press “S” and hit •
Enter to suspend the script. Notice that PowerShell drops to a special prompt so we can examine
the values of the $n and $a variables. Notice that $n contains “Joe,” a carriage return, and “25,”
which is not what we expected. Also notice that $a does not contain anything, which is why our
script isn’t working properly.

Continue with this operation?
 3+ if (F2($a)) {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):S
PS C:\>>> $n
Joe
25
PS C:\>>> $a
PS C:\>>>

272

Windows PowerShell: TFM • 2nd Edition

Since we’ve spotted a problem, there’s no point in continuing until this problem is fixed. We’ll •
enter EXIT to return to the script, and then reply with “L” to abandon execution of further lines of
code:

PS C:\>>> exit

Continue with this operation?
 3+ if (F2($a)) {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):l
WriteDebug stopped because the DebugPreference was 'Stop'.
At C:\test\debugtest.ps1:22 char:1
+ F <<<< 1 $name, $age
PS C:\>

So, our problem is that both the name and age are being passed into the $n argument of function F1,
while $a isn’t getting a value at all. The problem? Our initial call to F1:

F1 $name, $age

PowerShell doesn’t use a comma to separate arguments. This line should be:

F1 $name $age

After making this modification, let’s debug the script again. To begin, hit Enter at the debug prompts
until you get to line 3 again. Then, hit S to suspend the script and check the values in $n and $a:

PS C:\> test\debugtest

Continue with this operation?
 1+ test\debugtest
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):
DEBUG: 1+ test\debugtest
DEBUG: ! CALL script 'debugtest.ps1'

Continue with this operation?
 1+ function F1 {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):
DEBUG: 1+ function F1 {

Continue with this operation?
 10+ function F2 {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):
DEBUG: 10+ function F2 {

Continue with this operation?
 19+ [string]$name = "Joe"
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):
DEBUG: 19+ [string]$name = "Joe"
DEBUG: ! SET $name = 'Joe'.

Continue with this operation?
 20+ [int]$age = 25

The PowerShell Debugger and Debugging Techniques

273

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):
DEBUG: 20+ [int]$age = 25
DEBUG: ! SET $age = '25'.

Continue with this operation?
 22+ F1 $name $age
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):
DEBUG: 22+ F1 $name $age
DEBUG: ! CALL function 'F1' (defined in file 'C:\test\debugtest.ps1')

Continue with this operation?
 3+ if (F2($a)) {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):s
PS C:\>>> $n
Joe
PS C:\>>> $a
25
PS C:\>>>

Now we can see that $n contains “Joe” and $a contains “25”, which is what we want. We’ll type EXIT to
return to the script, and hit A to execute all remaining lines without stopping one line at a time.

PS C:\>>> exit

Continue with this operation?
 3+ if (F2($a)) {
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):a
DEBUG: 3+ if (F2($a)) {
DEBUG: ! CALL function 'F2' (defined in file 'C:\test\debugtest.ps1')
DEBUG: 12+ if ($var -gt 17) {
DEBUG: 13+ $true
DEBUG: 4+ "$n is old enough to vote"
Joe is old enough to vote
PS C:\>

You can see that trace messages are still output for each line of code that executes, but we’re not
prompted to run each line. Line 3 calls function F2, which starts on line 12. We can see that the If
construct was true because it executed line 13, which returned the value $true. That resulted in a true
comparison for line 3, which resulted in line 4 executing, producing our script’s output. We’ll disable
tracing by running:

Set-PSDebug -off

Tracing Your Work
PowerShell also provides the Trace-Command cmdlet, which is pretty complicated but provides
insight into PowerShell’s internal workings. Because it provides such a deep view of PowerShell, it
requires significant programming experience to use and understand. Therefore, it will not be cov-
ered, since we consider it a bit beyond the scope of this book.

One good technique for using Set-PSDebug is to either have a printed copy of your script or have your
script up in a script development environment, such as SAPIEN PrimalScript, as you execute the script

274

Windows PowerShell: TFM • 2nd Edition

line-by-line. That way you can see each line of script code in the context of the full script, which allows
you to follow PowerShell’s execution of your script one line at a time. As you debug, keep a piece of
scratch paper handy so you can jot down variables’ contents. You’ll also frequently suspend the script to
check variables’ contents. When PowerShell displays each line of code prior to executing it, ask yourself
what should happen. That way, when you hit Enter to execute that line, you’ll either get the result you
expected indicating all is well, or you won’t, meaning you’ll know where the problem occurred.

Debugging Techniques
In addition to knowing how to use the debugger, there’s a lot to be said for having some good debugging
tricks up your sleeve. In the next few sections, we’ll share some of our favorite tips for making debug-
ging go a bit smoother.

Remember that our goal with debugging is always to get a better idea of what our script is actually doing,
and then compare that to our expectations. If you don’t have any expectations for your script, then you
won’t know if it’s doing anything wrong! Always follow this basic methodology:

Print your script. Seriously, this seems archaic today, but until you get to be a really skilled 1.
debugger, this is a huge help.

Next to each line of the script, jot down a note about what the line does. For example, “queries 2.
two classes from WMI.” Be specific. If you’ve already put these types of comments into your
script—good for you! See how much time it saves, now that you’re debugging?

Walk through your script 3. one line at a time and predict what each will do. Keep two pieces
of scratch paper: One for variables, and one for output. On each, write down what you think
PowerShell will do. This lets you keep track of variables’ values, and predict the output.

With the above pieces of paper in hand, you’re ready to start debugging. In many cases, you can use
the built-in debugger and compare its line-by-line results to your own to see if there’s any difference
(difference = bug). In other cases, you may wish to “beef up” your script by using some of the following
techniques. For each of these, we’re going to be starting with the following script:

#Test-Debug.ps1
$computers = Get-Content c:\computers.txt
foreach ($computer in $computers) {
 Write-Output `n$computer
 $wmi = gwmi -query "select * from win32_logicaldisk where drivetype=3" `
 -computer $computer
 foreach ($drive in $wmi) {
 $device = $drive.deviceid
 $space = $drive.freespace / 1MB
 Write-Output "$device has $space MB free"
 }
}

As-is, this script produces output like this:

The PowerShell Debugger and Debugging Techniques

275

zLOCALHOST
C: has 113432.03515625 MB free
D: has 155298.8046875 MB free
G: has 32439.875 MB free

MEDIASERVER
C: has 136600.62109375 MB free
D: has 194455.5390625 MB free

Writing Verbose Information
Our short sample script above produces useful information: an inventory of free drive space on local
drives for a list of computers. However, if something goes wrong, then we just get error messages mixed
into the output and may have to guess at the cause. Sometimes, having the option to see more detailed
information—that is, more verbose information—is useful. PowerShell’s Write-Verbose cmdlet gives us
this capability. For example, consider this revision:

#Test-Debug.ps1
$computers = Get-Content c:\computers.txt
$qty = $computers | Measure-Object
$qty = $qty.count
Write-Verbose "Inventorying $qty computers"

foreach ($computer in $computers) {
 Write-Output `n$computer
 Write-Verbose "Connecting..."
 $wmi = gwmi -query "select * from win32_logicaldisk where drivetype=3" `
 -computer $computer

 Write-Verbose "Free space on local drives..."
 foreach ($drive in $wmi) {
 $device = $drive.deviceid
 $space = $drive.freespace / 1MB
 Write-Output "$device has $space MB free"
 }
}

You can see in the beginning of the script that we’ve actually calculated information specifically to be
written “verbosely:” the number of computers in the list. When we run this, here’s what we get:

LOCALHOST
C: has 113432.015625 MB free
D: has 155298.8046875 MB free
G: has 32439.875 MB free

MEDIASERVER
C: has 136577.55859375 MB free
D: has 194455.5390625 MB free

Um, wait a minute… that’s the same thing. The trick to Write-Verbose, you see, is that it writes to the
verbose pipeline—which, by default, is turned off. We can turn it on by setting the $VerbosePreference
variable from its default value of “SilentlyContinue” to “Continue,” and rerunning our script:

PS C:\> $verbosepreference = "Continue"
PS C:\> .\test-debug.ps1

276

Windows PowerShell: TFM • 2nd Edition

VERBOSE: Inventorying 3 computers

LOCALHOST
VERBOSE: Connecting...
VERBOSE: Free space on local drives...
C: has 113431.640625 MB free
D: has 155298.8046875 MB free
G: has 32439.875 MB free

MEDIASERVER
VERBOSE: Connecting...
VERBOSE: Free space on local drives...
C: has 136573.43359375 MB free
D: has 194455.5390625 MB free

Of course, you can’t see it here, but the verbose information it not only prefaced by “VERBOSE:” but
also displayed in an alternate color so that it stands out. Now we can watch our script run with a lot
more detail about what’s happening at each step. This is useful when you’re not necessarily debugging,
too, just to help track down exactly what’s going on in the script.

Writing Debugging Information
Debugging information is often much less attractively formatted, and typically includes “inside” infor-
mation. Here’s a modified script that includes this information, using the Write-Debug cmdlet:

#Test-Debug.ps1
$computers = Get-Content c:\computers.txt
$qty = $computers | Measure-Object
Write-Debug "`$qty is $qty"

$qty = $qty.count
Write-Debug "`$qty is $qty"
Write-Verbose "Inventorying $qty computers"

foreach ($computer in $computers) {
 Write-Debug "`$computer is $computer"
 Write-Output `n$computer

 Write-Verbose "Connecting..."
 $wmi = gwmi -query "select * from win32_logicaldisk where drivetype=3" `
 -computer $computer

 $wmi | Measure-Object | write-debug

 Write-Verbose "Free space on local drives..."
 foreach ($drive in $wmi) {
 $device = $drive.deviceid
 Write-Debug "`$device is $device"

 $space = $drive.freespace / 1MB
 Write-Debug "`$space is $space"
 Write-Output "$device has $space MB free"
 }
}

Our strategy is to put a Write-Debug after every variable assignment or change, outputting the new
variable value. This lets us keep close tabs on what the script is doing. You’ll notice that we wrote strings

The PowerShell Debugger and Debugging Techniques

277

like “`$qty is $qty” a lot. The first $qty will be displayed literally, because we’ve escaped the dollar sign.
The second $qty will be replaced with the variable’s actual value.

Write-Debug writes to PowerShell’s debug pipeline, and the $DebugPreference variable controls
whether or not that pipeline is on or off. By default, it’s set to “SilentlyContinue”, which means “don’t
display.” We’ll set it to “Continue” to see our debug output.

PS C:\> $debugpreference = "continue"
PS C:\> .\test-debug.ps1
DEBUG: $qty is Microsoft.PowerShell.Commands.GenericMeasureInfo
DEBUG: $qty is 3
VERBOSE: Inventorying 3 computers
DEBUG: $computer is LOCALHOST

LOCALHOST
VERBOSE: Connecting...
DEBUG: Microsoft.PowerShell.Commands.GenericMeasureInfo
VERBOSE: Free space on local drives...
DEBUG: $device is C:
DEBUG: $space is 113431.625
C: has 113431.625 MB free
DEBUG: $device is D:
DEBUG: $space is 155298.8046875
D: has 155298.8046875 MB free
DEBUG: $device is G:
DEBUG: $space is 32439.875
G: has 32439.875 MB free
DEBUG: $computer is MEDIASERVER

MEDIASERVER
VERBOSE: Connecting...
DEBUG: Microsoft.PowerShell.Commands.GenericMeasureInfo
VERBOSE: Free space on local drives...
DEBUG: $device is C:
DEBUG: $space is 136542.49609375
C: has 136542.49609375 MB free
DEBUG: $device is D:
DEBUG: $space is 194455.5390625
D: has 194455.5390625 MB free

Wow, that’s a lot of extra information! As you can see, it’s a bit poorly formatted, but that’s okay because
this information is just for us, so we can follow our script. We can now see “inside” the script, looking at
every value as it changes and following the script’s execution with great precision.

The best part about Write-Debug and Write-Preference is that you can use them in your script from
the very start, before you every have to debug. By default, their output isn’t displayed, but you can turn
them on whenever you need them and turn them off again when you’re finished. A really cool part about
these cmdlets is a development environment like PrimalScript: If you set the $DebugPreference variable
in your script, say as the first line, then PrimalScript captures this debug information to a separate pane,
which allows you to review the debug information separately from your script’s primary output.

Using Nested Prompts
We talked about nested prompts first in the chapter “Working with the PowerShell Host.” A nested
prompt is one which occurs inside an existing pipeline. For debugging purposes, it’s pure gold: You can
have your script “pause” in mid-execution, open a new nested prompt, and then use the shell inter-

278

Windows PowerShell: TFM • 2nd Edition

actively inside your script’s scope. That means all your script variables and so forth will be completely
available. We’re going to go back to our original example script and throw in a nested prompt:

#Test-Debug.ps1
$computers = Get-Content c:\computers.txt
foreach ($computer in $computers) {
 Write-Output `n$computer
 $wmi = gwmi -query "select * from win32_logicaldisk where drivetype=3" `
 -computer $computer
 $host.EnterNestedPrompt()
 foreach ($drive in $wmi) {
 $device = $drive.deviceid
 $space = $drive.freespace / 1MB
 Write-Output "$device has $space MB free"
 }
}

Important!
Keep in mind that the capabilities of the $Host variable are typically available only within the
PowerShell.exe console host. If you’re running your script from PrimalScript, configure it to not cap-
ture script output. This will launch your script in a new instance of PowerShell.exe.

When we run this script, as soon as it hits the $Host.EnterNestedPrompt() line, a new nested prompt is
opened. We can then examine variables, such as the $wmi variable we just created, to see if they contain
what we expect. When we’re done, entering Exit will exit the nested prompt, returning control to the
script. Here’s what it looks like from the shell:

PS C:\> .\test-debug.ps1

LOCALHOST
PS C:\>>> $wmi

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 118939058176
Size : 250056704000
VolumeName :

DeviceID : D:
DriveType : 3
ProviderName :
FreeSpace : 162842599424
Size : 250056704000
VolumeName : Storage

DeviceID : G:
DriveType : 3
ProviderName :
FreeSpace : 34015674368
Size : 163913347072
VolumeName : Backup

The PowerShell Debugger and Debugging Techniques

279

PS C:\>>> exit
C: has 113429.125 MB free
D: has 155298.8046875 MB free
G: has 32439.875 MB free

MEDIASERVER
PS C:\>>>

Nested prompts can be used to “break” or “pause” your script at a specific point, let you examine and
change things, and then pick right back up where you left off—an invaluable debugging technique.

PowerShell for VBScript, Cmd.exe, and *nix Users

281

Chapter 22
PowerShell for VBScript, Cmd.exe, and *nix Users

PowerShell can seem intimidating for VBScript users and familiar for *nix users—and both types of
user would be wrong, in a way! In reality, PowerShell’s a lot more like VBScript (well, in some ways, at
least) than you might think, and although it’s definitely inspired by *nix shells, its differences are sig-
nificant and profound. In this chapter, we’ll try to address some of the most common “migration points”
that come up as folks start to learn PowerShell.

If You’re Used to VBScript…
Let’s quickly clear up a potential point of confusion: There’s no easy, set way to convert a VBScript to a
PowerShell script. But why would you want to? If the VBScript works, keep it! After all, VBScript isn’t
going anywhere. However, in this chapter we will present a sort of “jump-start” guide to PowerShell
using VBScript as a basis. That way, if you do know VBScript, you’ll be able to start writing new scripts
in PowerShell a bit more quickly. So, this chapter is about converting you to PowerShell, not your scripts.

Let’s begin by acknowledging that PowerShell is very different from VBScript. You will need to learn
new technologies and concepts to use PowerShell effectively. However, there are some similarities, espe-
cially in PowerShell’s scripting language, that can be a bit easier to learn if you see them side by side
with their VBScript counterparts. So, in this chapter we’ll cover the similarities between PowerShell and
VBScript.

As we begin, keep in mind that PowerShell is a management shell. It isn’t intended for logon scripts
(although it can definitely be used as a logon script processor), so there are a lot of topics, such as map-
ping drives and checking for group membership, that we will not cover in this chapter. PowerShell’s
best use is not as a logon script processor. For the time being, stick with VBScript or KiXtart for those
scripts.

282

Windows PowerShell: TFM • 2nd Edition

Perhaps most importantly is that PowerShell works in a way that is radically different from VBScript.
So, we don’t want you to try and “convert” your VBScript code to PowerShell. Instead, rewrite those
scripts from scratch, if you must, using PowerShell’s unique, and often easier, way of doing things.

Variables
PowerShell variables do not need to be declared up front. That’s true in VBScript, except VBScript does
give you the option of doing so, while PowerShell does not. However, explicit variable declaration is
always optional in PowerShell.

Variables in PowerShell, like those in VBScript, can contain any type of data. In VBScript, this is done
by making all variables the Variant type. In PowerShell, variables are the more generic Object type.
Unlike in VBScript, you can tell PowerShell to force a variable to be of a certain type:

[string]$var = "hello"

This creates a new variable, $var, and forces it to be a string. Notice that all variable names being with $.
Apart from that, PowerShell variable naming rules are similar to the rules in VBScript.

Variable naming in VBScript typically uses Hungarian notation, where a three-letter prefix such as obj,
str, or int is used to denote the type of data the variable is intended to hold. PowerShell does not require
this. In fact, when working with PowerShell this isn’t considered a best practice. However, you’re wel-
come to name your variables in this fashion if you’re accustomed to doing so.

COM Objects
If you’ve used VBScript, KiXtart, or any similar scripting language for Windows administration, at some
point you’ve almost certainly used a Component Object Model (COM) component. Windows is built
on COM, and COM objects provide significant functionality for files, folders, WMI, and much more.
Scripting without COM would be almost unthinkable.

However, PowerShell isn’t built on COM; instead it’s built on the .NET Framework. The Framework
replaces much of the functionality you may have used COM for, but not all. As a result, there’s often still
a need to utilize an old COM component. Sometimes, that need might simply be that you know how to
do something using a particular COM component and you don’t have time to learn an alternative way
in PowerShell. Fortunately, PowerShell includes an adaptation layer that permits you to utilize COM
components.

Instantiating Objects
If you’ve used VBScript, you may be familiar with syntax like this:

Dim objFSO
Set objFSO = CreateObject("Scripting.FileSystemObject")

In VBScript, this statement instantiates a COM component having the ProgID Scripting.
FileSystemObject. When executed, VBScript asks Windows to instantiate the component. In turn,
Windows looks up the ProgID in the registry to locate the actual DLL involved, loads the DLL into
memory, and plugs it into the script. The variable objFSO represents the running DLL, providing an
interface for working with it.

PowerShell can do nearly the same thing:

PowerShell for VBScript, Cmd.exe, and *nix Users

283

$fso = new-object -com Scripting.FileSystemObject

Using the same ProgID, PowerShell can instantiate the COM object and assign it to a variable so you
can work with it. Notice the -com parameter, which is easy to forget. However, if you don’t include it,
PowerShell will not be able to “find” the COM object and instantiate it for you.

Using Objects
Once instantiated, using a COM object’s properties and methods is straightforward:

$file = $fso.OpenTextFile("C:\file.txt",8,True)

You can even pipe the COM object to the Get-Member cmdlet to see the available properties and
methods of a COM object:

PS C:\> $fso | get-member

 TypeName: System.__ComObject#{2a0b9d10-4b87-11d3-a97a-00104b365c9

Name MemberType Definition
---- ---------- ----------
BuildPath Method string BuildPath (string, string)
CopyFile Method void CopyFile (string, string, bool)
CopyFolder Method void CopyFolder (string, string, bool
CreateFolder Method IFolder CreateFolder (string)
CreateTextFile Method ITextStream CreateTextFile (string, b
DeleteFile Method void DeleteFile (string, bool)
DeleteFolder Method void DeleteFolder (string, bool)
DriveExists Method bool DriveExists (string)
FileExists Method bool FileExists (string)
FolderExists Method bool FolderExists (string)
GetAbsolutePathName Method string GetAbsolutePathName (string)
GetBaseName Method string GetBaseName (string)
GetDrive Method IDrive GetDrive (string)
GetDriveName Method string GetDriveName (string)
GetExtensionName Method string GetExtensionName (string)
GetFile Method IFile GetFile (string)
GetFileName Method string GetFileName (string)
GetFileVersion Method string GetFileVersion (string)
GetFolder Method IFolder GetFolder (string)
GetParentFolderName Method string GetParentFolderName (string)
GetSpecialFolder Method IFolder GetSpecialFolder (SpecialFold
GetStandardStream Method ITextStream GetStandardStream (Standa
GetTempName Method string GetTempName ()
MoveFile Method void MoveFile (string, string)
MoveFolder Method void MoveFolder (string, string)
OpenTextFile Method ITextStream OpenTextFile (string, IOM
Drives Property IDriveCollection Drives () {get}

However, there’s an important caveat here. PowerShell creates this list by looking at the COM object’s
type library that is either embedded in the DLL or included in a separate TLB file. If PowerShell can’t
find the type library, then it can’t use the COM component. Most COM components come with type
libraries, especially the COM components written by Microsoft. However, some COM components
don’t have a type library, or if they do, the type library isn’t properly registered with Windows. In these
cases, the COM component won’t be usable within PowerShell.

In addition, if a type library is wrong, which happens occasionally, PowerShell may not be able to utilize

284

Windows PowerShell: TFM • 2nd Edition

the entire COM object. For example, the Microsoft-supplied type library for the WshController COM
object provides an incorrect spelling for the Execute method. This makes the object difficult to use prop-
erly. However, in the case of this particular object, there’s little reason to use it inside PowerShell.

GetObject
Another way you may have used COM in VBScript was with GetObject(), which often connects to an
existing object or service. In VBScript, you could do this:

Set objUser = GetObject("WinNT://don-pc/administrator,user")

This example uses the ADSI WinNT provider to retrieve the local administrator user.

GetObject() in PowerShell is a bit more difficult. Unfortunately, PowerShell doesn’t have a cmdlet that
does exactly this. In fact, PowerShell doesn’t even provide a cmdlet for ADSI; instead, as outlined in
the “Using ADSI in Windows PowerShell” chapter, you use the [ADSI] type accelerator, which works
similarly to GetObject() in VBScript. Had this GetObject() example been for WMI, we could use the
Get-WmiObject cmdlet instead. In some cases, WMI offers an alternative to what you were doing
in ADSI (especially with member and standalone computers), although certainly not always (as with
domain controllers).

Comments
VBScript uses a single quote (‘) to begin a comment, while PowerShell uses the hash (#) symbol.

Loops and Constructs
As illustrated in the following table, there’s nearly a one-to-one correspondence between VBScript and
PowerShell constructs:

In VBScript… In PowerShell…
Exit Do, Exit For Break
For…Next For
For Each…Next Foreach
Function Function
Sub (no equivalent; use Function)
If…Then If
If…ElseIf…Else If, ElseIf, and Else
Select…Case Switch
Do…Loop Until, Do Until…
Loop

Do…until, Do until

Do…Loop While, Do While…
Loop

Do…While, While

Refer to the chapter “Loops and Decision-Making Constructs” to review the discussion of these loops
and constructs.

PowerShell for VBScript, Cmd.exe, and *nix Users

285

Type Conversion
VBScript provides a number of specific functions to convert between data types including CStr(),
CInt(), and CDate(). PowerShell uses a single operator, -as, to do the same thing:

$var = $var2 -as [string]

This example attempt to convert $var2 into a string and store the result in $var. Refer to the “Variables,
Arrays, and Escape Characters” chapter for more information on variables and types.

Operators and Special Values
In many cases, PowerShell uses different operators than VBScript, and it uses some operators differently.
The following table provides a summary of these operators:

In VBScript…Purpose… In PowerShell…
= Assignment =
= Equality test -eq
> Greater than -gt
< Less than -lt
>= Greater than or equal to -ge
<= Less than or equal to -le
True Boolean True $true
False Boolean False $false
AND Boolean AND -and
NOT Boolean NOT -not
OR Boolean OR -or
AND Binary AND -band
OR Binary OR -bor
NOT Binary NOT -bnot
&, + String concatenation +

Refer to the chapter “Operators” to review the discussion of the additional operators offered in
PowerShell.

Functions and Subs
VBScript and PowerShell declare functions similarly. Here’s a function in VBScript that returns TRUE
if the input parameter is more than 5; otherwise, it returns FALSE:

Function IsMoreThan5(intValue)
 If intValue > 5 Then
 IsMoreThan5 = True
 Else
 IsMoreThan5 = False
 End if
End Function

Notice that VBScript returns a value by setting the function name equal to the return value. PowerShell

286

Windows PowerShell: TFM • 2nd Edition

works similarly:

Function IsMoreThan5($Value) {
 If ($Value -gt 5) {
 Return $true
 } Else {
 Return $false
 }
}

Notice that the Return keyword is used to return the function’s value. In fact, any output of the function
will be appended to the return value. The following is functionally identical:

Function IsMoreThan5($Value) {
 If ($Value -gt 5) {
 $true
 } Else {
 $false
 }
}

This example shows that outputting $true or $false into the pipeline makes those values the function’s
return value. Refer to the “Script Blocks, Functions, and Filters” chapter to review the discussion of how
functions have significantly expanded capabilities in PowerShell.

PowerShell does not provide a separate Sub construct as VBScript does. However, a Function that
returns no value is essentially the same as a Sub.

Error Handling
VBScript’s On Error Resume Next statement, and the corresponding On Error Goto 0 statement, are
used to implement error handling. Essentially, you execute On Error Resume Next before any opera-
tion that may result in an error, and then check the special Err object to see if an error did indeed occur.
VBScript’s error handling is actually quite primitive, while PowerShell’s is much more advanced.

In brief, you declare a trap, which is what PowerShell executes when an error (or exception) occurs (or is
thrown). You do whatever you need to do within the trap, and then tell PowerShell to either continue,
which resumes execution on the line following whatever line caused the exception, or break, which halts
execution. For example:

Trap {
 # handle error here
 Continue
}

Refer to the “Error Handling” chapter to review the discussion of how to define different trap blocks for
different types of exceptions.

Windows Management Instrumentation
This is an easy point of conversion. Any time you used GetObject() or some other means of retrieving
WMI information, just use the Get-WmiObject cmdlet or its convenient alias, Gwmi, in PowerShell.
However, notice that just running it with a class name won’t return every property of the class by default:

PowerShell for VBScript, Cmd.exe, and *nix Users

287

PS C:\> gwmi win32_operatingsystem

SystemDirectory : C:\WINDOWS\system32
Organization : SAPIEN Technologies, Inc.
BuildNumber : 2600
RegisteredUser : Don Jones
SerialNumber : 76487-338-1820253-22242
Version : 5.1.2600

Notice that this doesn’t return every property for the class. Instead, the properties shown are defined by
a special view within PowerShell. While you can update that view to list more properties, you can also
use the -property parameter if there’s a specific property you need:

PS C:\> gwmi win32_operatingsystem -property buildnumber

BuildNumber : 2600
__GENUS : 2
__CLASS : Win32_OperatingSystem
__SUPERCLASS :
__DYNASTY :
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :

If necessary, you can assign that to a variable. However, notice that you get back a collection of multiple
instances that can be referred to individually by number, as shown here:

PS C:\> $obj = gwmi win32_logicaldisk
PS C:\> $obj[0]

DeviceID : A:
DriveType : 2
ProviderName :
FreeSpace :
Size :
VolumeName :

PS C:\> $obj[1]

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 91841773568
Size : 153006624768
VolumeName :

If you just need a specific property from an instance:

PS C:\> $obj[1].DriveType
3

288

Windows PowerShell: TFM • 2nd Edition

Run Help Gwmi to get a comprehensive list of parameters.

Active Directory Services Interface
It’s unfortunate that PowerShell doesn’t come with a built-in “Get-ADSIObject” cmdlet. Undoubtedly
a similar cmdlet will be available in the future, but it is not yet included in PowerShell v1.0. You can
use WMI to perform some ADSI queries. You can also use the underlying .NET Framework directory
services classes, and the [ADSI] type accelerator to manipulate AD. There are two chapters you can
review for some examples of what you can do in PowerShell with ADSI: “Using ADSI in Windows
PowerShell” and “Managing Directory Services.” For now, however, you may want to continue using
VBScript for more complex ADSI-related tasks.

Common Tasks in VBScript
You are probably familiar with the VBScript items listed below. Therefore, we’ll quickly point out how to
do nearly the same thing in PowerShell:

WScript.Echo•	 . For producing output to the command line, use the Write-Host cmdlet.

MsgBox()•	 , InputBox(). No direct analog in PowerShell, since it’s intended to be entirely com-
mand line. Use the Read-Host cmdlet to accept input from the command line.

WMI.•	 Use Get-WmiObject.

Working with text files. •	 Refer to the “Managing Files and Folders” chapter. Several PowerShell
cmdlets are available to manipulate text files. The basic technique is to read the entire file into an
object and then enumerate through each line of the file as a child object.

ADSI.•	 Tricky because there’s not a direct equivalent in PowerShell v1. However, refer to the
discussion earlier in this chapter for information on how to work with ADSI. You’ll primarily
use the [ADSI] type accelerator, which will accept the same ADSI queries that you used with
GetObject() in VBScript.

Working with the registry.•	 Review the “Managing the Registry” chapter for more information.
PowerShell provides a registry “drive” and cmdlets for working with the registry.

PowerShell Paradigm Change
Probably the biggest mental leap you can make when moving from VBScript to PowerShell is that
PowerShell is intended to deal with objects and not text. That’s all well and good in theory, but it can be
a confusing concept to implement until you get used to it. For example, look at ServicePack.vbs, which
is a VBScript that reads a list of names from C:\Computers.txt (one name per line) and uses WMI to
display the service pack version for each.

ServicePack.vbs

Dim strFile
strFile = "C:\computers.txt"

Dim objFSO, objTS, strComputer
Set objFSO = CreateObject("Scripting.FileSystemObject")
If objFSO.FileExists(strFile) Then
 Set objTS = objFSO.OpenTextFile(strFile)
 Do Until objTS.AtEndOfStream
 strComputer = objTS.ReadLine

PowerShell for VBScript, Cmd.exe, and *nix Users

289

 Dim objWMI
 Set objWMI = GetObject("winmgmts:\\" & strComputer & _
 "\root\cimv2")

 Dim colResults, objResult, strWMIQuery

 strWMIQuery = "SELECT * FROM Win32_OperatingSystem"
 Set colResults = objWMI.ExecQuery(strWMIQuery)
 For Each objResult In colResults
 WScript.Echo strComputer & ":" & _
 objResult.ServicePackMajorVersion
 Next

 Loop
End If

objTS.Close
WScript.Echo "Complete"

As mentioned previously, you’re probably familiar enough with VBScript to follow what this script is
doing. However, take time to notice the methodology. Each time through the Do loop, a line is read
from the text file, which is assumed to be a computer name. A WMI connection to that computer is
created, and the Win32_OperatingSystem class retrieved. For each instance of the class, a loop displays
the ServicePackMajorVersion property.

Now look at ServicePack.ps1, which does the same thing.

ServicePack.ps1

$names = get-content "c:\computers.txt"
foreach ($name in $names) {
 $wmi = Get-WmiObject win32_operatingsystem `
 -property servicepackmajorversion `
 -computer $name
 $sp = $wmi.servicepackmajorversion
 write-host "$name : $sp"
}

First of all, notice how much shorter this is! It actually could be shorter, but we wrote it more for clar-
ity than brevity. Again, the real thing to notice is the methodology. The Get-Content cmdlet is used
to retrieve the entire contents of the text file into $names, all in one step. A foreach loop goes through
each child item (or line) of the text file, pulling each child item into $name. The Get-WmiObject cmd-
let retrieves just the desired property, placing the class instance into $wmi. The $sp variable is used to
hold the actual property in which we’re interested. The Write-Host is used to output the information to
the screen.

Keep in mind that, where VBScript typically requires something to be done in a particular way,
PowerShell is a lot more flexible. ServicePack2.ps1 demonstrates the same script, from a different
approach.

ServicePack2.ps1

filter getversion {
 $wmi = Get-WmiObject win32_operatingsystem `
 -property servicepackmajorversion `
 -computer $_
 $sp = $wmi.servicepackmajorversion

290

Windows PowerShell: TFM • 2nd Edition

 write-host "$_ : $sp"
}

get-content "c:\computers.txt" | getversion

Here, the content of the text file is piped to “getversion”, which is a custom filter. This filter is called once
for each object or line of text in the text file. The special $_ variable refers to the current object, which
would be a single computer name. ServicePack3.ps1 simplifies this even further.

ServicePack3.ps1

filter getversion {
 $wmi = Get-WmiObject win32_operatingsystem `
 -property servicepackmajorversion `
 -computer $_
 write-host "$_ : " $wmi.servicepackmajorversion
}
get-content "c:\computers.txt" | getversion

All that’s been done here is to remove the $sp variable. This was done because $wmi.servicepackma-
jorversion is now output directly, which removes a line of code. This could be simplified even further.
However, the VBScript example we started with has been simplified about as much as possible.

Getting used to PowerShell’s way of working with objects takes some time. However, if you make the
effort, these examples have demonstrated how much more quickly you can produce usable administra-
tive scripts.

If You’re Used to Cmd.exe
By and large, almost everything you know and do in Cmd.exe works the same in Windows PowerShell,
so jump right in and start working! There are, of course, exceptions, which can be frustrating as you’re
getting started.

First, remember that PowerShell uses a space to separate elements of a command. So, this consider this
command from Cmd.exe:

C:\Test\> cd..

It isn’t legal in PowerShell. Instead, you have to use this syntax, with a space between the command (or
rather, the alias) and the argument:

PS C:\> cd ..

Spaces in file and folder paths can be frustrating, too. Simply remember to enclose them in quotes using
one of the following methods:

Enclose portions of a path that contain a space in quotation marks, as in cd \”program files”\•
sapien.

Use a backtick to escape the spaces, as in cd \program` files\sapien.•

Enclose the entire path in quotation marks, as in cd “\program files\sapien”.•

Which method you use is up to you. Also remember that whenever PowerShell sees a space followed by
a dash, it assumes that you’re giving it a command-line argument. That can be a problem sometimes, so

PowerShell for VBScript, Cmd.exe, and *nix Users

291

you may need to enclose things in quotation marks to force PowerShell to behave in a certain way.

Perhaps the most useful utility for troubleshooting comes with the free PowerShell Community
Extensions (http://www.codeplex.com/PowerShellCX): Echoargs.exe. This handy external utility will
accept a command line and tell you how PowerShell interpreted it. Be sure to check it out if you’re hav-
ing difficulty getting a particular Cmd.exe-style command line to run properly from PowerShell.

For
In the CMD shell, you can use the FOR command to process a text file or the results of a command. As
an example, you might have an expression like this:

C:\>for /f %s in (servers.txt) do @wmic /node:%s os get csname,caption

This expression will go through the servers.txt file, presumably a list of server names, and then use
Windows Management Instrumentation Command Line (WMIC) to return the caption from OS,
which is an alias for the Win32_OperatingSystem class and the server name.

In PowerShell, you will use the ForEach-Object cmdlet. In this particular scenario, you will also use
Get-WmiObject:

PS C:\>foreach ($s in (get-content servers.txt)) {
>> Get-WmiObject win32_operatingsystem -computer $s `
>> | format-table CSName,Caption -auto
>> }
>>

This will work, but in PowerShell you can simplify this further:

PS C:\>Get-WmiObject win32_operatingsystem -computer (get-content servers.txt) |
>> Format-Table CSName,Caption -auto
>>

In this example, the ForEach cmdlet is implied by:

(get-content servers.txt)

PowerShell understands that the Get-Content cmdlet is returning an array of strings and will auto-
matically enumerate the array when used in this context.

Often, administrators need to parse out files:

C:\>for /f "tokens=1,2 delims=," %t in (tasks.csv) do @echo %t= %u

This example gets the first and second element of each line in tasks.csv, using the comma as the delim-
iter. In PowerShell, you would achieve the same result with an expression like this:

PS C:\> foreach ($line in (get-content tasks.csv)) {$a=$line.split(",");$a[0]+" = "+$a[1]}

As we did earlier, we’re getting each line of the file, but instead of displaying it, we’re using the Split()
method, specifying the comma as the delimiter to create a temporary array:

292

Windows PowerShell: TFM • 2nd Edition

{$a=$line.split(",")

In PowerShell, the first array element starts at 0, so to display the first two elements we use code like
this:

$a[0]+" = "+$a[1]

Working with Environment Variables
Not only does PowerShell have its own variables, but it can also access environmental variables through
the Environment provider. To retrieve all environmental variables in a CMD shell, you would type:

C:\> set

In PowerShell, you can use the DIR command because the Environment provider presents the variables
as a drive:

PS C:\> dir env:

To reference a specific environmental variable, use syntax like this:

PS C:\> $env:windir
C:\WINDOWS

You can modify the environmental variables or even add new ones, but they won’t change environmental
variables in your CMD shell nor will they be seen outside of PowerShell. You need to modify the reg-
istry if you want to make permanent changes. Once your PowerShell session terminates, environmental
variable changes will also terminate.

 “If” Comparisons
In the CMD shell, the If statement is used frequently, especially in batch files. PowerShell also has an
If statement that is not too dissimilar. Let’s look at some of the ways you use If in a CMD shell and the
corresponding PowerShell equivalent.

One common usage in a CMD session is to check for the existence of a file:

C:\> if exist %windir%\notepad.exe echo Found Notepad

In PowerShell:

PS C:\> if (dir $env:windir\notepad.exe) {write-host "Found Notepad"}

If the Dir command is successful, then the If statement will be TRUE and the Write-Host script block
will be executed.

In the CMD shell, you might also have taken this to the next step:

C:\>if exist %windir%\notepad.exe (echo Found Notepad) ELSE echo Notepad not found

PowerShell for VBScript, Cmd.exe, and *nix Users

293

The PowerShell syntax is very similar:

PS C:\> if (dir $env:windir\notepad.exe) {write-host "Found Notepad"
>> } else {
>> write-host "Notepad not found"
>> }
>>

This code works fine when Notepad.exe exists, but if it doesn’t, PowerShell will generate an error and
the last part of the If statement will never run. To instruct PowerShell to continue so that your error
handling will work, run this command first:

PS C:\> $erroractionpreference="SilentlyContinue"

This instructs to ignore any error and continue. To change back to PowerShell’s default, use this
command:

PS C:\> $erroractionpreference="Continue"

There is more information on using If in PowerShell in the “Loops and Decision Making Constructs”
chapter.

If You’re Used to *nix
UNIX and Linux variants are so geared to text-based operations that they can take an act of will to
wrench your mind out of the text-based way of doing things. The two most common question we’re
asked from *nix administrators is whether or not PowerShell has something like Grep or Awk—two
text-parsing utilities that every *nix administrator relies upon as heavily as they do the oxygen they
breathe. PowerShell does not have these utilities, because it does not need these utilities; PowerShell
offers a profoundly better way of performing tasks that doesn’t require text parsing. Because PowerShell
often “looks” so much like a *nix shell (PowerShell was, after all, inspired by shells like Bash), *nix
administrators unconsciously start applying their *nix know-how to the tasks they need to accomplish in
PowerShell. If you find yourself doing that, stop and think about the PowerShell way to accomplish the
task—using objects.

For example, we’re often asked if there’s a way to Grep the output of Get-Alias in order to locate all
the available aliases for a given cmdlet. That’s a classically *nix way of attacking the problem: You have a
command that produces a list of aliases and their corresponding cmdlets, so you parse that text output
looking for a specific cmdlet name—thus, locating all the aliases in the process.

But remember that things are different in PowerShell. An alias or a cmdlet, creates an object, complete
with properties and methods. The output of Get-Alias is not text: It is a collection of Alias objects.
Piping one to Get-Member reveals its properties:

PS C:\> get-alias | get-member

 TypeName: System.Management.Automation.AliasInfo

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()

294

Windows PowerShell: TFM • 2nd Edition

GetType Method System.Type GetType()
get_CommandType Method System.Management.Automation.CommandTypes get_Com...
get_Definition Method System.String get_Definition()
get_Description Method System.String get_Description()
get_Name Method System.String get_Name()
get_Options Method System.Management.Automation.ScopedItemOptions ge...
get_ReferencedCommand Method System.Management.Automation.CommandInfo get_Refe...
get_ResolvedCommand Method System.Management.Automation.CommandInfo get_Reso...
set_Description Method System.Void set_Description(String value)
set_Options Method System.Void set_Options(ScopedItemOptions value)
ToString Method System.String ToString()
CommandType Property System.Management.Automation.CommandTypes Command...
Definition Property System.String Definition {get;}
Description Property System.String Description {get;set;}
Name Property System.String Name {get;}
Options Property System.Management.Automation.ScopedItemOptions Op...
ReferencedCommand Property System.Management.Automation.CommandInfo Referenc...
ResolvedCommand Property System.Management.Automation.CommandInfo Resolved...
ResolvedCommandName ScriptProperty System.Object ResolvedCommandName {get=$this.Reso...

Hmm, the ResolvedCommandName property might contain the name of the cmdlet that the alias
resolves to. Let’s test it by examining an alias to see what that property contains:

PS C:\> $aliases = get-alias
PS C:\> $aliases[0].resolvedcommandname
Add-Content

Sure enough! So, if we’re looking for aliases of the Get-ChildItem cmdlet, for example, we could simply
filter on the ResolvedCommandName property as follows:

PS C:\> get-alias | where { $_.ResolvedCommandName -eq "Get-ChildItem" }

CommandType Name Definition
----------- ---- ----------
Alias gci Get-ChildItem
Alias ls Get-ChildItem
Alias dir Get-ChildItem

Easy enough, and we didn’t have to parse any text at all. Instead, we just used the objects’ native
properties.

Some *nix admins may wonder: What if I needed to find every instance of an object—say, a service—
where one of the properties contains a specific substring? I don’t know if what I’m looking for will be in
the Name or DisplayName properties, for example, and I don’t know the complete string I’m after, only
a substring. Still not a problem—and still no need for something like Grep:

PowerShell for VBScript, Cmd.exe, and *nix Users

295

PS C:\> get-service | where { $_.Name -like "*Wind*" -or $_.DisplayName -like "*Wind*" }

Status Name DisplayName
------ ---- -----------
Running AudioEndpointBu... Windows Audio Endpoint Builder
Running Audiosrv Windows Audio
Running Eventlog Windows Event Log
Stopped FontCache3.0.0.0 Windows Presentation Foundation Fon...
Stopped idsvc Windows CardSpace
Running MpsSvc Windows Firewall
Stopped msiserver Windows Installer
Stopped QWAVE Quality Windows Audio Video Experience
Stopped SDRSVC Windows Backup

It’s unlikely that you’d ever need to do a search like this across all of an object’s properties; bear in mind
how many different properties exist, and how few of them actually contain text strings like this. In addi-
tion, because we’re not just working with text, the output of the above command is actual Service objects,
meaning they have methods like Stop and Start. So, once you’ve got the services you want, you don’t
have to re-parse the output of Grep to do something to those services: You’ve already got the actual ser-
vices to work with!

In general, anytime you’re approaching a problem and thinking, “How can I parse this text to get what
I want?” stop yourself and instead ask, “What’s an object-oriented way to do this so that I don’t have
to parse any text at all?” As you educate yourself about more and more of PowerShell’s abilities, you’re
likely to discover easier and more efficient ways to accomplish many tasks (at least on Windows-based
systems).

Best Practices for Scripting

297

Chapter 23
Best Practices for Scripting

Now we come to the “Best Practices” chapter, a chapter that no self-respecting book on coding can be
without. Please understand that, in administrative scripting, there are no points (or at least very few
points) for style; that said, these best practices are intended to help make your scripts easier to read, eas-
ier to write, easier to maintain, and easier to debug. Feel free to use, modify, or disregard these practices
as desired!

Script Formatting
Apart from PowerShell’s own basic formatting requirements—primarily that functions must appear in
your script before those functions can be called—we simply recommend that you keep your scripts neat-
looking. Here’s how we recommend that functions, loops, and other constructs be formatted for clarity:

If ($x -eq 5) {
 # code
 # code
}

Notice that we’ve put the construct’s starting { curly brace on the same line as the construct’s opening
keyword; the code within the construct is indented, and the construct’s closing } curly brace is on its
own line, vertically aligned with the start of the construct’s opening keyword.

This formatting technique helps you visually identify constructs, the code within the construct, and visu-
ally verify that the construct has been properly closed.

We also recommend including a blank line before each construct’s first line. This helps to visually sepa-

298

Windows PowerShell: TFM • 2nd Edition

rate the construct and makes your script easier to read.

Comments
PowerShell uses the # character to start a comment line, and we strongly recommend commenting your
scripts. We offer the following recommendations:

Start your script with several comments that provide your name, the version of the script, and its •
overall purpose.

Place a comment before each construct, indicating what the construct is doing. In multi-part con-•
structs, including a comment within each part indicating what that part does. For example:

Check to see if $x contains the key value 5
If ($x -eq 5) {

 # $x does contain 5
 # more code goes here
} else {

 # $x does not contain 5
 # more code goes here
}

Place a comment before each cmdlet used, indicating in a general sense what you’re doing. For •
example:

Retrieve the logical disk WMI class
$wmi = Get-WmiObject win32_logicaldisk

Proper use of comments can make your scripts easier to read for someone else—or for you, several
months later, when you’ve forgotten exactly why you wrote the script the way you did.

Script and Function Naming
Although we don’t follow this suggestion in many of the examples in this book (primarily for clarity
when we’re trying to make a quick point), we do agree with the PowerShell team’s overall recommenda-
tion that scripts and functions follow cmdlet-style naming conventions. That is, use a verb-noun naming
syntax, where nouns are singular (“Get-Process”, not “Get-Processes”), and where verbs are selected
from the official verb list:

Common Verbs

Add•	 – Add a resource to a container or attach an element to another element (use with Remove)

Clear•	 – Remove all elements from a container

Copy•	 – Copy a resource to another name or another container

Get•	 – Retrieve data (use with Set)

Hide •	 – Make not visible (use with Show)

Invoke •	 – Introduce or put into operation

Join•	 – Join two or more resources (use with Split)

Best Practices for Scripting

299

Lock•	 – Lock a resource (use with Unlock)

Move•	 – Move a resource

New•	 – Create a new resource

Remove•	 – Remove a resource from a container (use with Add)

Rename•	 – Renames a resource

Select•	 – Identifies a subset of resources

Set•	 – Place some data (use with Get)

Show •	 – Make visible (use with Hide)

Split•	 – Splits a resource (use with Join)

Unlock•	 – Unlock a resource (use with Lock)

Wait •	 – Remain inactive until something expected happens

Communications Verbs

Connect•	 – Connect to a resource (use with Disconnect)

Disconnect•	 – Detach from a resource (use with Connect)

Read•	 – Read from a connected resource (use with Write)

Receive•	 – Acquire information from a connected resource (use with Send)

Send•	 – Write information to a destination (use with Receive)

Write•	 – Write information to a target (use with Read)

Data Verbs

Backup•	 – Back up data

Checkpoint•	 – Create a snapshot of the current state or configuration (use with Restore)

Compare•	 – Compare two resources and show a set of differences

Convert•	 – Changes data into a specific format or encoding

ConvertFrom•	 – Change data from one format to another, where the source format is described
by the noun (e.g., ConvertFrom-Unicode); use Import if the data will be copied from a persistent
storage form such as a file

ConvertTo•	 – Change data from one format to another, where the destination format is described
by the noun (e.g., ConvertTo-HTML); use Export if the data will be copied to a persistent storage
form such as a file

Dismount•	 – Detach an entity from a path

Export•	 – Copy a set of resources to a persistent data store, such as a file

Import•	 – Create a set of resources from a persistent data store, such as a file

Initialize•	 – Prepare a resource for use

Limit•	 – Limit the consumption or apply a constraint to a resource

Merge•	 – Combine resources into a single unit

300

Windows PowerShell: TFM • 2nd Edition

Mount•	 – Attach an entity to a path

Publish •	 – Make known to another (use with Unpublish)

Restore•	 – Roll back the data state to a predefined set of conditions (use with Checkpoint)

Unpublish •	 – Make unknown to another (use with Publish)

Update•	 – Update or refresh a resource

Out•	 – Send data out of the environment

Diagnostic Verbs

Debug•	 – Examine operation or diagnose a problem

Measure•	 – Retrieve statistics or identify resources consumes

Ping•	 – Determine if a resource is responding to requests

Resolve•	 – Translate a shorthand name into its proper, full name

Test•	 – Verify operation or consistency

Trace•	 – Track activity

Lifecycle Verbs

Disable•	 – Make something unavailable (use with Enable)

Enable•	 – Make something available or active (use with Disable)

Install•	 – Place resources in a location and initialize it (use with Uninstall)

Uninstall•	 – Remove resources and de-initialize them (use with Install)

Restart•	 – Resume operation (use with Suspend)

Suspend•	 – Pause operation (use with Resume)

Start•	 – Start an activity (use with Stop)

Stop•	 – Stop an activity (use with Start)

Security Verbs

Block•	 – Prevent access to a resource (use with Unblock)

Grant•	 – Allow access to a resource (use with Revoke)

Revoke•	 – Remove access to a resource (use with Grant)

Unblock•	 – Permit access to a resource (use with Block)

Stay up-to-date!
The official list of allowed verbs is published in the PowerShell Software Development Kit, located
at http://msdn2.microsoft.com/en-us/library/ms714428.aspx.

Parameter Declaration
Although PowerShell is fairly flexible in how you declare parameters (arguments) for functions, we defi-
nitely prefer the use of a Param() block. For example, rather than this:

Best Practices for Scripting

301

Function MyFunction($arg1, $arg2) {
}

We suggest:

Function MyFunction {
 Param (
 [int]$arg1 = 5,
 [string]$arg2 = "Hello"
)
}

There are several reasons for this. First and foremost, this is the only way to declare input parameters
for a script (and the Param() block must begin on the script’s first line), and so using this technique for
functions provides better consistency. Second, we think this method is easier to read, making functions
more self-documenting.

You’ll notice that we also provided a specific data type for each argument, and provided a default value
for each—two additional best practices that can save you a great deal of debugging time, and which we
heartily recommend that you always follow.

Functions vs. Filters
A filter really isn’t that different from a function. For example, this:

Filter Test1 {
 $_.Name
}

is functionally identical to this:

Function Test1 {
 PROCESS {
 $_.Name
 }
}

We prefer using a function with a PROCESS script block over filters. Our first reason is that functions
can provide additional capabilities in the form of BEGIN and END blocks; filters cannot. Our second
reason is that since you can get all the functionality you need from a function, why not just use them
consistently for everything? We also think the use of the PROCESS script block is visually clearer, and
is equivalent to the syntax of the ForEach-Next cmdlet (which uses -process, -begin, and -end param-
eters to accomplish something similar). Again, visual clarity and consistency are driving forces behind
many of our best practices recommendations.

Variable Naming
PowerShell doesn’t enforce many restrictions on variable names, and in a simple script, you probably
don’t need to, either. Use variable names which are visually meaningful—$computername, for example,
rather than $c—but otherwise, don’t worry much about the names.

In more complicated scripts, however, you might find a naming convention that provides a clue as to a
variable’s scope to be useful. For example, a short prefix on each variable name can help make script- and

302

Windows PowerShell: TFM • 2nd Edition

function-scope variables more visually obvious, and help prevent you from accidentally using the exact
same variable name in a nested scope (which, as we discussed in the “Scripting Overview” chapter, can
cause unexpected behavior). For example:

$s_computername represents a script-level variable.•

$l_computername represents a variable declared within a script’s child scope, such as a function or •
filter.

$l2_computername might be a variable that exists within a nested function—that is, a function •
nested within another function.

There are no formal rules for this, and you should definitely adopt a naming practice that works for you.
Having some kind of system in place can make it easier to keep track of what variables go where.

Similarly, it can be useful to develop a naming scheme that indicates what type of data a variable holds.
Here are some suggestions:

$s_computername is a script-level variable that hasn’t been assigned a specific type.•

$s_intComputerNumber is a script-level variable that has been specifically cast to the [int] type.•

$l_strUserName is a function’s local variable, which has been set as a [string] type. •

You get the idea. If you decide to take this approach, you can consider using the Hungarian notation
type prefixes, which were popularized in VBScript:

Str for [string]•

Int for [int]•

Bol for [Boolean]•

Dat for [datetime]•

Xml for [xml]•

Sng for [single]•

Dbl for [double]•

And so forth. While this form of notation is no longer popular amongst developers working in lan-
guages like C# or VB, that’s primarily because those languages strongly enforce data types; if you try to
put the wrong type of data into a variable, you get an error, so there’s less need to remind yourself which
type of data is “supposed” to be in a variable. PowerShell is less strict about enforcing types, unless you
explicitly cast a variable as a specific type; using notations like this may help you keep track of variables’
types more easily. It’s your decision.

Use Source Control
You’ve taken the time to write a script, debug it, and get it working—why would you not put it some-
where safe? This is especially true if you’re working with other administrators on the same scripts. Source
control solutions let you “check in” a script, retrieve read-only copies to run, and “check out” scripts for
editing. When you “check in” a script, your version replaces the old version as the “newest,” but old ver-
sions are retained and can be retrieved—in case you suddenly realize that some of the changes in the
new version are incorrect.

SAPIEN PrimalScript integrates with popular source-control solutions like Microsoft Visual
SourceSafe (and compatible solutions), as well as open-source systems like CVS/Subversion. There are
even free, “personal” source control products that are SourceSafe-compatible, so you don’t need to spend

Best Practices for Scripting

303

money to take advantage of these features (an example of one is IonForge). In many cases, the source
control repository or database can be located on another computer, providing an additional level of
backup in case the computer where you’re working crashes.

IIIPractical Examples for Windows
Administration

Part III

Managing Files and Folders

307

Chapter 24
Managing Files and Folders

File and directory management is a pretty common administrative task. Here are some ways to accom-
plish typical tasks using PowerShell.

Creating Text Files
We’ve already discussed how you can use console redirection to send output to a text file and how to
using Out-File, so we won’t go into detail. Instead, we’ll provide a few examples for creating text files.
First, let’s look at a line of code that redirects output to a text file:

PS C:\> Get-WmiObject win32_share > myshares.txt

Remember > send output to the specified file, overwriting an existing file with the same name. Use >> to
append to an existing file. The file will be created if it doesn’t already exist.

Here’s the same expression, but using the Out-File cmdlet:

PS C:\> Get-WmiObject win32_share | out-file myshares.txt -noclobber

We used -NoClobber to prevent Out-File from overwriting myshares.txt, if it already exists.

Finally, you can also use New-Item to create a file and even add some content to it:

PS C:\> $now=get-date
PS C:\> new-item audit.log -type File -value "Created $now" -force

308

Windows PowerShell: TFM • 2nd Edition

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 6/16/2006 10:40 AM 30 audit.log

PS C:\> get-content audit.log
Created 6/16/2006 10:40:30 AM
PS C:\>

In this example, we use New-Item to create a file called audit.log and give it some content.

Reading Text Files
Reading text files is pretty straightforward with Get-Content:

PS C:\> get-content boot.ini
[boot loader]
timeout=15
default=multi(0)disk(0)rdisk(0)partition(2)\WINDOWS
[operating systems]
multi(0)disk(0)rdisk(0)partition(2)\WINDOWS="Microsoft Windows XP
Professional"
 /fastdetect /NoExecute=OptIn
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="Windows Server 2003,
Enterprise" /
noexecute=optout /fastdetect
C:\CMDCONS\BOOTSECT.DAT="Microsoft Windows Recovery Console" /cmdcons
PS C:\>

We can use -TotalCount to display a specified number of lines from a text file:

PS C:\> get-content ADOXEXCEPTION.LOG -TotalCount 5
CADOXCatalog Error
 Code = 80040e4d
 Code meaning = IDispatch error #3149
 Source = Microsoft OLE DB Provider for SQL Server
 Description = Login failed for user 'scriptaccess'.
PS C:\>

In this example, the first five lines of a log file are displayed. You can get the same result with this
expression:

PS C:\> get-content ADOXEXCEPTION.LOG |select-object -first 5

An advantage to this approach is that Select-Object also has a -Last parameter that you can use to dis-
play a specified number of lines from the end of the file.

Parsing Text Files
While PowerShell might be a highly object-oriented shell, that doesn’t mean you don’t need to work
with pure text now and again. Log files and INI files are perhaps two of the most common examples of

Managing Files and Folders

309

text files Windows administrators need to work with on a regular basis.

Typically, in a text file, you are looking to extract pieces of information. PowerShell offers several tech-
niques. The simplest approach is to use the -Match operator:

PS C:\ > (get-content foo.txt) -match "bar"

More complicated parsing and matching might require regular expressions and the regex object:

PS C:\ > [regex]$regex="\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}"
PS C:\ > $regex.Matches((get-content ex070517.log))|select value

Value

172.16.10.1
172.16.10.101
172.16.10.1
172.16.10.2

You might also use the Select-String cmdlet to extract complete lines from a text file:

PS C:\ > gc C:\temp\teched.txt | select-string "server 2008"

If you need a refresher, take a look back at the chapter “Regular Expressions.”

Parsing IIS Log Files
Using Select-String, it is very easy to extract information from IIS log files. Suppose you want to find
all the 404 errors that occurred during May 2007. You could use an expression like this:

get-childitem ex0705* | select-string " - 404"

You’ll a listing of every matching line. Use console redirection or Out-File to save the results:

get-childitem ex0705* | select-string " - 404" | out-file May07-404.txt

Let’s take this a step further and find the IP addresses for the computers that received the 404 error. To
accomplish this, we will use a combination of Select-String and a regular expression:

PS C:\system32\LogFiles\W3SVC1 > [regex]$regex="\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}"
PS C:\system32\LogFiles\W3SVC1 > $(foreach ($found in (get-childitem ex0705* | `
>> select-string " - 404")) {
>> ($regex.matches($found.ToString()))[1].value}) | select -unique
>>
64.34.179.85
69.207.43.227
69.207.92.234
69.207.4.215
71.98.99.72
207.36.196.127
210.253.120.121
203.17.208.78

We’ll break this apart from the inside out so you can see what is happening. First, we know that an

310

Windows PowerShell: TFM • 2nd Edition

expression like this:

get-childitem ex0705* | select-string " - 404"

will return all the strings from log files that start with ex0705 that match on “ - 404”. We want to exam-
ine each matched line, so we’ll nest the previous command in a ForEach construct:

Foreach($found in (get-childitem ex0705* | select-string " - 404"))

For every line in the file, we first need to convert it into a string:

$found.ToString()

We have a regex object, with a pattern that should match an IP address:

[regex]$regex="\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}"

The Matches() method of the Regex object will return all matching instances in the line:

$regex.matches($found.ToString())

But we only need to see the value of the second match. The first match will be the web server’s IP
address:

($regex.matches($found.ToString()))[1].value

If we ran what we have so far:

PS c:\system32\LogFiles\W3SVC1 > foreach ($found in (get-childitem ex0705* | '
>> select-string " - 404")) {($regex.matches($found.ToString()))[1].value}

Every client IP address would be listed, probably in duplicate. Because this is PowerShell, we’ll add one
final tweak by piping the output of this command to Select-Object, specifying the -Unique parameter:

PS C:\system32\LogFiles\W3SVC1 > $(foreach ($found in (get-childitem ex0705* | '
>> select-string " - 404")) {
>> ($regex.matches($found.ToString()))[1].value}) | select -unique

Notice that the main filtering expression is enclosed in parentheses and preceded by a $ sign. This indi-
cates that PowerShell should treat it as an expression and execute it in its entirety. The results of that
expression are then piped to Select-Object, leaving us with a list of unique IP addresses.

Parsing INI Files
Another common administrative task is parsing information from ini files like this:

;MyApp.ini
;last updated 2:28 PM 6/13/2007
[Parameters]

Managing Files and Folders

311

Password=P@ssw0rd
Secure=Yes
Encryption=Yes
UseExtendedSyntax=No

[Open_Path]
path=\\server01\files\results.txt

[mail]
server=MAIL01
from=admin@mycompany.com

[Win2003]
foo=bar

If all the settings are unique in the entire file, you can use Select-String to extract the value for a par-
ticular setting with a PowerShell one-liner:

PS C:\ > ((cat myapp.ini | select-string -pattern "password=").ToString()).Split("=")[1]
P@ssword

Here’s how this works. First, this example is using cat, which is an alias for Get-Content, which keeps
a long expression from having to be any longer. Piping the contents of myapp.ini to Select-String will
return a MatchInfo object when a match is made:

cat myapp.ini | select-string -pattern "password="

However, we need to convert the result to a string object, so we use the ToString() method:

(cat myapp.ini | select-string -pattern "password=").ToString()

If we were to look at the returned value thus far, we would get:

Password=P@ssw0rd

Since we now have a string, we can use the Split() method to split the string at the = sign:

((cat myapp.ini | select-string -pattern "password=").ToString()).Split("=")

This expression results in a small 0-based array, meaning the first element has an index number of 0. All
that remains is to display the second array element, which has an index number of 1:

((cat myapp.ini | select-string -pattern "password=").ToString()).Split("=")[1]

In my sample ini file, this technique would work since all of my values are unique. But what about situ-
ations where I need a specific value under a specific heading? This is a little more complicated, but can
be achieved with some extra parsing. Here’s a function we wrote to retrieve the value from a particular
section on an ini file:

Function Get-INIValue {

$ini is the name of the ini file

312

Windows PowerShell: TFM • 2nd Edition

$section is the name of the section head like [Mail]
Specify the name without the brackets
$prop is the property you want under the section
sample usage: $from=Get-inivalue myapp.ini mail from

Param ([string]$ini,[string]$section,[string]$prop)

#get the line number to start searching from
$LineNum=(Get-Content myapp.ini | Select-String "\[$section\]").Linenumber
$limit=(Get-Content myapp.ini).length #total number of lines in the ini file

for ($i=$LineNum;$i -le $limit;$i++) {
 $line=(Get-Content myapp.ini)[$i]
 if ($line -match $prop+"=") {
 $value=($line.split("="))[1]
 return $value
 Break
 }
 }
return "NotFound"
}

The function is expecting the name of the ini file, the section name, and the name of the value. Once
this file is loaded, you can use it like this:

PS C:\ > $smtp=Get-inivalue myapp.ini mail server

The function will return the value the “server” setting under the [Mail] section of myapp.ini. The func-
tion first obtains the number of the line in the ini file that contains the section heading:

$LineNum=(Get-Content myapp.ini | Select-String "\[$section\]").Linenumber

The function also gets the total number of lines in the ini file that it will use later:

$limit=(Get-Content myapp.ini).length #total number of lines in the ini file

Now that we know where to start searching, we can loop through each line of the ini file until we reach
the end:

for ($i=$LineNum;$i -le $limit;$i++) {

Because the ini file will be treated as a 0-based array, the value of $LineNum will actually return the first
line after the heading:

 $line=(Get-Content myapp.ini)[$i]

The function examines each line using the -Match operator to see if it contains the property value we
are seeking:

 if ($line -match $prop+"=") {

If not, the function will keep looping until it reaches the end of the file, at which point the function will
return “NotFound”.

Managing Files and Folders

313

When a match is made, the line is split at the = sign and the second item (index number of 1) is
returned:

 $value=($line.split("="))[1]

The function returns this value, and since there’s no longer any need to keep looping through the ini file,
the function stops by using the Break statement.

 return $value
 Break

Copying Files
Copying files in PowerShell is not much different than copying files in Cmd.exe. In fact, by default
PowerShell uses the alias Copy for the Copy-Item cmdlet.

PS C:\> copy *.ps1 c:\temp
PS C:\> get-childitem c:\temp

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 5/17/2006 8:31 PM 863 brace.ps1
-a--- 5/29/2006 12:18 PM 15 demo.txt
-a--- 2/11/2006 6:26 PM 19817 ex060211.log
-a--- 5/29/2006 10:58 AM 16 j.txt
-a--- 5/23/2006 1:03 PM 811 out-grid.ps1
-a--- 5/23/2006 1:06 PM 1330 out-propertyGrid.ps1
-a--- 5/19/2006 11:17 AM 710 showprocessinfo.ps1
-a--- 5/19/2006 11:04 AM 477 showservices.ps1
-a--- 5/1/2006 8:10 PM 88 test.ps1

PS C:\>

This example copies all ps1 files in C: to C:\temp. You can also recurse and force files to be overwritten:

PS C:\>copy-item C:\Logs C:\Backup -recurse -force

This expression copies all files and subdirectories from C:\Logs to C:\Backup, overwriting any existing
files and directories with the same name.

As you work with PowerShell, you’ll discover that not every command you can execute in Cmd.exe is
valid in PowerShell. For example, the following is a valid command in Cmd.exe:

C:\logs> copy *.log *.old

When you try this in PowerShell, you’ll get a message about an invalid character. It appears the Copy-
Item cmdlet works fine when copying between directories, but it can’t handle a wildcard copy within the
same directory.

314

Windows PowerShell: TFM • 2nd Edition

Here’s a workaround:

BulkCopy.ps1

#BulkCopy.ps1
Set-Location "C:\Logs"

$files=Get-ChildItem |where {$_.extension -eq ".log"}

foreach ($file in $files) {
 $filename=($file.FullName).ToString()
 $arr=@($filename.split("."))
 $newname=$arr[0]+".old"

 Write-Host "copying "$file.Fullname "to"$newname
 copy $file.fullname $newname -force
}

With this script, we first define a variable that contains all the files we want to copy by extension. Next
we iterate through the variable using ForEach. Within the loop, we break apart the filename using Split
so we can get everything to the left of the period. We need this name so we can define what the new
filename will be with the new extension, including the path. Then it’s a matter of calling Copy-Item.
Notice that in the script, we’re using the copy alias.

Provider Alert
If you look through the Help for Copy-Item and some of the other Item cmdlets, you will see a
-Credential parameter. This might lead you to believe that you could use the -Credential param-
eter to copy files to a network and share and specify alternate credentials. Unfortunately, in the
first version of PowerShell, the file system and registry providers do not support this parameter.
Hopefully this will change in later versions of PowerShell. In the meantime, start a PowerShell ses-
sion using the RunAs command if you need to specify alternate credentials.

Deleting Files
The Remove-Item cmdlet has aliases of del and erase, and functions essentially the same as these com-
mands in Cmd.exe:

PS C:\> remove-item c:\temp*.txt

The cmdlet comes in handy when you want to recurse through a directory structure or exclude certain
files.

PS C:\> remove-item c:\backup*.* - recurse -exclude 2006*.log

This expression will recurse through c:\backup, deleting all files except those that match the pattern
2006*.log. Like Copy-Item, you can also use -Include and
-Credential.

Managing Files and Folders

315

Renaming Files
Renaming files is also very straightforward:

PS C:\Temp> rename-item foo.txt bar.txt

This cmdlet has aliases of rni and ren, and like the other item cmdlets, it lets you specify credentials and
force an overwrite of an existing file. You have to be a little more creative if you need to rename multiple
files:

BulkRename.ps1

#BulkRename.ps1
Set-Location "C:\Logs"

$files=get-childitem -recurse |where {$_.extension -eq ".Log"}

foreach ($file in $files) {
 $filename=($file.name).ToString()
 $arr=@($filename.split("."))
 $newname=$arr[0]+".old"

 Write-Host "renaming"$file.Fullname "to"$newname
 ren $file.fullname $newname -force
}

This is a legitimate command in Cmd.exe:

C:\ ren *.log *.old

Since this doesn’t work in PowerShell, we use something like the BulkRename script instead. This is a
variation on our BulkCopy script from above. Instead of copy, we call ren. By the way, as the script is
written above, it will recurse through subdirectories starting in C:\Logs, renaming every file it finds that
ends in .log to .old.

File Attributes and Properties
Earlier in this chapter, we worked with file attributes to work around some issues copying files in
PowerShell. Often times, you may need to know if a file is marked as ReadOnly or set as such. This is
easily accomplished by checking the IsReadOnly property of the file object:

PS C:\ > (Get-childitem file.txt).IsReadonly
False

You can enable ReadOnly by calling the Set-ReadOnly() method.

PS C:\ > (Get-childitem file.txt).Set_IsReadonly($TRUE)
PS C:\ > (Get-childitem file.txt).IsReadonly
True

Specify $TRUE to enable it and $FALSE to turn it off:

316

Windows PowerShell: TFM • 2nd Edition

PS C:\ > (Get-childitem file.txt).Set_IsReadonly($False)
PS C:\ > (Get-childitem file.txt).IsReadonly
False

To display other attributes, you can use the Attributes property:

PS C:\ > (get-childitem boot.ini -force).Attributes
Hidden, System, Archive

We use the -Force parameter so that Get-ChildItem will ignore the Hidden attribute and display file
information. To set other file attributes you can use the Set_Attributes() method:

PS C:\ > (get-childitem file.txt).Attributes
Archive
PS C:\ > (get-childitem file.txt).Set_Attributes("Archive,Hidden")
PS C:\ > (get-childitem file.txt -force).Attributes
Hidden, Archive

In this snippet, you can see the file.txt only has the Archive attribute set. Using Set_Attributes(), we set the
file attributes to Archive and Hidden, which is confirmed with the last expression. This is also another way
of setting the ReadOnly attribute.

Setting the file attribute to Normal will clear all basic file attributes:

PS C:\ > (get-childitem file.txt -force).Set_Attributes("Normal")
PS C:\ > (get-childitem file.txt -force).Attributes
Normal
PS C:\ > attrib file.txt
 C:\file.txt
PS C: \ >

Because everything is an object in PowerShell, working with file properties such as when a file was cre-
ated or last modified is very simple. Here’s an abbreviated output that gets all files from F:\SAPIEN
and displays when the file was created, last accessed and last modified:

PS C:\ > get-childitem f:\sapien | Select Name,CreationTime,LastAccessTime,LastWriteTime '
>>| format-table -auto
>>

Name CreationTime LastAccessTime LastWriteTime
---- ------------ -------------- -------------
Add2LocalAdmin.bat 6/12/2007 1:17:34 PM 6/15/2007 9:04:01 AM 6/12/2007 1:20:23 PM
Add2LocalAdmin.txt 6/14/2007 9:28:43 PM 6/15/2007 9:04:01 AM 6/12/2007 1:20:23 PM
AddToGroup.txt 6/14/2007 9:28:43 PM 6/15/2007 9:04:01 AM 6/12/2007 1:22:38 PM
AddToGroup.Wsf 6/12/2007 1:21:43 PM 6/15/2007 9:04:02 AM 6/12/2007 1:22:38 PM
AddUsertoGroup.txt 6/14/2007 9:28:43 PM 6/15/2007 9:04:02 AM 6/12/2007 4:18:54 PM
AddUsertoGroup.vbs 6/12/2007 4:18:54 PM 6/15/2007 4:29:51 PM 6/12/2007 4:18:54 PM

Managing Files and Folders

317

It Isn’t Necessarily What You Think
The LastAccessTime property will indicate the last time a particular file as accessed, but this
doesn’t mean by a user. Many other processes and applications, such as anti-virus programs and
defragmentation utilities, can affect this file property. Do not rely on this property as an indication of
the last time user accessed a file. You would need to enable auditing to obtain that information.

PowerShell makes it very easy to change the value of any of these properties. This is similar to the Touch
command:

PS C:\ > (get-childitem file.txt).Set_LastAccessTime("12/31/2007 01:23:45")
PS C:\ > (get-childitem file.txt).Set_LastWriteTime("12/31/2007 01:23:45")
PS C:\ > (get-childitem file.txt).Set_CreationTime("12/31/2007 01:23:45")
PS C:\ > get-childitem file.txt |select Name,CreationTime,LastWriteTime,LastAccessTime | `
>> format-table -auto
>>

Name CreationTime LastWriteTime LastAccessTime
---- ------------ ------------- --------------
file.txt 12/31/2007 1:23:45 AM 12/31/2007 1:23:45 AM 12/31/2007 1:23:45 AM

Here, we’ve set all the time stamps to 12/31/2007 1:23:45 AM. Obviously, use this power with caution.

Another property that you can easily set from the console is file encryption. This is accomplished with
the Encrypt() method.

PS C:\ > (get-childitem file.txt).Attributes
Archive
PS C:\ > (get-childitem file.txt).Encrypt()
PS C:\ > (get-childitem file.txt).Attributes
Archive, Encrypted

You can still open the file because it was encrypted with your private key, but anyone else attempting to
open the file will fail. To reverse the process, simply use the Decrypt() method:

PS C:\ > (get-childitem file.txt).Decrypt()
PS C:\ > (get-childitem file.txt).Attributes
Archive

Proceed with Caution
Before you get carried away and start encrypting everything—stop. Using the encrypting file sys-
tem requires some serious planning and testing. You have to plan for recovery agents, lost keys,
and more. This is not a task to undertake lightly. You will need to research the topic and test thor-
oughly in a non-production environment.

What about compression? Even though compression can be indicated as file attribute, you cannot com-
press a file simply by setting the attribute. Nor does the .NET file object have a compression method.
The easy solution is to use Compact.exe to compress files and folders.

The other approach is to use WMI:

318

Windows PowerShell: TFM • 2nd Edition

PS C:\ > $wmifile=Get-WmiObject -query "Select * from CIM_DATAFILE where name='c:\\file.txt'"
PS C:\ > $wmifile

Compressed : False
Encrypted : False
Size :
Hidden : False
Name : c:\file.txt
Readable : True
System File :
Version :
Writeable : True

You would think all you need to do is set the Compressed property to TRUE:

PS C:\ > $wmifile.Compressed=$TRUE
PS C:\ > $wmifile.Compressed
True

It looks like it works, but when you examine the file in Windows Explorer, you’ll see that it isn’t actually
compressed.

PS C:\ > (get-childitem file.txt).Attributes
Archive

You need to use the Compress() method:

PS C:\ > $wmifile.Compress()

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

PS C:\ > (get-childitem file.txt).Attributes
Archive, Compressed

This is also confirmed in Windows Explorer. To reverse the process use the Uncompress() method:

PS C:\ > $wmifile.Uncompress()

Working with Paths
When working with folders in PowerShell, you are also working with paths. A path, as the name sug-
gests, is the “direction” to reach a particular destination. For a short path and likely known path like C:\

Managing Files and Folders

319

Windows, working with paths isn’t critical. But as your scripts grow in complexity or you are dealing
with path variables, you’ll want to be familiar with PowerShell’s path cmdlets. These cmdlets work with
any provider that uses paths, such as the registry and certificate store.

Test-Path
Adding error handling to a script is always helpful, especially when dealing with folders that may not
exist. You can use Test-Path to validate the existence of a given path. The cmdlet returns TRUE if the
path exists:

PS C:\ > test-path c:\windows
True

You can also use this cmdlet to verify the existence of registry keys:

PS C:\ > test-path hklm:\software\Microsoft\Windows\CurrentVersion
True
PS C:\ > test-path hklm:\software\MyCompany\MyApp\Settings
False

Convert-Path
Before PowerShell can work with paths, they also need to be properly formatted. The Convert-Path
cmdlet will take paths or path variables and convert them to a format PowerShell can understand. For
example, the ~ character represents your user profile path. Using Convert-Path will return the explicit
path:

PS C:\ > convert-path ~
C:\Documents and Settings\jhicks

Here are some other ways you might use this cmdlet:

PS C:\windows\system32 > convert-path .
C:\windows\system32
PS C:\windows\system32 > convert-path hklm:\system\currentcontrolset
HKEY_LOCAL_MACHINE\system\currentcontrolset
PS C:\windows\system32 > convert-path ..\
C:\windows
PS C:\windows\system32 > convert-path ..\..\
C:\
PS C:\windows\system32 >

The last two examples could also be achieved using Split-Path.

Split-Path
This cmdlet will split a given path into its parent or leaf components. You can use this cmdlet to display
or reference different components of a given path. The default is to split the path and return the parent
path component:

PS C:\ > split-path c:\folderA\FolderB
c:\folderA

320

Windows PowerShell: TFM • 2nd Edition

This cmdlet also works with other providers such as the registry:

PS C:\ > split-path hklm:\system\currentcontrolset
hklm:\system

Split-Path will include specified path’s qualifier, which is the provider path’s drive such as D:\ or
HKLM:. If you wanted to get just the qualifier, in essence the root, use the -Qualifier parameter:

PS C:\ > split-path f:\folderA\FolderB\FolderC -qualifier
f:

You can use -NoQualifier to return a path without the root:

PS C:\ > split-path f:\folderA\FolderB\FolderC -noqualifier
\folderA\FolderB\FolderC
PS C:\ > split-path hklm:\system\currentcontrolset -noqualifier
\system\currentcontrolset

However, if you need the last part of the path and not the parent, use the -Leaf parameter:

PS C:\ > split-path c:\folderA\FolderB -leaf
FolderB

You’re not limited to folder paths. You can use -Leaf to parse out a filename from a path:

PS C:\ > split-path "C:\program files\SAPIEN\PrimalScript 2007 Enterprise\PrimalScript.exe" '
>>-leaf
PrimalScript.exe

When using path variables, you may need to include the -Resolve parameter to expand the variable to
its full path:

PS C:\ > split-path $pshome*.xml -leaf -resolve
microsoft.powershell.commands.management.dll-help.xml
microsoft.powershell.commands.utility.dll-help.xml
microsoft.powershell.consolehost.dll-help.xml
microsoft.powershell.security.dll-help.xml
PshX-SAPIEN.dll-Help.xml
system.management.automation.dll-help.xml

This parameter is also useful in confirming that a path component exists:

PS C:\ > split-path C:\Windows\system33 -leaf -resolve
Split-Path : Cannot find path 'C:\Windows\system33' because it does not exist.
At line:1 char:11
+ split-path <<<< C:\Windows\system33 -leaf -resolve

PowerShell also has a specific cmdlet for resolving path names.

Resolve-Path
The Resolve-Path cmdlet is primarily intended to resolve wildcards or variables that might be part of a

Managing Files and Folders

321

path:

PS C:\ > resolve-path $env:windir

Path

C:\WINDOWS

The cmdlet’s output is a PathInfo object. This object provides additional PowerShell information about
the path:

PS C:\ > resolve-path $env:windir | format-list

Drive : C
Provider : Microsoft.PowerShell.Core\FileSystem
ProviderPath : C:\WINDOWS
Path : C:\WINDOWS

You can also use the cmdlet with wildcards:

PS C:\ > resolve-path c:\windows*.exe

Path

C:\windows\dbplugin.exe
C:\windows\explorer.exe
C:\windows\hh.exe
C:\windows\IsUninst.exe
C:\windows\notepad.exe
C:\windows\regedit.exe
C:\windows\slrundll.exe
C:\windows\TASKMAN.EXE
C:\windows\twunk_16.exe
C:\windows\twunk_32.exe
C:\windows\winhelp.exe
C:\windows\winhlp32.exe

Join-Path
Occasionally, you need to construct a path from disparate elements, and Join-Path will create a
PowerShell-ready path:

PS C:\ > join-path -path c:\scripts -childpath "My PowerShell Projects"
c:\scripts\My PowerShell Projects

The -Path and -Childpath parameters are positional, so you don’t need to specify the parameter names.
You can get the same result as the example above like this:

PS C:\ > join-path c:\scripts "My PowerShell Projects"
c:\scripts\My PowerShell Projects

The path name doesn’t have to be explicit. You can also use variables like this:

322

Windows PowerShell: TFM • 2nd Edition

PS C:\ > join-path $env:userprofile "Scripts\PowerShell"
C:\Documents and Settings\jhicks\Scripts\PowerShell

The cmdlet can also work with wildcards and the -Resolve parameter to expand the wildcard and create
a complete path:

PS C:\ > join-path c:\prog* "microsoft*" -resolve
C:\Program Files\Microsoft ActiveSync
C:\Program Files\Microsoft CAPICOM 2.1.0.2
C:\Program Files\Microsoft Expression
C:\Program Files\microsoft frontpage
C:\Program Files\Microsoft IntelliPoint
C:\Program Files\Microsoft Money
C:\Program Files\Microsoft Office
C:\Program Files\Microsoft SQL Server
C:\Program Files\Microsoft Visual Studio
C:\Program Files\Microsoft Visual Studio 8
C:\Program Files\Microsoft Works
C:\Program Files\Microsoft.NET

Creating Directories
Creating directories in PowerShell is nearly the same as it is in Cmd.exe:

PS C:\Temp> mkdir "NewFiles"

Alternatively, you can use the New-Item cmdlet that offers a few more features:

PS C:\Temp> new-item -type directory \\File01\public\sapien

The cmdlet also creates nested directories. In other words, like mkdir in Cmd.exe, it creates any inter-
mediate directories:

PS C:\Temp> new-item -type directory c:\temp\1\2\3

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\temp\1\2

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 6/16/2006 1:56 PM 3
PS C:\Temp> tree /a
Folder PATH listing for volume Server2003
Volume serial number is 0006EEA4 34AB:AD37
C:.
+---1
| \---2
| \---3
+---jdh
+---sapien
\---temp2
PS C:\Temp>

Managing Files and Folders

323

Listing Directories
Even though you can use dir in PowerShell to list directories and files, it is really an alias for Get-
ChildItem. However, you can specify files to include or exclude in the search and also recurse through
subdirectories:

PS C:\> dir -exclude *.old -recurse

Remember: even though PowerShell is displaying text, it is really working with objects. This means you
can get creative in how you display information:

PS C:\Temp> dir -exclude *.old,*.bak,*.tmp -recurse | select-object '
>>FullName,Length,LastWriteTime | format-table -auto
>>
FullName Length LastWriteTime
-------- ------ -------------
C:\Temp\1 6/16/2006 1:56:45 PM
C:\Temp\1\2 6/16/2006 1:56:45 PM
C:\Temp\1\2\3 6/16/2006 1:56:45 PM
C:\Temp\jdh 6/16/2006 1:09:41 PM
C:\Temp\sapien 6/16/2006 1:05:41 PM
C:\Temp\temp2 6/16/2006 12:48:44 PM
C:\Temp\temp2\bar.Log 11 6/16/2006 11:09:27 AM
C:\Temp\showservices.ps1 477 5/19/2006 11:04:29 AM
C:\Temp\test.abc 88 5/1/2006 8:10:10 PM
C:\Temp\test.Log 88 5/1/2006 8:10:10 PM
C:\Temp\test.ps1 88 5/1/2006 8:10:10 PM

PS C:\Temp>

This expression recurses from the starting directory, listing all files that don’t end in .old, .bak, or .tmp.
Using the dir alias, the output from Get-ChildItem is piped to Select-Object because we want to dis-
play only certain information formatted as a table.

Deleting Directories
Deleting a directory is essentially the same as deleting a file. You can use the rmdir alias for Remove-
Item:

PS C:\Temp> rmdir sapien

PowerShell gives you a warning if you attempt to remove a directory that isn’t empty:

324

Windows PowerShell: TFM • 2nd Edition

PS C:\Temp> rmdir files

Confirm
The item at C:\Temp\files has children and the -recurse parameter was
not specified. If you continue, all children will be removed with the
item. Are you sure you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):n
PS C:\Temp>

As you can see, the solution is to use the -Recurse parameter:

PS C:\Temp> rmdir files -recurse
PS C:\Temp>

Managing Systems by Using WMI

325

Chapter 25
Managing Systems by Using WMI

Using WMI in administrative scripts is a common practice. WMI is an extremely powerful way to man-
age just about every aspect of a system including hardware, software, and configuration. It can also be
used to remotely manage systems.

PowerShell has the Get-WmiObject cmdlet that acts as an interface to WMI. This cmdlet lets you
access any WMI class in any WMI namespace. For our purposes, we’ll stick to the default namespace of
Root\Cimv2 and the Win32 classes, since you’ll use these classes in 95% of your scripts.

Retrieving Basic Information
At its simplest, all you have to do is specify a class and run Get-WmiObject in order for the cmdlet to
find all instances of that class and return a page of information:

PS C:\> Get-WmiObject win32_share

Name Path Description
---- ---- -----------
E$ E:\ Default share
IPC$ Remote IPC
downloads$ e:\downloads
ADMIN$ E:\WINDOWS Remote Admin
C$ C:\ Default share

PS C:\>

326

Windows PowerShell: TFM • 2nd Edition

In this example, we asked PowerShell to display WMI information about all instances of the Win32_
Share class on the local computer. With this particular class, there are other properties that by default
are not displayed. Depending on the class, you might get different results. For example, the following
expression displays a long list of properties and values:

PS C:\> Get-WmiObject win32_Processor

Listing Available Classes
You’re probably saying, “That’s great, but how do I find out what Win32 classes are available?” All
you have to do is ask. The Get-WmiObject cmdlet has a -List parameter you can invoke. Open a
PowerShell prompt and try this:

PS C:\> Get-WmiObject -list | where {$_.name -like "win32*"}

You should get a long, two column list of all the available Win32 classes. You can query any of these
classes using Get-WmiObject.

The Get-WmiObject cmdlet defaults to the root\CIMv2 namespace, but you can query available
classes in any namespace:

PS C:\> Get-WmiObject -namespace root\securitycenter -list

__SystemClass __thisNAMESPACE
...
__InstanceOperationEvent __MethodInvocationEvent
__InstanceCreationEvent __InstanceModificationEvent
__InstanceDeletionEvent __ExtrinsicEvent
__SystemEvent __EventDroppedEvent
__ConsumerFailureEvent __QOSFailureEvent
__EventQueueOverflowEvent __ClassOperationEvent
__ClassModificationEvent __ClassCreationEvent
__ClassDeletionEvent __TimerEvent
__AggregateEvent __EventConsumer
__FilterToConsumerBinding __TimerNextFiring
__EventFilter __ProviderRegistration
__EventProviderRegistration __EventConsumerProviderRegistratio
__PropertyProviderRegistration __ObjectProviderRegistration
__ClassProviderRegistration __InstanceProviderRegistration
__MethodProviderRegistration __SystemSecurity
__SecurityRelatedClass __NTLMUser9X
__PARAMETERS __NotifyStatus
__ExtendedStatus FirewallProduct
AntiVirusProduct
PS C:\>

Note
All those classes starting with __ are WMI system classes; you can’t really hide them, but you’re
not going to really use them, either. You want the classes that don’t start with __.

Here we’ve queried for a list of classes in the Root\SecurityCenter namespace.

Managing Systems by Using WMI

327

Listing Properties of a Class
The next question most of you are asking is, “How can I find out the properties for a given class?” As we
discussed previously, you can use Get-Member to list all the properties for a WMI object. Take a look
at the following script:

ListWMIProperties.ps1

#ListWMIProperties.ps1
$class=Read-Host "Enter a Win32 WMI Class that you are interested in"
$var=get-WMIObject -class $class -namespace "root\Cimv2"
$properties=$var | get-member -membertype Property
Write-Host "Properties for "$Class.ToUpper()
foreach ($property in $properties) {$property.name}

This script prompts you for a Win32 WMI class and defines a variable using Get-WmiObject for that
class. We define a second variable that is the result of piping the first variable to Get-Member. All that’s
left is to loop through $properties and list each one. Here’s what you get when you run the script:

Enter a Win32 WMI Class that you are interested in: win32_logicaldisk
Properties for WIN32_LOGICALDISK
Access
Availability
BlockSize
Caption
Compressed
ConfigManagerErrorCode
ConfigManagerUserConfig
CreationClassName
Description
DeviceID
DriveType
ErrorCleared
ErrorDescription
ErrorMethodology
FileSystem
FreeSpace
InstallDate
LastErrorCode
MaximumComponentLength
MediaType
...
PS C:\>

Usually, there are only a handful of properties in which you are interested. In this case, you can use the
-Property parameter to specify which properties you want to display:

PS C:\> Get-WmiObject -class win32_processor '
>>-property name,caption,L2CacheSize
>>

__GENUS : 2
__CLASS : Win32_Processor
__SUPERCLASS :
__DYNASTY :
__RELPATH :
__PROPERTY_COUNT : 3

328

Windows PowerShell: TFM • 2nd Edition

__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
Caption : x86 Family 6 Model 9 Stepping 5
L2CacheSize : 1024
Name : Intel(R) Pentium(R) M processor 1600MHz

PS C:\>

Here, we’ve asked for the Win32_Processor class, and specifically the name, caption, and L2CacheSize
properties. Unfortunately, the cmdlet also insists on displaying system properties, such as __Genus.

Since you don’t care about those properties most of the time, a neater approach is something like this:

PS C:\> Get-WmiObject -class win32_processor | `
>> select-object name,caption,L2CacheSize | `
>> format-list
>>

name : Intel(R) Pentium(R) M processor 1600MHz
caption : x86 Family 6 Model 9 Stepping 5
L2CacheSize : 1024

PS C:\>

Here, we’re calling the same cmdlet, except we use Select-Object to pick the properties in which we’re
interested.

Examining Existing Values
As you learn to work with WMI, it’s helpful to look at what information is populated on a system. This
is a great way to learn the different properties and what values you can expect. The more you work with
WMI, you’ll realize that not every property is always populated. There’s no reason to spend time que-
rying empty properties. With this in mind, we’ve put together a helpful script that enumerates all the
properties for all the instances of a particular WMI class. However, the script only display properties
with a value and it won’t display any of the system class properties like __Genus:

ListWMIValues.ps1

#ListWMIValues.ps1
$class=Read-Host "Enter a Win32 WMI Class that you are interested in"
$var=get-WMIObject -class $class -namespace "root\CimV2"

$properties=$var | get-member -membertype Property
Write-Host -foregroundcolor "Yellow" "Properties for "$Class.ToUpper()
if more than one instance was returned then $var will be an array
and we need to loop through it
$i=0

if ($var.Count -ge 2) {
 do {
 foreach ($property in $properties) {
 #only display values that aren't null and don't display system

Managing Systems by Using WMI

329

 #properties that start with __
 if ($var[$i].($property.name) -ne $Null -AND `
$property.name -notlike "__*") { write-Host -foregroundcolor "Green" `
$property.name"="$var[$i].($property.name)
 }
 }
 Write-Host "***********************************"
#divider between instances
 $i++
 }while($i -le ($var.count-1))
}
else $var has only one instance
else {
 foreach ($property in $properties) {
 if ($var.($property.name) -ne $Null -AND `
$property.name -notlike "__*") {
 write-Host -foregroundcolor "Green" `
$property.name"="$var.($property.name)
 }
 }
}

This script is based on our earlier ListWMIProperties script. Once we have the variable with all the
properties, we iterate through all the instances of the specified WMI class. If the property value isn’t null
and the property name is not like __*, then the property name and its value are displayed. We’ve even
thrown in a little color to spice up the display.

Remote Management
Now that you know about WMI classes and properties, we’ll take a closer look at what you do with it.
While you can make some system configuration changes with WMI, most of the WMI properties are
read-only, which makes for terrific management reports. The Get-WmiObject cmdlet even has two
parameters that make this easy to do on your network.

You can use -Computername to specify a remote computer that you want to connect to and
-Credential to specify alternate credentials. However, you can’t use alternate credentials when querying
the local system. Here’s an example:

PS C:\> Get-WmiObject win32_operatingsystem `

>>-computer dc01 -credential (get-credential)
>>

cmdlet get-credential at command pipeline position 1
Supply values for the following parameters:
Credential

SystemDirectory : C:\WINDOWS\system32
Organization : SAPIEN Press
BuildNumber : 3790
RegisteredUser : Staff
SerialNumber : 69713-640-3403486-45904
Version : 5.2.3790

PS C:\>

330

Windows PowerShell: TFM • 2nd Edition

This example connects to computer DC01 and gets information on the Win32_Operatingsystem WMI
object. For alternate credentials, we call the Get-Credential cmdlet that presents a standard Windows
authentication box.

VBScript Alert
If you have a library of WMI scripts written in VBScript, don’t delete them yet! With a little tweaking,
you can take the essential WMI queries from your VBScripts and put them into PowerShell scripts.
Use the Where cmdlet for your WMI queries. For example, you may have a WMI query like:

Select deviceID,drivetype,size,freespace

from Win32_LogicalDisk where drivetype=’3’

In PowerShell this can be rewritten as:

Get-WmiObject win32_logicaldisk | Select
deviceid,drivetype,size,freespace | where

{drivetype -eq 3}

Of course, you can also simply pass the original WQL query to Get-WmiObject by using
 its -query parameter. Once you have the core query, you can tweak your PowerShell script and
use the filtering, formatting, sorting, and exporting options that are available in PowerShell. If you
don’t have a script library, there are many, many WMI scripts available on the Internet that you can
leverage and turn into PowerShell scripts.

The Get-WmiObject cmdlet does not allow you to specify multiple classes. So, if you want informa-
tion from different Win32 classes, you’ll have to call the cmdlet several times and store information in
variables:

WMIReport.ps1

#WMIReport.ps1
$OS=Get-WmiObject -class win32_operatingsystem `
| Select-Object Caption,CSDVersion

#select fixed drives only by specifying a drive type of 3
$Drives=Get-WmiObject -class win32_logicaldisk | `
where {$_.DriveType -eq 3}
Write-Host "Operating System:" $OS.Caption $OS.CSDVersion

Write-Host "Drive Summary:"
write-Host "Drive"`t"Size (MB)"`t"FreeSpace (MB)"
foreach ($d in $Drives) {
 $free="{0:N2}" -f ($d.FreeSpace/1048576)
 $size="{0:N0}" -f ($d.size/1048576)
 Write-Host $d.deviceID `t $size `t $free
}

This script reports system information from two WMI Win32 classes. We first define a variable to hold
operating system information, specifically the Caption and CSDVersion, which is the service pack. The
second class, Win32_LogicalDisk, is captured in $Drives. Since we’re only interested in fixed drives, we
use the Where cmdlet to filter by drive type.

Once we have this information we can display it any way we choose. Here’s what you might see when

Managing Systems by Using WMI

331

the script runs:

Operating System: Microsoft(R) Windows(R) Server 2003, Enterprise
Edition Service Pack 1
Drive Summary:
Drive Size (MB) FreeSpace (MB)
C: 8,095 2,417.88
E: 15,006 4,696.01
PS C:\>

The [WMI] Type
If you prefer a different approach to working with WMI and have some experience working with it, you
may prefer to use PowerShell’s [WMI] type:

PS C:\> [WMI]$srv="root\cimv2:win32_computersystem.Name='Godot'"
PS C:\> $srv

Domain : WORKGROUP
Manufacturer : Dell Computer Corporation
Model : Latitude D800
Name : Godot
PrimaryOwnerName : Administrator
TotalPhysicalMemory : 1609805824

By creating a new object of type [WMI], we can directly access the WMI instance. PowerShell returns a
pre-determined subset of information when you call object as we did above. However, you have access to
all the WMI properties, which you can see by piping the object to Get-Member:

PS C:\> $srv|Get-Member

If we want additional information, all we have to do is check the object’s property:

PS C:\> $srv.Status
OK
PS C:\> $srv.Roles
LM_Workstation
LM_Server
SQLServer
Print
NT
PS C:\>

While you can’t specify alternate credentials using the [WMI] type, you can specify a remote system like
this:

PS C:\> [WMI]$srv="\\DC01\root\cimv2:win32_computersystem.Name='DC01'"

To use the [WMI] type, you must create a reference to a specific instance of a WMI object. For exam-
ple, you can’t create a WMI object to return all instances of Win32_LogicalDisk:

332

Windows PowerShell: TFM • 2nd Edition

PS C:\> [WMI]$disk="root\cimv2:win32_logicaldisk"
Cannot convert value "root\cimv2:win32_logicaldisk" to type
"System.Management.ManagementObject". Error: "Specified
argument was out of the range of valid values.
Parameter name: path"
At line:1 char:11
+ [WMI]$disk= <<<< "root\cimv2:win32_logicaldisk"
PS C:\>

Instead, you must specify a single instance by using the WMI object’s primary key and querying for a
certain value:

PS C:\> [WMI]$disk="root\cimv2:win32_logicaldisk.DeviceID='C:'"
PS C:\> $disk

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 2797834240
Size : 15726702592
VolumeName : Server2003

PS C:\>

That’s great, but how do you figure out an object’s primary key? The easiest way is to run Wbemtest and
query for a Win32 class. The results are the format you need to use with the [WMI] type in PowerShell.

In this screen shot you can see that we’ve queried for all instances of the Win32_logicaldisk class. Each
instance is displayed using the default key, which in this case is DeviceID. Here’s another example:

Managing Systems by Using WMI

333

We can tell from this screenshot that the default key is Handle. The Handle is the same as the ProcessID.
If you need a refresher on Wbemtest, see the section Using Wbemtest.

Once we know this piece of information, we can write PowerShell code like this:

PS C:\> [wmi]$ps="root\cimv2:win32_process.handle='4536'"
PS C:\> $ps | Select Name,VirtualSize,WorkingSetSize,PageFileUsage,ExecutablePath

Name : PrimalScript.exe
VirtualSize : 320835584
WorkingSetSize : 38825984
PageFileUsage : 64581632
ExecutablePath : C:\Program Files\SAPIEN\PrimalScript 2007 Enterprise\PrimalScript.exe
PS C:\>

The [WMISearcher] Type
Finally, PowerShell also has a [WMISearcher] type. This allows you to submit a query to WMI and
return a collection of objects.

PS C:\> $d = [WmiSearcher]"Select * from Win32_Logicaldisk where drivetype = 3'
PS C:\> $d.get()

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 3007844352
Size : 15726702592
VolumeName : Server2003

DeviceID : E:
DriveType : 3

334

Windows PowerShell: TFM • 2nd Edition

ProviderName :
FreeSpace : 3738099712
Size : 24280993792
VolumeName : XP

The object, $d, is a collection of all Win32_LogicalDisk instances where drive type is equal to 3. To
access to collection we call the Get() method. This technique is very helpful when you want to find
dynamic information that might include multiple instances of a given WMI class.

PS C:\> $s=[WMISearcher]"Select * from win32_Service `
>> where StartMode='Disabled'"
>>
PS C:\> $s.Get()|format-table -autosize

ExitCode Name ProcessId StartMode State Stat
-------- ---- --------- --------- ----- --
 1077 Alerter 0 Disabled Stopped OK
 1077 ALG 0 Disabled Stopped OK
 1077 ClipSrv 0 Disabled Stopped OK
 1077 FastUserSwitchingCompatibility 0 Disabled Stopped OK
 1077 HidServ 0 Disabled Stopped OK
 1077 Irmon 0 Disabled Stopped OK
 1077 Messenger 0 Disabled Stopped OK
 1077 msvsmon80 0 Disabled Stopped OK
 1077 NetDDE 0 Disabled Stopped OK
 1077 NetDDEdsdm 0 Disabled Stopped OK
 1077 RemoteAccess 0 Disabled Stopped OK
 1077 RemoteRegistry 0 Disabled Stopped OK
 1077 SCardSvr 0 Disabled Stopped OK
 1077 SharedAccess 0 Disabled Stopped OK
 1077 TermService 0 Disabled Stopped OK
 1077 TlntSvr 0 Disabled Stopped OK
 1077 WMDM PMSP Service 0 Disabled Stopped OK

PS C:\>

You cannot use the WMISearcher type to query a remote system. If you need to do that, then you’ll
have to continue using the Get-WmiObject cmdlet.

So, when should you use Get-WmiObject and when should you use the WMI type? If you know
exactly the WMI object and instance you want to work with, and don’t need to specify alternate creden-
tials, then WMI type is the best and fastest approach. Otherwise, use the Get-wmiObject cmdlet.

Practical Examples
Let’s look at a few practical examples of using WMI and PowerShell. If you are like most adminis-
trators, you have a list or two of server names. Often, you want to obtain information from all of the
servers in a list or perform some action against each of them, such as restarting a service.

There are a few ways you can “process” multiple computers from a list. Here’s one approach:

foreach ($server in (get-content servers.txt)) {
 # do something else to each computer
 Get-WmiObject <WMIClass or query> -computer $server
 }

With this approach, you can run multiple commands on each server, passing the servername as the

Managing Systems by Using WMI

335

-computer parameter for the Get-wmiObject cmdlet. Here’s how this might look in a script:

foreach ($server in (get-content servers.txt)) {
 Write-Host $server.ToUpper() -fore Black -back Green
 Get-WmiObject Win32_Operatingsystem -computer $server |`
 Format-Table Caption,BuildNumber,ServicePackMajorVersion
 Get-WmiObject Win32_Computersystem -computer $server |`
 Format-Table Model,TotalPhysicalMemory
 }

The code snippet takes each computer name from servers.txt using Get-Content. Each time through
the list the computer name is assigned to the $server variable and first displayed using Write-Host.

 Write-Host $server.ToUpper() -fore Black -back Green

Then two different Get-WmiObject expressions are executed with the results of each piped to Format-
Table. The end result is information about each operating system, including its name and service pack
version, as well as information about the server model and the total amount of physical memory.

If you are only executing a single command for each server, a more efficient approach is something like
this:

Get-WmiObject <WMI Query or Class> -computer (Get-Content servers.txt)

You can use whatever syntax variation you want for Get-WmiObject. The trick here is that the result of
the Get-Content command will implicitly be processed as if you were using ForEach. Here’s a varia-
tion on something we tried above:

PS C:\> Get-WmiObject Win32_Computersystem -computer (Get-Content servers.txt) |`
>> Format-Table Model,TotalPhysicalMemory
>>

We will get a table with hardware model and total physical memory for each computer in the list. But if
you run this yourself, you’ll notice something is missing. How you can tell what information belongs to
which computer? Easy. Have WMI tell you. Most WMI classes have a property, usually CSName, that
will return the name of the computer. Testing your WMI expression will let you know what you can use.
If nothing else, you can always use the __SERVER property. This is always populated. Here’s our previ-
ous example revised to include the server name:

PS C:\> Get-WmiObject Win32_Computersystem -computer (Get-Content servers.txt) |`
>> Format-Table __Server,Model,TotalPhysicalMemory
>>

Now you will get a more meaningful report.

Here’s one more slightly complex example, but something you are likely to need. This code sample could
be used in a script to return drive utilization information:

Get-WmiObject -query "Select * from win32_logicaldisk where drivetype=3" `
-computer (Get-Content servers.txt) -credential $cred | `
Format-Table @{Label="Server";Expression={$_.SystemName}},DeviceID,`
@{Label="Size (MB)";Expression={"{0:N2}" -f ($_.Size/1MB)}}, `
@{Label="Free (MB)";Expression={"{0:N2}" -f ($_.FreeSpace/1MB)}}

336

Windows PowerShell: TFM • 2nd Edition

The Get-WmiObject cmdlet is using the query parameter to return all logical disks of drive type 3,
which indicates a fixed local disk. This query is run against each computer listed in servers.txt. Our
example also passes a stored set of alternate credentials, which has been saved ahead of time in the $cred
variable.

The results of the query are then piped to Format-Table, which creates a few custom table headers.
Because the Size and FreeSpace properties are returned in bytes, we’ll format them using the format
operator, -f, to megabytes. The result is a table showing every server name, its fixed drives, and their size
and free space in MB to two decimal places.

WMI Events and PowerShell
A particular useful feature of WMI is the ability to subscribe to Windows events and execute code in
response to each event. For example, you could run a WMI script that would check every five seconds
to verify that a specific service had not stopped. Or you might need to monitor a folder and be notified
when a new file is created. WMI events are used to meet these needs. This can be a complicated process
and is definitely an advanced WMI topic.

PowerShell does not have any cmdlets designed explicitly for working with WMI events. The Get-
wmiObject cmdlet also doesn’t support WMI events. Fortunately, the .NET Framework has a few
classes you can use in PowerShell.

You will use the System.Management.ManagementEventWatcher class to watch for new events. Before
you can create the object, you will need to create System.Management.ManagementScope and System.
Management.WQLEventQuery objects. But these are pretty easy to define. The scope will be the WMI
namespace, typically root\cimv2. Use the New-Object cmdlet:

PS C:\ > $path="root\cimv2"
PS C:\ > $scope = New-Object System.Management.ManagementScope $path

The event query is a little more complicated. The query is written like any other WMI query. The differ-
ence is that you need to specify an event class. But what events can you work with? Have PowerShell tell
you:

PS C:\> Get-WmiObject -list -namespace root\cimv2 | where '
>> {$_.__derivation -match "event"} | sort
>>

This will generate a long list that we won’t reprint here. But we will use some of the event classes you
are likely to see. Suppose you want to know when a new process has started. You would use a query like
“Select* from Win32_ProcessStartTrace”. To create the appropriate object, type this:

PS C:\> $query="Select * from win32_processStartTrace"
PS C:\> $EventQuery = New-Object System.Management.WQLEventQuery $query

Once you have the scope and query objects, you can create the watcher object:

PS C:\> $watcher = New-Object System.Management.ManagementEventWatcher $scope,$EventQuery

The watcher object has some options you can set by modifying a System.Management.
EventWatcherOptions object. One item you will likely want to set is a timeout value. This value deter-
mines how long WMI will wait before timing out.

Managing Systems by Using WMI

337

PS C:\> $options = New-Object System.Management.EventWatcherOptions
PS C:\> $options.TimeOut = [timespan]"0.0:0:1"
PS C:\> $watcher.Options = $options

The event watcher object is now ready to start. If you look at the object’s properties, you’ll see a Start()
method. This method ties your event query to the watcher object, but the event notification is asynchro-
nous. You also need to call the WaitForNextEvent() method to instruct PowerShell to wait for the next
event:

PS C:\> $watcher.WaitFornextevent()
Exception calling "WaitForNextEvent" with "0" argument(s): "Timed out "
At line:1 char:26
+ $watcher.WaitFornextevent(<<<<)

Wait a moment. This timed out. Well, we told it to wait only for a second before timing out. We could
have set a longer timeout value, but you’ll never really know how long it might be before a specific event
occurs. With WMI events, your script needs to keep running so that it can “receive” notifications about
events. Here’s a better way:

PS C:\> while ($true) {
>> trap [System.Management.ManagementException] {continue}
>> $watcher.WaitForNextEvent()
>> }
>>

At this point, PowerShell will wait until the event, which, if you’ve been following from the beginning
of this section, is when a new process starts. As soon as we launch Notepad, PowerShell will display this:

__GENUS : 2
__CLASS : Win32_ProcessStartTrace
__SUPERCLASS : Win32_ProcessTrace
__DYNASTY : __SystemClass
__RELPATH :
__PROPERTY_COUNT : 8
__DERIVATION : {Win32_ProcessTrace, Win32_SystemTrace, __ExtrinsicEvent, __Event...}
__SERVER :
__NAMESPACE :
__PATH :
PageDirectoryBase : 49667
ParentProcessID : 2460
ProcessID : 16952
ProcessName : notepad.exe
SECURITY_DESCRIPTOR :
SessionID : 0
Sid : {1, 5, 0, 0...}
TIME_CREATED : 128293441418864430

Every new process will be listed here as it starts. To quit simply type Ctrl-C, although you may need to
wait a bit depending on the timeout value specified. By the way, the reason for the trap line is so that
when the WMI event times out, the error message will be suppressed. It makes your event monitoring a
little cleaner.

Let’s take everything we have so far and wrap it up in a function:

Function Get-WmiEvent ($query){
 $path="root\cimv2"

338

Windows PowerShell: TFM • 2nd Edition

 $EventQuery = New-Object System.Management.WQLEventQuery $query
 $scope = New-Object System.Management.ManagementScope $path
 $watcher = New-Object System.Management.ManagementEventWatcher $scope,$EventQuery
 $options = New-Object System.Management.EventWatcherOptions
 $options.TimeOut = [timespan]"0.0:0:1"
 cls
 Write-Host Waiting for events in response to: $EventQuery.querystring `
 -back darkgreen -fore black
 $watcher.Options = $options
 $watcher.Start()
 while ($true) {
 trap [System.Management.ManagementException] {continue}
 $watcher.WaitForNextEvent()
 }
}

Once the function is loaded, the only argument is the event query:

PS C:\> get-wmievent "select * from Win32_ProcessStartTrace"

The screen will clear and the query will be displayed with a dark green background. This gives you more
screen real estate for all the events plus you’ll be able to see what type of events you are monitoring. As
new processes are started you’ll see information, but perhaps you would prefer to see less information.
The output shows you the properties, so let’s create a new function for monitoring new processes that
only displays pertinent information.

Function Get-NewProcessEvent {
 $path="root\cimv2"
 $query="Select * from Win32_ProcessStartTrace"
 $EventQuery = New-Object System.Management.WQLEventQuery $query
 $scope = New-Object System.Management.ManagementScope $path
 $watcher = New-Object System.Management.ManagementEventWatcher $scope,$EventQuery
 $options = New-Object System.Management.EventWatcherOptions
 $options.TimeOut = [timespan]"0.0:0:1"
 $watcher.Options = $options
 cls
 Write-Host Waiting for events in response to: $EventQuery.querystring `
 -back darkgreen -fore black
 $watcher.Start()
 while ($true) {
 trap [System.Management.ManagementException] {continue}
 $watcher.WaitForNextEvent() | select ProcessName,ProcessID,ParentProcessID
 }
}

This is very similar to our previous function, except we’ve hard coded in the query. Because we know this
function will be used to watch for new processes, we can select process specific properties:

 $watcher.WaitForNextEvent() | select ProcessName,ProcessID,ParentProcessID

When the event fires, the returned object is piped to the Select cmdlet, which returns the ProcessName,
ProcessID and PartentProcessID properties. Now we have a simpler display of information.

As you work with WMI events, especially as you look at VBScript examples you might find online or in
books, you’ll come across queries like this:

Managing Systems by Using WMI

339

"Select * from __InstanceCreationEvent Within 5 where TargetInstance ISA 'CIM_datafile' AND
TargetInstance.drive='c:' AND TargetInstance.Path='\\files\\'"

We don’t have space to cover WMI events in detail, but a query like this returns a TargetInstance object
whenever a corresponding event fires. In this query, any time a new file is created in C:\Files, an event
will fire. The query will check every five seconds. The returned object will be a CIM_Datafile.

We could pass this query string to our Get-wmiEvent function, and it will work. When a new file is cre-
ated, this will be returned to PowerShell:

__GENUS : 2
__CLASS : __InstanceCreationEvent
__SUPERCLASS : __InstanceOperationEvent
__DYNASTY : __SystemClass
__RELPATH :
__PROPERTY_COUNT : 3
__DERIVATION : {__InstanceOperationEvent, __Event, __IndicationRelated, __SystemClass}
__SERVER : GODOT
__NAMESPACE : //./root/CIMV2
__PATH :
SECURITY_DESCRIPTOR :
TargetInstance : System.Management.ManagementBaseObject
TIME_CREATED : 128294215675296404

In this situation, we need a little more processing to get the details of the TargetInstance. Here’s a func-
tion designed to watch for the creation of a new file:

Function Get-NewFileEvent {
$folderpath is the full path to the folder you
want to monitor like C:\files\PowerShell

$interval is the polling interval in seconds.

Param([string]$folderpath,[int32]$interval)
 $path="root\cimv2"
 $drive=Split-Path $folderpath -Qualifier
 $Folder=(Split-Path $folderpath -NoQualifier).Replace("\","\\")+"\\"
 $query="Select * from __InstanceCreationEvent Within `
 $interval where TargetInstance ISA 'CIM_datafile' AND `
 TargetInstance.drive='$drive' AND TargetInstance.Path='$folder'"
 $EventQuery = New-Object System.Management.WQLEventQuery $query
 $scope = New-Object System.Management.ManagementScope $path
 $watcher = New-Object System.Management.ManagementEventWatcher $scope,$EventQuery
 $options = New-Object System.Management.EventWatcherOptions
 $options.TimeOut = [timespan]"0.0:0:1"
 $watcher.Options = $options
 cls
 Write-Host Waiting for events in response to: $EventQuery.querystring `
 -back darkgreen -fore black
 $watcher.Start()
 while ($true) {
 trap [System.Management.ManagementException] {continue}
 $evt=$watcher.WaitForNextEvent()
 if ($evt) {
 $evt.TargetInstance | select Name,FileSize,CreationDate
 Clear-Variable evt }
 }
}

This function takes a parameter for the folder to monitor and a polling interval in seconds. The WMI

340

Windows PowerShell: TFM • 2nd Edition

event query needs the drive and folder, so we used the Split-Path cmdlet to parse the folder path:

 $drive=Split-Path $folderpath -Qualifier
 $Folder=(Split-Path $folderpath -NoQualifier).Replace("\","\\")+"\\"

The WMI query also expects the folder path to use \\ in place of \, so we use the Replace() method to
make the change.

The function loops repeatedly waiting for the next event to fire:

 while ($true) {
 trap [System.Management.ManagementException] {continue}
 $evt=$watcher.WaitForNextEvent()

If an event fires, then $evt will become defined, which we can test for:

 if ($evt) {

If the object exists, we get the TargetInstance property and pipe that to the Select cmdlet to display the
filename, its size, and when it was created:

 $evt.TargetInstance | select Name,FileSize,CreationDate

Thus, when a file is created, you will see something like this:

Name FileSize CreationDate
---- -------- ------------
c:\files\file.txt 1193 20070720134955.005960-240

After the information has been displayed, we clear the variable so that the function doesn’t continue to
repeat the same information until a new event fires:

 Clear-Variable evt }

As you can see, there is no single approach to working with WMI events in PowerShell. It all depends
on the type of events you want to monitor and what type of information or action you want to take.

The PowerShell Team Rocks
We want to give proper credit and thanks to the Microsoft PowerShell team for providing some ter-
rific examples on this topic, which we’ve shamelessly “borrowed.” We strongly recommend reading
the team blog at http://blogs.msdn.com/powershell/default.aspx on regular basis.

What about connecting to events on remote computers and using alternate credentials? Here’s our func-
tion to watch for new processes, rewritten to support connecting to a remote machine and specifying
alternate credentials:

Function Get-NewRemoteProcessEvent {
Param([string]$computer=".",[System.Management.Automation.PSCredential]$credential)

Managing Systems by Using WMI

341

 $path="\\$computer\root\cimv2"
 $query="Select * from Win32_ProcessStartTrace"
 $EventQuery = New-Object System.Management.WQLEventQuery $query
 $scope = New-Object System.Management.ManagementScope $path

 if ($Credential) {
 #use alternate credentials if passed
 $scope.options.Username = $credential.GetNetworkCredential().Username
 $scope.options.Password = $credential.GetNetworkCredential().Password
 }

 $watcher = New-Object System.Management.ManagementEventWatcher $scope,$EventQuery
 $options = New-Object System.Management.EventWatcherOptions
 $options.TimeOut = [timespan]"0.0:0:1"
 $watcher.Options = $options
 cls
 Write-Host Connected to $path. Waiting for events in response to: $EventQuery.querystring `
 -back darkgreen -fore black
 $watcher.Start()
 while ($true) {
 trap [System.Management.ManagementException] {continue}
 $watcher.WaitForNextEvent() | select ProcessName,ProcessID,ParentProcessID
 }
}

There are really only a few differences. First, we’ve set the default computer name to the local system. If
you specify a computer name, then the path will include the computer name:

 $path="\\$computer\root\cimv2"

The second parameter is a set of alternate credentials. The function is expecting an object created from
an earlier Get-Credential command. If a credential is passed, the username and password are extracted
with the GetNetworkCredential() method and assigned to the management scope:

 if ($Credential) {
 #use alternate credentials if passed
 $scope.options.Username = $credential.GetNetworkCredential().Username
 $scope.options.Password = $credential.GetNetworkCredential().Password
 }

After that, everything else is the same. As soon as a new process is started on the remote machine, the
ProcessName, ProcessID, and ParentProcessID properties are displayed.

As you see, there is very little difference between monitoring events locally versus a remote machine. In
fact, you should be able to create functions and scripts that will work both locally and with remote sys-
tems and alternate credentials. There is no reason to have separate functions. One function can do it all.

Read More About It
Our book, Advanced VBScript for Microsoft Windows Administrators (Microsoft Press 2006), has
a chapter devoted to scripting events with WMI. Even though the topic is covered from a VBScript
point of view, it should still give you some helpful information. You should be able to use the exam-
ples as starting points for your PowerShell script development.

Managing Services

343

Chapter 26
Managing Services

PowerShell offers several cmdlets that make managing Windows servers a breeze. The cmdlets you will
use most often are briefly discussed in the following sections.

Listing Services
We’ve used the Get-Service cmdlet in many examples throughout this book. Here’s a standard expres-
sion to list all running services:

PS C:\> get-service | Where {$_.status -eq "Running"}

This is an important expression because you need to know either the service’s real name or its display
name to manage the service.

Starting Services
It should come as no surprise that PowerShell uses the Start-Service cmdlet to start a service. You can
specify the service by its real name:

PS C:\> start-service -name "spooler"

Alternatively, you can specify the service by its display name:

PS C:\> start-service -Displayname "Print spooler"

344

Windows PowerShell: TFM • 2nd Edition

Be sure to use quotes for the display name, since it usually contains spaces. Because the cmdlet doesn’t
display a result unless there is an error, you can use the
-Passthru parameter to force the cmdlet to pass objects down the pipeline.

PS C:\> start-service -displayname "print spooler" -passthru

Status Name DisplayName
------ ---- -----------
Running Spooler Print Spooler

PS C:\>

Stopping Services
Stopping services is just as easy. Everything we discussed about starting services applies to stopping ser-
vices. The only difference is, we use the Stop-Service cmdlet.

PS C:\> stop-service webclient -passthru

Status Name DisplayName
------ ---- -----------
Stopped WebClient WebClient

PS C:\>

Suspending and Resuming Services
Some services can be suspended or paused. This doesn’t stop the service completely; it only prevents it
from doing anything. Be aware that not all services support suspension:

PS C:\> suspend-service spooler
Suspend-Service : Service 'Print Spooler (Spooler)' cannot be
suspended because the service does not support being suspended or
resumed.
At line:1 char:16
+ suspend-service <<<< spooler
PS C:\>

If you can suspend a service, you’ll see something like this:

PS C:\> suspend-service w3svc -passthru

Status Name DisplayName
------ ---- -----------
Paused W3SVC World Wide Web Publishing

PS C:\>

Use the Resume-Service cmdlet to resume a suspended service:

Managing Services

345

PS C:\> resume-service w3svc -passthru

Status Name DisplayName
------ ---- -----------
Running W3SVC World Wide Web Publishing

PS C:\>

Restarting-Services
If you want to restart a service, you could use the combination of Stop-Service and Start-Service. But
the simpler approach would be to use Restart-Service:

PS C:\> restart-service spooler
WARNING: Waiting for service 'Print Spooler (Spooler)' to finish starting...
PS C:\> get-service spooler

Status Name DisplayName
------ ---- -----------
Running Spooler Print Spooler

For services with dependencies, you’ll need to use the -Force parameter, otherwise PowerShell will
object:

PS C:\> restart-service lanmanserver
Restart-Service : Cannot stop service 'Server (lanmanserver)' because it has dependent
services. It can only be stopped
 if the Force flag is set.
At line:1 char:16
+ restart-service <<<< lanmanserver
PS C:\> (get-service lanmanserver).DependentServices

Status Name DisplayName
------ ---- -----------
Running Browser Computer Browser

The solution is to use the -Force parameter:

PS C:\> restart-service lanmanserver -force -passthru

Status Name DisplayName
------ ---- -----------
Running lanmanserver Server

Managing Services
The Set-Service cmdlet is used to change a service’s start mode, say from Auto to Manual. You can
either specify the service by name or display name.

PS C:\> set-service -name spooler -StartupType Manual

You can change the Startup Type to Automatic, Manual, or Disabled. Unfortunately, there are no provi-
sions in Get-Service to see the start-mode.

346

Windows PowerShell: TFM • 2nd Edition

PowerShell has no built-in method for changing the service account or its password; instead, you’ll have
to use WMI—the Win32_Service class has much broader capabilities—to perform these and additional
service-related tasks. If you need to work with services on remote systems, then this is the only way you
can accomplish these tasks.

Get Service Information with Get-WmiObject
This basic command:

PS C:\> Get-WmiObject win32_service

will provide a list of service information on the local system. There are several ways to filter WMI infor-
mation. Here’s one approach:

PS C:\> Get-WmiObject win32_service -filter {state='running'}| Select Name,State,StartMode
Name State StartMode
---- ----- ---------
AcrSch2Svc Running Auto
ALG Running Manual
AppMgmt Running Manual
AudioSrv Running Auto
Avg7Alrt Running Auto
Avg7UpdSvc Running Auto
AVGEMS Running Auto
BITS Running Manual
CryptSvc Running Auto
DcomLaunch Running Auto
Dhcp Running Auto
Dnscache Running Auto

We’ve truncated the output to save space. Because we can’t do it with the basic service cmdlets, let’s find
services where the StartUp type is not ‘Auto’:

PS C:\> Get-WmiObject win32_service -filter {StartMode != 'Auto' }| Select Name,StartMode '
>>| sort StartMode | format-table
>>

Name StartMode
---- ---------
MSSQLServerADHelper Disabled
NetDDE Disabled
Messenger Disabled
FastUserSwitchingCompatibility Disabled
Irmon Disabled
SQLBrowser Disabled
TlntSvr Disabled
RemoteAccess Disabled
NetDDEdsdm Disabled
NetTcpPortSharing Disabled
Alerter Disabled
ClipSrv Disabled
ALG Manual
SCardSvr Manual
SSDPSRV Manual
SwPrv Manual
SysmonLog Manual
RasMan Manual
RasAuto Manual

Managing Services

347

Pml Driver HPZ12 Manual

Again, we’ve truncated the output. One thing to be aware of is that even though we are working with
services, there are two different objects. The objects returned by Get-Service are ServiceController
objects and the objects from Get-WmiObject are Win32_Service objects. Each object may have a dif-
ferent name for the same property. For example, the ServiceController object’s property name is “State”
and it is “Status” for Win32_Service. But both will indicate whether a service is running, stopped, or
whatever. But this doesn’t mean we can’t combine the best of both worlds:

PS C:\> Get-WmiObject win32_service -filter {StartMode = 'Disabled' } '
>>| set-service -startuptype Manual -confirm
>>

Confirm
Are you sure you want to perform this action?
Performing operation "Set-Service" on Target "Alerter (Alerter)".

This snippet takes the output of the Get-WmiObject cmdlet that will return all disabled services and
pipes it to Set-Service, which changes the startup type to Manual. We’ve also added the -Confirm
parameter to prompt you before changing each service.

Change Service Logon Account
To change the logon account for a service requires WMI. Suppose you want to change the logon
account for the Alerter service. We’ll start by creating an object for the Alerter service:

PS C:\> [wmi]$svc=Get-wmiobject -query "Select * from win32_service where name='Alerter'"

We can check the StartName property to see the current service account:

PS C:\> $svc.StartName
NT AUTHORITY\LocalService

To change the service configuration requires us to invoke the Change() method. Reading the MSDN
documentation for this method at http://msdn2.microsoft.com/
en-us/library/aa384901.aspx, we see that the method requires multiple parameters:

Change(DisplayName, PathName, ServiceType, ErrorControl, StartMode,
DesktopInteract, StartName, StartPassword, LoadOrderGroup,
LoadOrderGroupDependencies, ServiceDependencies)

Even though we only want to change the StartName and StartPassword parameters, we still have to pro-
vide information for the other parameters. In PowerShell, we can pass $Null. This will keep existing settings
for the service:

PS C:\> $svc.Change($Null,$Null,$Null,$Null,$Null,$Null,"MyDomain\svcAccount","P@ssw0rd123")

We use $Null for the first six parameters, then specify the new account and password. We don’t have
to specify the service parameters after the password since they aren’t changing. They will assumed to be
$Null. If you are successful, WMI will return a value of 0:

348

Windows PowerShell: TFM • 2nd Edition

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

If you get any other error, check the MSDN documentation for the error code.

Of course, the new settings won’t take effect until the service is restarted:

PS C:\> restart-service "Alerter"

Because we are using Get-WmiObject, you could also do this for services on remote computers:

PS C:\> [wmi]$svc=Get-wmiobject -query "Select * from win32_service where name='Alerter'" '
>> -computer "FILE01" -credential "mydomain\administrator"
>>
PS C:\>

From this point, everything else is the same, except for restarting the service.

Controlling Services on Remote Computers
To control services on remote computers, such as starting stopping or pausing, you can’t use the
PowerShell cmdlets. You will have to use the WMI methods. WMI does not have a restart method, but
we can achieve the same result like this:

PS C:\> $svc.StopService()
PS C:\> $svc.StartService()

You would use these commands at the end of our change service account process. In fact, there’s no
reason you couldn’t use them for managing services on the local system as well. If you want to pause or
resume a service, the methods are PauseService() and ResumeService().

Managing Services

349

Change Service Logon Account Password
Changing the service account password uses essentially the same approach as changing the Startname
parameter. The only service parameter that is changing is StartPassword:

PS C:\> [wmi]$svc=Get-wmiobject -query "Select * from win32_service where name='Alerter'"
PS C:\> $rc=$svc.Change($Null,$Null,$Null,$Null,$Null,$Null,$Null,"N3wP@ssw")
PS C:\> if ($rc -eq 0) {restart-service "Alerter"} else {
>> write-host -foreground "RED" "Changing password failed with a return value of $rc."}
>>
PS C:\>

As we did with changing the service account on a remote computer, you can use the same techniques
for changing the service account password as well, by specifying a remote computer name and alternate
credentials.

Note
The WMI Win32_Service class isn’t compatible with cmdlets like Stop-Service and Start-Service.
That is, you can’t get a bunch of Win32_Service objects and pipe them to Start-Service; the
*-Service cmdlets only accept service objects generated by the Get-Service cmdlet.

Managing Permissions

351

Chapter 27
Managing Permissions

Managing file permissions with scripting has always been a popular and challenging task. Even though
PowerShell provides new ways to access and work with access control lists (ACLs), you still may find
more familiar command-line utilities—Cacls.exe, Xcacls.exe, Dsacls.exe, and forth—easier to use. And
the good news is that you can use them right from within PowerShell! In this chapter, we’ll also take a
look at PowerShell’s native abilities to work with permissions.

Viewing Permissions
The Get-Acl cmdlet can be used in PowerShell to obtain security descriptor information for files, fold-
ers, printers, registry keys, and more. By default, all information is displayed in a table format:

PS C:\> get-acl c:\boot.ini

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Path Owner Access
---- ----- ------
boot.ini BUILTIN\Administrators NT AUTHORITY\SYSTEM Al...
PS C:\>

The problem is that some of the information is truncated. Therefore, you’ll probably prefer to use some-
thing like this:

352

Windows PowerShell: TFM • 2nd Edition

PS C:\> get-acl boot.ini |format-list

Path : Microsoft.PowerShell.Core\FileSystem::C:\boot.ini
Owner : BUILTIN\Administrators
Group : NT AUTHORITY\SYSTEM
Access : NT AUTHORITY\SYSTEM Allow FullControl
 BUILTIN\Administrators Allow FullControl
 BUILTIN\Power Users Allow ReadAndExecute, Synchronize
Audit :
Sddl : O:BAG:SYD:PAI(A;;FA;;;SY)(A;;FA;;;BA)(A;;0x1200a9;;;PU)

PS C:\>

The Get-Acl cmdlet also works for directories:

PS C:\> get-acl c:\users |format-list

Path : Microsoft.PowerShell.Core\FileSystem::C:\users
Owner : COMPANY\administrator
Group : COMPANY\None
Access : BUILTIN\Administrators Allow FullControl
 NT AUTHORITY\SYSTEM Allow FullControl
 COMPANY\administrator Allow FullControl
 CREATOR OWNER Allow 268435456
 BUILTIN\Users Allow ReadAndExecute, Synchronize
 BUILTIN\Users Allow AppendData
 BUILTIN\Users Allow CreateFiles

PS C:\>

It will even work on registry keys:

PS C:\> get-acl '
>> HKLM:\software\microsoft\windows\CurrentVersion\run|format-list
>>

Path : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\micros
 oft\windows\CurrentVersion\run
Owner : BUILTIN\Administrators
Group : NT AUTHORITY\SYSTEM
Access : BUILTIN\Users Allow ReadKey
 BUILTIN\Users Allow -2147483648
 BUILTIN\Power Users Allow SetValue, CreateSubKey, Delete, ReadKey
 BUILTIN\Power Users Allow -1073676288
 BUILTIN\Administrators Allow FullControl
 BUILTIN\Administrators Allow 268435456
 NT AUTHORITY\SYSTEM Allow FullControl
 NT AUTHORITY\SYSTEM Allow 268435456
 CREATOR OWNER Allow 268435456
Audit :
Sddl : O:BAG:SYD:AI(A;ID;KR;;;BU)(A;CIIOID;GR;;;BU)(A;ID;CCDCLCSWRPSDRC;;;PU)
 (A;CIIOID;SDGWGR;;;PU)(A;ID;KA;;;BA)(A;CIIOID;GA;;;BA)(A;ID;KA;;;SY)(A
 ;CIIOID;GA;;;SY)(A;CIIOID;GA;;;CO)

Managing Permissions

353

PS C:\>

Notice that the cmdlet returns the owner. You can create a Get-Acl expression to display just that
information:

PS C:\> get-acl c:* |format-table Path,Owner -autosize

Path Owner
---- -----
Microsoft.PowerShell.Core\FileSystem::C:\backinfo BUILTIN\Admi...
Microsoft.PowerShell.Core\FileSystem::C:\backups MYCO\ATech
Microsoft.PowerShell.Core\FileSystem::C:\deploy2000 MYCO\ATech
Microsoft.PowerShell.Core\FileSystem::C:\deploy2003 MYCO\ATech
Microsoft.PowerShell.Core\FileSystem::C:\Desktop Sna MYCO\ATech
Microsoft.PowerShell.Core\FileSystem::C:\Documents and BUILTI
Microsoft.PowerShell.Core\FileSystem::C:\HPAiOScrubber MYCO\ATech
Microsoft.PowerShell.Core\FileSystem::C:\IALog BUILTIN\Admi..
...

We’ve truncated and edited the output to fit the page, but you get the idea.

What about Active Directory?
The first version of PowerShell does not have terrific support for Active Directory. There are no
cmdlets designed to work with permissions in Active Directory. The best approach would be to con-
tinue using command-line tools like Dsacls.exe.

Viewing Permissions for an Entire Object Hierarchy
The Get-Acl cmdlet doesn’t have a recurse method, but we won’t let that slow us down. If you want a
report to show owners for a directory structure, you can use a script like this:

GetOwnerReport.ps1

#GetOwnerReport
$report="C:\OwnerReport.csv"
$StartingDir=Read-Host "What directory do you want to start at?"
Get-ChildItem $StartingDir -recurse |Get-Acl `
| select Path,Owner | Export-Csv $report -NoTypeInformation

#send two beeps when report is finished
write-Host 'a 'a 'n"Report finished. See "$report

The script prompts you for a starting directory. It then uses Get-ChildItem to pass every item to Get-
Acl and recurse through subdirectories. You’ll notice that we piped output to Select-Object to get just
the Path and Owner properties. Finally, we send the data to a CSV file. The script beeps a few times to
let you know it is finished and displays a message.

Changing Permissions
Getting access control lists is half the job. You might still want to reset permissions through PowerShell.
To be honest, this is not the easiest task to do in PowerShell, mainly because permissions in Windows

354

Windows PowerShell: TFM • 2nd Edition

are complicated, and there’s only so much a shell can do to simplify that situation.

To get really detailed with permissions, you need to understand .NET security objects and NTFS secu-
rity descriptors. However, we’re just going to start with some simpler examples. Setting an access control
rule is a matter of bit-masking access rights against a security token. The bits that match a security prin-
cipal’s account determine whether you can view a file, make changes to a file, or take ownership.

You can use Set-Acl to update an object’s access rule. However, you first have to construct a .NET
security descriptor, or get the security descriptor from an existing object, modify the security descriptor
appropriately, and apply it to the desired object. This is not an insurmountable task, just very tedious. The
script ChangeACL.ps1 takes a simplified approach and grants permissions you specify to the specified
security principal on all objects in the specified starting directory and subdirectories.

ChangeACL.ps1

#ChangeACL.ps1
$Right="FullControl"

#The possible values for Rights are
ListDirectory
ReadData
WriteData
CreateFiles
CreateDirectories
AppendData
ReadExtendedAttributes
WriteExtendedAttributes
Traverse
ExecuteFile
DeleteSubdirectoriesAndFiles
ReadAttributes
WriteAttributes
Write
Delete
ReadPermissions
Read
ReadAndExecute
Modify
ChangePermissions
TakeOwnership
Synchronize
FullControl

$StartingDir=Read-Host " What directory do you want to start at?"
$Principal=Read-Host " What security principal do you want to grant" `
"$Right to? `n Use format domain\username or domain\group"

#define a new access rule
#the $rule line has been artificially broken for print purposes
#It needs to be one line. The online version of the script is properly
#formatted.
$rule=new-object System.Security.AccessControl.FileSystemAccessRule
($Principal,$Right,"Allow")

foreach ($file in $(Get-ChildItem $StartingDir -recurse)) {
 $acl=get-acl $file.FullName
 #display filename and old permissions
 write-Host -foregroundcolor Yellow $file.FullName
 #uncomment if you want to see old permissions
 #write-Host $acl.AccessToString `n

Managing Permissions

355

 #Add this access rule to the ACL
 $acl.SetAccessRule($rule)

 #Write the changes to the object
 set-acl $File.Fullname $acl

 #display new permissions
 $acl=get-acl $file.FullName
 Write-Host -foregroundcolor Green "New Permissions"
 Write-Host $acl.AccessToString `n
}

This script creates a simple access rule that allows a specific right. If you can use a broad right, such as
Modify or Full Control, you’ll find it easy to work with the script. We’ve hard coded in the $Right vari-
able. The script prompts you for directory path and the name of the security principal to which you wish
to apply the right.

The real work of the script is creating a new FileSystemAccess rule object. Creating the object requires
that we specify the name of the security principal, the right to be applied, and whether to allow or deny
the right. With this rule, we can recurse through the file system starting at the specified directory. For
each file, we get the current access control list using Get-Acl:

$acl=get-acl $file.FullName

Next we add the new access rule to the ACL:

$acl.SetAccessRule($rule)

Now we call Set-Acl to write the new and modified ACL back to the object.

set-acl $File.Fullname $acl

The script finishes the loop by displaying the new ACL so you can see the change.

Automating Cacls.exe to Change Permissions
As you’ve seen, using Set-Acl is not simple, especially if you have complex permissions. Therefore, you
may find it easier to use Cacls.exe from within a PowerShell script:

SetPermswithCACLS.ps1

#SetPermsWithCACLS.ps1
CACLS rights are usually
F = FullControl
C = Change
R = Readonly
W = Write

$StartingDir=Read-Host " What directory do you want to start at?"
$Right=Read-Host " What CALCS right do you want to grant? Valid choices are F, C, R or W"
Switch ($Right) {
 "F" {$Null}
 "C" {$Null}
 "R" {$Null}
 "W" {$Null}

356

Windows PowerShell: TFM • 2nd Edition

 default {
 Write-Host -foregroundcolor "Red" `
 `n $Right.ToUpper() "is an invalid choice. Please Try again."`n
 exit
 }
}

$Principal=Read-Host " What security principal do you want to grant" `
"CACLS right"$Right.ToUpper()"to?" `n `
"Use format domain\username or domain\group"

$Verify=Read-Host `n "You are about to change permissions on all" `
"files starting at"$StartingDir.ToUpper() `n "for security"`
"principal"$Principal.ToUpper() `
"with new right of"$Right.ToUpper()"."`n `
"Do you want to continue ? [Y,N]"

if ($Verify -eq "Y") {

 foreach ($file in $(Get-ChildItem $StartingDir -recurse)) {
 #display filename and old permissions
 write-Host -foregroundcolor Yellow $file.FullName
 #uncomment if you want to see old permissions
 #CACLS $file.FullName

 #ADD new permission with CACLS
 CACLS $file.FullName /E /P "${Principal}:${Right}" >$NULL

 #display new permissions
 Write-Host -foregroundcolor Green "New Permissions"
 CACLS $file.FullName
 }
}

This script first prompts you for a starting directory and a permission right you want to grant. We’ve
used a Switch statement to make sure a valid parameter for Cacls.exe is entered. As long as the user
has entered F, C, W, or R, the script continues and prompts you for the name of a security principal you
want to add to the access control list. Because this is a major operation, we’ve included a prompt using
Read-Host to provide a summary of what the script is about to do. If anything other than Y is entered,
the script ends with no changes being made. Otherwise, the ForEach loop is executed.

Within this ForEach loop, we use Get-ChildItem to enumerate all the files in the starting directory
path and recurse through all subdirectories. The script displays the current file as a progress indicator,
and then calls Cacls.exe. Because of the way PowerShell processes Win32 commands such as Cacls.exe,
we need to enclose the program’s parameters in quotes. You’ll also notice that instead of using:

CACLS $file.FullName /e /p "$Principal:$Right"

we used:

CACLS $file.FullName /e /p "${Principal}:${Right}"

In PowerShell, an expression like Foo:Bar is treated as <namespace>:<name>, which is like
$global:profile or $env:windir. In order for PowerShell to treat the Cacls.exe parameter as a command
line parameter, we must delimit the variable name using braces, as we’ve done in this example. The script
finishes by displaying the new access control permissions for each file.

If you’ve used Cacls.exe before, you may have noticed that we used /E /P to assign permissions.

Managing Permissions

357

According to Cacls’ Help screen, /P is used to modify permissions for an existing entry. You would use
/G to grant permissions to a new user. In Cmd.exe, either /G or /P will work regardless of whether or
not the user already existed in the access control list.

This is not the case in PowerShell. PowerShell actually appears to enforce the Cacls.exe parameters. You
can use /G if a user does not exist in the file’s access control list. However, you must use /P if the user
already exists. When you attempt to use /G to modify an existing user’s permission, Cacls.exe will run,
but no change will be made.

So, how do you know if you should use /P or /G without checking every file first? Not to worry. You
can use /P regardless of whether or not the user exists in the access control list, which is what we’ve
done here. The moral is, don’t assume that every single Cmd.exe tool and command works identically
in PowerShell. Most should, but if it doesn’t, you have to look at how PowerShell is interpreting the
expression.

One final note about the script: we could have used /T with Cacls.exe to change permissions on all files
and subdirectories. The end result would have been the same, but then we couldn’t have demonstrated
some of PowerShell’s output features.

Complex Permissions in PowerShell
By now you’ve seen that managing permissions with PowerShell can be done, although it is not for the
faint of heart. That said, let’s look at a few more situations where you can use PowerShell.

Get Owner
We showed you earlier how you can use Get-Acl to display the owner of a file. You may prefer to create
a function that takes a filename as a parameter:

Function Get-Owner {
param([string]$file)

$var=(Get-Acl $file).Owner
write $var

}

With this function loaded, you can use an expression like:

PS C:\> Get-Owner c:\file.txt

To return the owners on a group of files, you have to enumerate the file collection like this:

PS C:\> foreach ($f in (get-childitem c:\temp*.txt)) {write-host $f =(get-owner $f)}

This approach is fine for reporting purposes. However, this function can’t leverage the pipeline. You
might consider rewriting it as a filtering function:

Filter Get-Owner {
 [string]$file=$_.FullName
 $var=(Get-Acl $file).Owner
 return $var
}

358

Windows PowerShell: TFM • 2nd Edition

Armed with this filter, you can accomplish something like this:

PS C:\c> get-childitem c:\public -recurse | get-owner | group | Select Name,Count

Name Count
---- -----
SAPIEN\jhicks 70
BUILTIN\Administrators 35
SAPIEN\don 10

The Get-Owner filter returns a collection of owner names, which is then processed by the Group cmd-
let, which in turn passes the results to Select to give us the final report.

Set Owner
Unfortunately, PowerShell does not provide a mechanism for setting the owner of a file other an admin-
istrator or the Administrators group. Even though Windows 2003 now allows you to assign ownership,
it cannot be done through PowerShell. Use this technique to set a new owner on a file:

PS C:\> [System.Security.Principal.NTAccount]$newOwner="Administrators"
PS C:\> $var=get-childitem c:\file.txt
PS C:\> $acl=$var.GetAccessControl()
PS C:\> $acl.SetOwner($NewOwner)
PS C:\> $var.SetAccessControl($acl)

The important step is to cast the $NewOwner object as a security principal:

PS C:\> [System.Security.Principal.NTAccount]$newOwner="Administrators"

After we get the current access control list, we call the SetOwner() method, specifying the new owner:

PS C:\> $acl.SetOwner($NewOwner)

This change will not take effect until we call the SetAccessControl() method on the file and apply the
modified access control list with the new owner:

PS C:\> $var.SetAccessControl($acl)

Retrieving Access Control
We showed you at the beginning of the chapter how to use Get-Acl to retrieve file permissions. One
approach you might take is to wrap the code into a function:

Function Get-Access {
param([string]$file)
 $var=(Get-Acl $file).Access
 write $file.ToUpper()
 write $var
 }

Once it’s loaded, you can use it to quickly get the access control for a given file:

Managing Permissions

359

PS C:\> get-access boot.ini
BOOT.INI

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : NT AUTHORITY\SYSTEM
IsInherited : False
InheritanceFlags : None
PropagationFlags : None

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : BUILTIN\Administrators
IsInherited : False
InheritanceFlags : None
PropagationFlags : None

FileSystemRights : ReadAndExecute, Synchronize
AccessControlType : Allow
IdentityReference : BUILTIN\Power Users
IsInherited : False
InheritanceFlags : None
PropagationFlags : None

The downside to this approach is that it can’t easily be used in the pipeline. Take an expression like this:

PS C:\> get-childitem c:\files*.txt | get-access | format-table

It will fail to enumerate all the files. A better approach is a filtering function:

Filter Get-AccessControl {
 [string]$file=$input
 $var=(Get-Acl $file).Access
 $obj=New-Object Object

 Add-Member -inputobject $obj -membertype Noteproperty -Name FileName -value $file.ToUpper()
 Add-Member -inputobject $obj -membertype Noteproperty -Name AccessControl -value $var

 Return $obj
}

We’ve used the New-Object cmdlet to create a custom object to return file and access informa-
tion. Because the AccessControl property of our custom object is a collection of access rules,
you need to use an expression like this in order to expand them:

PS C:\> (get-childitem c:\file.txt | Get-AccessControl).AccessControl

Or use an expression like this to look at a group of files:

PS C:\> foreach ($a in (get-childitem c:\temp*.pdf | Get-AccessControl)) '
>> {$a.filename;$a.AccessControl}
>>
C:\TEMP\COMPARE2.PDF

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : BUILTIN\Administrators

360

Windows PowerShell: TFM • 2nd Edition

IsInherited : True
InheritanceFlags : None
PropagationFlags : None

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : NT AUTHORITY\SYSTEM
IsInherited : True
InheritanceFlags : None
PropagationFlags : None

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : SAPIEN\jhicks
IsInherited : True
InheritanceFlags : None
PropagationFlags : None

FileSystemRights : ReadAndExecute, Synchronize
AccessControlType : Allow
IdentityReference : BUILTIN\Users
IsInherited : True
InheritanceFlags : None
PropagationFlags : None

C:\TEMP\COMPARETEST.PDF
FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : BUILTIN\Administrators
IsInherited : True
InheritanceFlags : None
PropagationFlags : None

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : NT AUTHORITY\SYSTEM
IsInherited : True
InheritanceFlags : None
PropagationFlags : None

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : SAPIEN\jhicks
IsInherited : True
InheritanceFlags : None
PropagationFlags : None

FileSystemRights : ReadAndExecute, Synchronize
AccessControlType : Allow
IdentityReference : BUILTIN\Users
IsInherited : True
InheritanceFlags : None
PropagationFlags : None

PS C:\>

But what if you want to find a particular security principal? Use this function to enumerate
the AccessControl property, searching for the particular user or group:

Filter Get-Principal {

Param([string]$Principal,[Object]$ac)

Managing Permissions

361

 foreach ($rule in $ac.AccessControl) {
 if ($rule.IdentityReference -eq $Principal) {
 $ac.filename,$rule
 }
 }
}

Use this filter in conjunction with the Get-AccessControl filter to display files and access rules that
apply to a given user:

PS C:\> foreach ($a in (get-childitem c:\temp\ -include *.zip -recurse| '
>> Get-AccessControl)) {get-principal sapien\don $a}
>>
C:\TEMP\ZTEST\WSHVBSCRIPTCORE.ZIP

FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : SAPIEN\don
IsInherited : False
InheritanceFlags : None
PropagationFlags : None

C:\TEMP\IPDEMO.ZIP
FileSystemRights : FullControl
AccessControlType : Allow
IdentityReference : SAPIEN\don
IsInherited : False
InheritanceFlags : None
PropagationFlags : None

Removing a rule
Removing access for a user or group is relatively straightforward:

$file="file.txt"
[System.Security.Principal.NTAccount]$principal="SAPIEN\rgbiv"
$acl=Get-Acl $file
$access=(Get-Acl $file).Access
$rule=$access | where {$_.IdentityReference -eq $principal}
$acl.RemoveAccessRuleSpecific($rule)
Set-Acl $file $acl

Obviously, we need to know what file and user or group we are working with:

$file="file.txt"
[System.Security.Principal.NTAccount]$principal="SAPIEN\rgbiv"

As we did when adding a rule, we need to use Get-Acl to retrieve the current access control list:

$acl=Get-Acl $file

To find a specific access rule, we need to filter the existing rules with Where:

362

Windows PowerShell: TFM • 2nd Edition

$access=(Get-Acl $file).Access
$rule=$access | where {$_.IdentityReference -eq $principal}

The variable, $rule, will hold all the rules that apply to the specified security principal. To remove the
rule, we call the RemoveAccessRuleSpecific() method:

$acl.RemoveAccessRuleSpecific($rule)

Finally, to apply the new access control list, we call Set-Acl:

Set-Acl $file $acl

Managing Event Logs

363

Chapter 28
Managing Event Logs

PowerShell has a terrific cmdlet in Get-Eventlog that makes it easy to find information in a system’s
event log. Since different systems may have different event logs, one of the first commands you’ll want
to use is this:

PS C:\> get-eventlog -list

 Max(K) Retain OverflowAction Entries Name
 ------ ------ -------------- ------- ----
 512 7 OverwriteOlder 2,125 Application
 15,360 0 OverwriteAsNeeded 5,485 Windows PowerShell
 512 7 OverwriteOlder 1,829 Security
 512 7 OverwriteOlder 2,139 System

PS C:\>

If you run something like the following script, every single entry in the log will scroll by:

Get-Eventlog "Windows Powershell"

That’s probably not very practical, unless you’re dumping the contents to another file.

Fortunately, the cmdlet has a parameter, -Newest, that will display the last (or newest) number of log
entries that you specify:

364

Windows PowerShell: TFM • 2nd Edition

PS C:\> get-eventlog "windows powershell" -newest 5

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 5485 Jun 25 19:31 Info PowerShell 400 Engine state is cha
 5484 Jun 25 19:31 Info PowerShell 600 Provider "Certifica
 5483 Jun 25 19:31 Info PowerShell 600 Provider "Variable"
 5482 Jun 25 19:31 Info PowerShell 600 Provider "Registry"
 5481 Jun 25 19:31 Info PowerShell 600 Provider "Function"

PS C:\>

The default table format usually ends up truncating the event message. If that happens, you can try
something like:

PS C:\> get-eventlog "windows powershell" -newest 5 |format-list

Alternatively, you can try something like this:

PS C:\> get-eventlog "windows powershell" -newest 5 | `
>> select EntryType,TimeGenerated,EventID,Message | `
>> format-list
>>

EntryType : Information
TimeGenerated : 6/25/2006 7:31:42 PM
EventID : 400
Message : Engine state is changed from None to Available.

 Details:
 NewEngineState=Available
 PreviousEngineState=None

 SequenceNumber=8
 HostName=ConsoleHost
 HostVersion=1.0.9567.1
 HostId=577b95e7-1182-47df-9797-71058b592014
 EngineVersion=1.0.9567.1
 RunspaceId=6fc71134-8871-4b50-bc47-53fc5942b4ed
 PipelineId=
 CommandName=
 CommandType=
 ScriptName=
 CommandPath=
 CommandLine=
...

We’ve truncated the output, but you get the idea. If you’re interested in a specific event ID, use the
Where-object cmdlet:

PS C:\> get-eventlog System -newest 5 |where {$_.EventID -eq 7036}

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
11218 Jun 24 23:06 Info Service Control M... 7036 The PDEngine service ...
11217 Jun 24 23:00 Info Service Control M... 7036 The PDEngine service ...

Managing Event Logs

365

PS C:\>

Here, we’re looking for event log entries with an EventID of 7036. Notice we used
-Newest to look for the last five entries. You might wonder why only two entries were returned. The
answer is because the -Newest parameter is processed first and returns the last five entries. From within
those five entries, only two had an EventID of 7036.

If you want to see the last five entries of EventID 7036, regardless of when they were logged, you have
to get a little more creative:

PS C:\> $logs=get-eventlog System |where {$_.EventID -eq 7036}
PS C:\> for ($i=0; $i -lt 5; $i++) {$logs[$i]}

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
11218 Jun 24 23:06 Info Service Control M...7036 The PDEngine service
11217 Jun 24 23:00 Info Service Control M...7036 The PDEngine service
11215 Jun 24 20:19 Info Service Control M...7036 The IMAPI CD-Burning
11214 Jun 24 20:19 Info Service Control M...7036 The IMAPI CD-Burning
11212 Jun 24 20:18 Info Service Control M...7036 The IMAPI CD-Burning

PS C:\>

We first dump all the logs that match our query to a variable, $logs. Then we use For to get the first five
entries. Curious about where all your errors are coming from? Try something like this:

PS C:\> get-eventlog -log system | group source | Select Count,Name '
>> | sort count |format-table -auto

Count Name
----- ----
 1 WgaNotify
 1 Wdf01005
 1 WGA
 1 KB929969
 1 Internet Explorer 7 Disk
 1 Wudf01000
 1 Windows Installer 3.1
 1 Setup
 1 Serial
 1 Workstation
 1 USER32
 1 NetBT
 1 SRService
 2 WMPNetworkSvc
 4 Removable Storage Service
 4 WPDClassInstaller
 6 Application Popup
 6 HTTP
 7 WindowsMedia
 8 Ftdisk
 12 Dhcp
 16 VMnetAdapter
 18 SideBySide
 25 BROWSER
 28 DCOM
 30 VMnetuserif
 81 Tcpip

366

Windows PowerShell: TFM • 2nd Edition

 84 Print
 95 EventLog
 99 NtServicePack
 103 b57w2k
 114 W32Time
 207 WinDefend
 246 Windows Update Agent
 1380 Service Control Manager

Every event log includes a source indicating where the event originated. All we’ve done is look at the
System event log, grouping the event records by the Source property, piping that result to Select so that
we only get the Count and Name properties, which in turn in sorted by the Sort cmdlet and finally the
result is presented by Format-Table. This is a terrific example of leveraging the pipeline.

You can use the same technique to get a summary breakdown of error types:

PS C:\> get-eventlog -log system | group EntryType | Select Count,Name | sort count '
>> |format-table -auto
>>

Count Name
----- ----
 167 Error
 262 Warning
 2159 Information

If you want results for all logs, it takes a little more finesse:

foreach ($log in (Get-EventLog -list)) {
 #only display logs with records
 if ($log.Entries.Count -gt 0) {
 Write-Host -background DarkGreen -foreground Black $log.log
 Get-EventLog -log $log.log | group EntryType | Select Count,Name | sort count `
 |Format-Table -auto
 }
}

This snippet uses the ForEach cmdlet to get every event log on the local system. If the number of
entries in each log is greater than 0:

if ($log.Entries.Count -gt 0) {

Then we’ll display the log name and then use the same code from earlier to return a count of each error
type.

Let’s combine both of our efforts and get a listing of event types for each source from every event log
with records:

foreach ($log in (Get-EventLog -list)) {
 #only display logs with records
 if ($log.Entries.Count -gt 0) {
 Write-Host -background DarkGreen -foreground Black $log.log
 Get-EventLog -log $log.log | group source,entrytype | sort count | `
 select Count,Name |format-table -auto
 }
}

Managing Event Logs

367

We’ll get a listing like this for every event log:

Application

Count Name
----- ----
 1 Windows Product Activation, Warning
 1 WSH, 0
 1 Winlogon, Information
 1 MPSampleSubmission, Information
 1 WmdmPmSp, Information
 1 Windows Product Activation, Information
 1 WLTRYSVC, Information
 1 SceCli, Information
 2 NTBackup, Error
 2 WSH, Information
 2 WmdmPmSN, Information
 2 MsiInstaller, Error
 2 ESENT, Error
 2 Userenv, Information
 3 ASP.NET 2.0.50727.0, Warning
 3 System.ServiceModel.Install 3.0.0.0, Information
 3 MSDTC, Information
 4 HHCTRL, Information
 4 COM+, Information
 4 crypt32, Information
 5 MPSampleSubmission, Error
 6 ASP.NET 2.0.50727.0, Information
 9 System.ServiceModel.Install 3.0.0.0, Warning
 9 DrWatson, Information
 10 NTBackup, Information
 14 usnjsvc, 0
 14 VMware Virtual Mount Service Extended, Information
 14 WinMgmt, Warning

Working with Remote Event Logs
While the Get-Eventlog cmdlet is easy to use, it can only be used on the local system. If you want to
query event logs on remote systems, you’ll need to use WMI and the Get-WmiObject cmdlet:

PS C:\> $credential=get-credential

cmdlet get-credential at command pipeline position 1
Supply values for the following parameters:
Credential
PS C:\> Get-WmiObject win32_NTEventlogfile `
>> -computer DC01 -credential $credential | `
>> select-object FileSize,LogFileName,NumberOfRecords |`
>> format-table -autosize
>>

 FileSize LogFileName NumberOfRecords
 -------- ----------- ---------------
 720896 Application 3617
 524288 Directory Service 2712
 6291456 DNS Server 32861
 65536 File Replication Service 124
134217728 Security 331683
 5177344 System 22345

368

Windows PowerShell: TFM • 2nd Edition

PS C:\>

In this example, we use alternate credentials and create a variable to hold them. We then run Get-
WmiObject for the remote system and get instances of Win32_NTEventlogfile. We selected a few
properties and formatted the output. The expression above is similar to Get-Eventlog -list.

Event log entries belong to the Win32_NTLogEvent WMI class. To query logs via WMI, you need
specify at least the logfile name and preferably more. Here’s our earlier event log query rewritten to use
Get-WmiObject on a remote system:

PS C:\> Get-WmiObject win32_NTLogEvent -computer DC01 -credential `
>> $credential | where `
>> {$_.logfile -eq "System" -AND $_.EventCode -eq "7036"} |`
>> select-object TimeGenerated,Message | format-table -autosize
>>
#output truncated for display purposes
20050331092522.000000-300 The Network Location Awareness (NLA) service
20050331092522.000000-300 The Distributed File System service entered
20050331085717.000000-300 The WinHTTP Web Proxy Auto-Discovery Service
20050331085320.000000-300 The Windows Installer service entered the st
20050331084607.000000-300 The World Wide Web Publishing Service servic
20050331084606.000000-300 The World Wide Web Publishing Service servic
20050331084047.000000-300 The WinHTTP Web Proxy Auto-Discovery Service
20050331083404.000000-300 The Windows Installer service entered the ru
20050331082950.000000-300 The Network Connections service entered the
20050330172042.000000-300 The Network Location Awareness (NLA) service

PS C:\>

Depending on the number of log entries, this expression may take several minutes to run before any-
thing appears. The drawback to the technique we just showed is that all the event log records must first
be retrieved. Then those records are piped to the Where cmdlet. For a small event log, this approach
is reasonable. But there is a better way. Do you remember the -Query parameter? This parameter will
instruct the Get-WmiObject cmdlet to filter records in place before we send the results on through the
pipeline:

PS C:\> Get-WmiObject -query "Select Logfile,Eventcode,TimeGenerated,Message from `
>> win32_NTLogEvent Where logfile='System' AND EventCode='7036'" -computer "DC01" `
>> -credential $credential| Format-Table TimeGenerated,Message -autosize
>>
#output truncated for display purposes
20050331092522.000000-300 The Network Location Awareness (NLA) service
20050331092522.000000-300 The Distributed File System service entered
20050331085717.000000-300 The WinHTTP Web Proxy Auto-Discovery Service
20050331085320.000000-300 The Windows Installer service entered the st
20050331084607.000000-300 The World Wide Web Publishing Service servic
20050331084606.000000-300 The World Wide Web Publishing Service servic
20050331084047.000000-300 The WinHTTP Web Proxy Auto-Discovery Service
20050331083404.000000-300 The Windows Installer service entered the ru
20050331082950.000000-300 The Network Connections service entered the
20050330172042.000000-300 The Network Location Awareness (NLA) service

PS C:\Backing Up Event Logs

This example is querying a remote computer, but you could just as easily use it to query the local system.

Managing Event Logs

369

Event Log Information
To get more detailed information about event logs, you’ll need to use the Get-WmiObject cmdlet.
Here’s an example that shows you event log information on your computer:

PS C:\> Get-WmiObject -query "Select * from win32_NTEventLogFile" `
>> | select LogFileName,Name,FileSize,MaxFileSize,NumberofRecords,Status,`
>> @{Name="Created";Expression={$_.ConvertToDateTime($_.CreationDate)}},`
>> @{Name="Modified";Expression={$_.ConvertToDateTime($_.LastModified)}}`
>> | Format-List
>>

LogFileName : Application
Name : C:\WINDOWS\system32\config\AppEvent.Evt
FileSize : 1703936
MaxFileSize : 2097152
NumberofRecords : 2759
Status : OK
Created : 5/17/2007 12:36:24 PM
Modified : 6/19/2007 3:42:38 PM

LogFileName : Security
Name : C:\WINDOWS\System32\config\SecEvent.Evt
FileSize : 65536
MaxFileSize : 524288
NumberofRecords :
Status : OK
Created : 5/17/2007 12:36:24 PM
Modified : 5/17/2007 12:36:24 PM

LogFileName : System
Name : C:\WINDOWS\system32\config\SysEvent.Evt
FileSize : 851968
MaxFileSize : 2097152
NumberofRecords : 2588
Status : OK
Created : 5/17/2007 12:36:24 PM
Modified : 6/19/2007 3:45:46 PM

LogFileName : Windows PowerShell
Name : C:\WINDOWS\System32\config\WindowsPowerShell.evt
FileSize : 10747904
MaxFileSize : 15728640
NumberofRecords : 14771
Status : OK
Created : 5/17/2007 9:59:06 PM
Modified : 6/21/2007 3:12:05 PM

PS C:\>

The PowerShell expression takes the result of the Get-WmiObject cmdlet and pipes it to the Select-
Object cmdlet. With this cmdlet, we are choosing only a few parameters like Name and FileSize. But
you probably noticed these expressions:

>> @{Name="Created";Expression={$_.ConvertToDateTime($_.CreationDate)}},`
>> @{Name="Modified";Expression={$_.ConvertToDateTime($_.LastModified)}}'

We wanted to display the event logs’ creation and last modified dates. However, in WMI, they are pre-

370

Windows PowerShell: TFM • 2nd Edition

sented in a special format like this: 20070517123624.166841-240. Hardly user-friendly. What we’ve
done is create custom properties called Created and Modified. The values are the result of the cor-
responding expression. In the expression, we are calling the ConvertToDateTime() method of the
current object in the pipeline, passing it the CreationDate property as a parameter. The result is a more
familiar date time format. Finally, everything is piped to Format-List to make it a little easier to read.

Backup Event Logs
Backing up event logs is relatively straightforward in PowerShell. If you use the [WMI] type adapter,
you’ll have access to the BackupEventLog() method. Although there is a required and not-so-obvious
step:

PS C:\> [wmi]$syslog=Get-WMiobject -query "Select * from win32_NTEventLogFile where '
>> LogFileName='system'"
>>
PS C:\> $backup=(get-date -format yyyyMMdd)+"_"+$syslog.CSName+"_"+$syslog.logfilename+".evt"

PS C:\> $syslog.psbase.scope.options.enablePrivileges=$TRUE
PS C:\> $syslog.backupeventlog("F:\backups\$backup")

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

PS C:\>

Here’s how this works. In this example, we going to backup the System Eventlog on the local computer:

PS C:\> [wmi]$syslog=Get-WMiobject -query "Select * from win32_NTEventLogFile where '
>> LogFileName='system'"

We need a name for the backup file, which we calculate using the current date, the name of the com-
puter, and the log file name:

PS C:\> $backup=(get-date -format yyyyMMdd)+"_"+$syslog.CSName+"_"+$syslog.logfilename+".evt"

This expression will return a value like 20070622_XPDESK01_System.evt. The advantage to using the
CSName property is that if we back up a remote server, we can automatically capture the name.

Now comes the not-so-obvious part. In order to backup event logs, you need to specify the Backup
privilege. If you don’t, you’ll get an Access Denied message when you try to backup the log.

In VBscript, you can include this privilege in your connection string like this:

Managing Event Logs

371

Set oWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate,(Backup,Security)}!\\" & strComputer & "\root\cimv2")

The Get-WmiObject cmdlet doesn’t have a similar option. However, you can access the underlying
.NET management object and configure it to enable all privileges:

PS C:\> $syslog.psbase.scope.options.enablePrivileges=$TRUE

With privileges enabled, we can now back up the event log:

PS C:\> $syslog.backupeventlog("F:\backups\$backup")

Location, Location, Location
There is a very subtle but important detail about the BackupEventLog() method, especially when
using Get-WmiObject to access event logs on remote computers. Even though you are running a
script and remotely accessing a computer, the backup method is actually executing on the remote
system. This means that the path you specify is relative to the remote system. If you back up the
event log to drive C:\, it will be backed up to drive C:\ of the remote computer, not the computer
where you are executing the script. Verify that the destination folder is accessible from the remote
computer, and you won’t have any surprises.

If you want to back up all event logs, you can use code like this:

$path="F:\Backups"
foreach ($log in (Get-WmiObject win32_nteventlogfile)) {
 $backup=(Get-Date -format yyyyMMdd)+"_"+$log.CSName+"_"+$log.logfilename+".evt"
 Write-Host "Backing up"$log.LogFileName"to $path\$backup"
 $log.psbase.scope.options.enablePrivileges=$TRUE
 $rc=$log.backupeventlog($path+"\"+$backup)
 if ($rc.ReturnValue -eq 0) {
 Write-Host -foreground GREEN "Backup successful" }
 else {
 Write-Host -foreground RED `
 "Backup failed with a return value of"$rc.ReturnValue
 }
}

The $path variable is the backup directory we want to use. Using ForEach, we get every event log on the
computer:

foreach ($log in (Get-WmiObject win32_nteventlogfile)) {

As we did before, we define a backup file name and enable all privileges:

 $backup=(Get-Date -format yyyyMMdd)+"_"+$log.CSName+"_"+$log.logfilename+".evt"
 Write-Host "Backing up"$log.LogFileName"to $path\$backup"
 $log.psbase.scope.options.enablePrivileges=$TRUE

When we call the BackupEventLog() method, we save the results to a variable:

372

Windows PowerShell: TFM • 2nd Edition

 $rc=$log.backupeventlog($path+"\"+$backup)

With this variable, we can check if the backup was successful or not. If it wasn’t, we display the
ReturnValue property:

 if ($rc.ReturnValue -eq 0) {
 Write-Host -foreground GREEN "Backup successful" }
 else {
 Write-Host -foreground RED `
 "Backup failed with a return value of"$rc.ReturnValue
 }

One thing to be aware of is that if the backup file already exists, it will not be overwritten and you will
get a return value of 183.

Clearing Event Logs
Clearing an event log follows the same approach we used for backing up event logs that we covered in
the previous section:

PS C:\> [wmi]$evtlog=Get-WMiobject -query "Select * from win32_NTEventLogFile `
>> where LogFileName='Application'"
>>
PS C:\> $evtlog.ClearEventLog()

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

Once we have a reference to the event log file, all we need to do is call the ClearEventLog() method.
You do not need any additional privileges, unless you are clearing the Security event log. Even if you
have administrative credentials, you will still need this command before you can clear the log:

PS C:\> $evtlog.psbase.scope.options.EnablePrivileges=$true

Unlike the Event Viewer management console, this method will not warn you first about backing up the
log, so use with caution.

Let’s wrap up our exploration of backing up and clearing event logs by looking at a way to back up and
clear multiple logs on a remote computer:

Backup-EventLogs.ps1

$path=\\file01\backup\eventlogs #the folder where backups will be saved

$computer="file03" #the name of a remote computer

Managing Event Logs

373

$iLimit=10 #threshhold size in MB

foreach ($log in (Get-WmiObject win32_nteventlogfile -computer $computer)) {
 if ($log.FileSize/1MB -gt $iLimit) {
 Write-Host $log.LogFileName"="($log.FileSize/1MB)"MB"
 $reply=Read-Host "Do you want to backup and clear the event log?[YN]"

 if ($reply -eq "y") {
 $log.psbase.scope.options.enablePrivileges=$TRUE
 $backup=(Get-Date -format yyyyMMdd)+"_"+$log.CSName+"_"+`
 $log.logfilename+".evt"
 Write-Host "Backing up"$log.LogFileName"to $path\$backup"
 $rc=$log.BackupEventLog($path+"\"+$backup)

 if ($rc.ReturnValue -eq 0) {
 Write-Host -foreground GREEN "Backup successful. Clearing Event log."
 $rc2=$log.ClearEventLog()

 if ($rc2.ReturnValue -eq 0) {
 Write-Host -foreground GREEN "ClearEventLog successful."
 }
 else {
 Write-Host -foreground RED `
 "ClearEventLog failed with a return value of"$rc2.ReturnValue
 } #end if rc2.return value
 }
 else {
 Write-Host -foreground RED `
 "Backup failed with a return value of"$rc.ReturnValue
 } #end if rc.returnValue
 } #end if reply
 } #end if logfile > limit
 } #end foreach

This script defines some values we will need. The script’s goal is to check every event log on the remote
computer, and, if the size is greater than the threshold, then the event log will be backed up and cleared.

We loop through every event log on the remote computer:

foreach ($log in (Get-WmiObject win32_nteventlogfile -computer $computer)) {

If the FileSize property is greater than the threshold, then we’ll display a message and prompt if the
user wants to back up and clear the log:

 if ($log.FileSize/1MB -gt $iLimit) {
 Write-Host $log.LogFileName"="($log.FileSize/1MB)"MB"
 $reply=Read-Host "Do you want to backup and clear the event log?[YN]"

Assuming the user answered yes, the script then enables privileges, defines a backup file name and backs
up the log:

 $log.psbase.scope.options.enablePrivileges=$TRUE
 $backup=(Get-Date -format yyyyMMdd)+"_"+$log.CSName+"_"+`
 $log.logfilename+".evt"
 Write-Host "Backing up"$log.LogFileName"to $path\$backup"
 $rc=$log.BackupEventLog($path+"\"+$backup)

374

Windows PowerShell: TFM • 2nd Edition

We can check the ReturnValue property from the BackupEventLog() method to verify a successful
backup:

 if ($rc.ReturnValue -eq 0) {

If it was successful, then we can clear the event log:

 Write-Host -foreground GREEN "Backup successful. Clearing Event log."
 $rc2=$log.ClearEventLog()

Again, we check the ReturnValue to verify a successful operation and display an appropriate message:

 if ($rc2.ReturnValue -eq 0) {
 Write-Host -foreground GREEN "ClearEventLog successful."
 }
 else {
 Write-Host -foreground RED `
 "ClearEventLog failed with a return value of"$rc2.ReturnValue
 } #end if rc2.return value

If the backup failed, then none of the above happens and an error message is displayed instead:

 else {
 Write-Host -foreground RED `
 "Backup failed with a return value of"$rc.ReturnValue

For simple and local event log management, the Get-Eventlog cmdlet should suffice. For anything
more complex or involving remote systems, you will need to use the Get-WmiObject cmdlet.

Managing Processes

375

Chapter 29
Managing Processes

If you’ve been with us from the beginning, you’re familiar with Get-Process. This cmdlet lists all run-
ning processes on your system.

PS C:\> get-process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 33 2 800 3128 23 0.44 3580 ApntEx
 79 3 1768 5668 36 4.61 3852 Apoint
 128 4 2388 5752 45 1.40 1732 avgamsvr
 180 6 3500 10852 53 3.65 4016 avgcc
 168 7 2084 6708 50 2.29 1760 avgemc
 77 2 536 2128 20 0.48 1748 avgupsvc
 155 4 2700 6288 47 6.77 1604 BCMWLTRY
...

If you’re interested in a specific process, you can reference it by name or by ID:

PS C:\> get-process winword

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 403 16 34340 53644 188 10.77 3032 WINWORD
PS C:\> get-process -id 3032

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------

376

Windows PowerShell: TFM • 2nd Edition

 408 17 34384 53788 188 13.46 3032 WINWORD

PS C:\>

As you can see, either expression returns the same information. The reason you need to know either the
process name or ID is so you can terminate the process with Stop-Process:

PS C:\> notepad
PS C:\> get-process notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 33 3 1180 3812 32 0.11 3868 notepad

PS C:\> stop-process 3868
PS C:\>

We started Notepad and found the process ID with Get-Process.

Because Get-Process produces object output like all other cmdlets, you can use it in the pipeline. Here’s
one example:

PS C:\> get-process | where {$_.handles -gt 1000} | sort handles -desc

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 4218 25 163156 57408 406 5,073.57 4832 firefox
 3111 17 130808 144644 363 808.68 1284 thunderbird
 2344 33 41108 19944 191 48.27 3700 msnmsgr
 1882 90 56308 12332 285 330.66 3084 GROOVE
 1858 65 34520 45848 176 115.58 1180 svchost
 1507 14 80784 20948 249 58.50 2972 powershell
 1462 28 63000 82512 302 21.70 9448 PrimalScript
 1092 14 2276 5624 39 4.91 1064 svchost

This expression takes the output of Get-Process and filters it with the Where cmdlet looking for pro-
cesses with a handle count greater than 1000. The results of Where cmdlet are then piped to the Sort
cmdlet, which sorts the output by the Handles property in descending order.

Starting a Process
On the local system, the easiest and most obvious way to start a process is to simply run a program.
However, it can also be done with WMI:

PS C:\> [wmiclass]$newproc="root\cimv2:Win32_Process"
PS C:\> $spawn=$newproc.Create("calc.exe")

We use the [wmiclass] type adapter to specify we’re going to work with the Win32_Process class. The
object, $newproc, is a generic and undefined Win32_Process, but we can call the Create() method to
start the Windows calculator. The syntax for Create() allows you to specify a working directory, should
that be required:

$spawn=$newproc.Create("notepad","c:\windows")

Managing Processes

377

We created an object, $spawn, so that we can check if the command was successful or not by examining
the Returnvalue property:

PS C:\> [wmiclass]$newproc="root\cimv2:Win32_Process"
PS C:\>
PS C:\> $spawn=$newproc.Create("calc.exe")
PS C:\> if ($spawn.returnvalue -eq 0) {
>> Write-Host "Process is now running with process id"$spawn.ProcessID
>> } else {
>> Write-Host "Process failed to start. Return value ="$spawn.ReturnValue
>> }
>>
Process is now running with process id 9564
PS C:\>

Of course, if you don’t need all the error checking, you can accomplish this with a simple one-line
expression:

PS C:\> ([wmiclass]"root\cimv2:Win32_Process").Create("calc.exe")

Stopping Local Processes
We can kill a process with Stop-Process by specifying the ID:

PS C:\> stop-process 1676

If we didn’t know the process ID, we can also use:

Stop-process -name notepad

Because terminating a process could have a significant effect on your system, you may want to take
advantage of the -Confirm parameter to make verify you’re killing the correct process:

PS C:\> stop-process 1676 -confirm

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "schedul2 (1676)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

We’ll explain how to stop processes on remote servers a little bit later.

Process Tasks
Here are some examples of using PowerShell for some common process management tasks.

Find Top 10 Processes by CPU Usage

PS C:\> Get-process | sort cpu -desc | select -first 10

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

378

Windows PowerShell: TFM • 2nd Edition

------- ------ ----- ----- ----- ------ -- -----------
 3951 31 304104 208512 571 3,822.30 4832 firefox
 305 9 35384 6328 1496 601.85 1888 sqlservr
 1419 29 62120 41964 307 549.94 4520 PrimalScript
 1880 17 118824 132564 364 499.01 1284 thunderbird
 365 9 1908 4520 32 480.17 796 services
 294 8 21304 26324 73 442.37 3560 procexp
 796 0 0 220 2 361.70 4 System
 786 22 33384 23772 149 286.46 2528 explorer
 1816 90 52576 17280 264 232.18 3084 GROOVE
 340 8 8832 14912 76 211.08 3536 xfilter

Here’s another example of leveraging the pipeline. The Get-Process cmdlet output is sorted by the CPU
property in descending order. That output is then piped to the Select-Object cmdlet, which only returns
the first 10 items in the list.

Find Top 10 Processes by Memory Usage
To find the top 10 processes with the largest working set, we can use a similar expression as above:

PS C:\> Get-Process | sort workingset -desc | select -first 10

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 3948 31 304092 208512 570 3,828.01 4832 firefox
 1879 17 118828 132568 364 499.05 1284 thunderbird
 671 14 64684 70508 224 20.16 2972 powershell
 1425 29 62120 41968 307 550.99 4520 PrimalScript
 1788 65 30316 41632 174 65.83 1180 svchost
 724 21 43384 33896 258 176.05 2900 WINWORD
 294 8 21304 26324 73 442.52 3560 procexp
 786 22 33384 23772 149 286.74 2528 explorer
 1841 33 40888 22572 191 36.65 3700 msnmsgr
 270 7 19080 21904 63 147.00 1136 MsMpEng

The only difference from the previous example is that we are sorting on the Workingset property.

Find Top 10 Longest Running Processes

PS C:\> Get-process | where {($_.name -ne "System") -and ($_.name -ne "Idle")} '
>> | sort starttime | select -first 10
>>

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 21 1 172 388 4 0.44 600 smss
 824 9 3356 5708 69 47.87 724 csrss
 583 74 8172 2808 63 1.69 748 winlogon
 366 9 1908 4520 32 487.66 796 services
 552 11 5176 1092 46 3.66 808 lsass
 221 6 3440 5432 63 1.08 960 svchost
 626 14 2256 5604 39 2.69 1064 svchost
 276 8 19128 21932 64 147.06 1136 MsMpEng
 1788 65 30292 41624 174 65.88 1180 svchost
 111 6 1732 4236 32 0.96 1292 svchost

This example is a little more complex because we want to filter out the Idle and System processes using
the Where cmdlet:

Managing Processes

379

where {($_.name -ne "System") -and ($_.name -ne "Idle")}

This expression is a compound filter using the -And operator to return process objects where the name
is not “System” and not “Idle”. The remaining process objects are sorted on the StartTime property. The
Select cmdlet finally returns the first 10 objects in the list.

How did we know about the StartTime property? We used Get-Member to see all the possible process
object properties:

PS C:\> get-process | get-member

Find Process Details
Once you know what type of process information you can get, you can execute expressions like this:

PS C:\> get-process | Select Name,ID,Company,FileVersion,Path

Name : alg
Id : 1380
Company : Microsoft Corporation
FileVersion : 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158)
Path : C:\WINDOWS\System32\alg.exe

Name : ApntEx
Id : 3432
Company : Alps Electric Co., Ltd.
FileVersion : 5.0.1.13
Path : C:\Program Files\Apoint\Apntex.exe

Name : Apoint
Id : 2960
Company : Alps Electric Co., Ltd.
FileVersion : 5.4.101.113
Path : C:\Program Files\Apoint\Apoint.exe
…

In addition to the Name and ID properties, we’ve selected the Company, FileVersion, and Path infor-
mation for each process. Now you can be better informed about exactly what is running on your server.

Find Process Owners
Another piece of process information you might find valuable is the process owner. Unfortunately, the
Get-Process cmdlet doesn’t provide access to this information. But we can use Get-WmiObject:

PS C:\> $n=Get-wmiobject -query "Select * from win32_process where name='notepad.exe'"
PS C:\> $n.GetOwner().user
PS C:\> jhicks

The Get-WmiObject expression creates a WMI object which has a GetOwner() method. The method
returns an object with properties of Domain and User. Once you understand the concept, you can put
this together as a one-line expression:

PS C:\> (Get-WmiObject -query "Select * from win32_process where `
>> name='notepad.exe'").GetOwner().User

380

Windows PowerShell: TFM • 2nd Edition

>>
jhicks

We’ve broken the expression up for printing, but you can type it as one line.

Here’s an example of how to show the owners of all running processes:

PS C:\> Get-WmiObject -query "Select * from win32_Process" | `
Select ProcessID,Name,@{Name="Owner";Expression={$_.GetOwner().User}}`
|sort owner | Format-Table ProcessID,Name,Owner -autosize

This example is pretty straightforward until we get to the Select cmdlet. In addition to selecting the
ProcessID and Name properties, we’re also defining a custom property called Owner. The value will be
the result of calling the GetOwner() method of the current object in the pipeline:

Expression={$_.GetOwner().User}

This property can be passed through the pipeline to the Sort cmdlet, which in turn sends the output to
Format-Table for presentation. We’ll let you run this on your own to see the results.

Remote Processes
As with most PowerShell cmdlets, the process management tools only work on the local system. WMI
is required to manage processes on remote systems.

PS C:\> Get-wmiobject -class win32_process -computer DC01 '
>> -credential $cred|select Name,Handle,VirtualSize,WorkingSetSize `
>> | format-table
>>

Name Handle VirtualSize WorkingSetSize
---- ------ ----------- --------------
System Idle Process 0 0 16384
System 4 1921024 225280
smss.exe 832 3891200 385024
csrss.exe 928 30216192 3166208
winlogon.exe 956 65359872 1617920
services.exe 1000 42635264 10158080
lsass.exe 1012 43880448 2850816
svchost.exe 1176 65966080 5095424
svchost.exe 1236 39313408 4874240
MsMpEng.exe 1880 49737728 12865536
...

This example assumes we’ve defined $cred earlier with the Get-Credential cmdlet. When using Get-
WmiObject, you’ll get back some additional WMI properties like __Class that generally aren’t needed
so use the Select cmdlet or choose properties with Format-Table to present only the information you
want. It is also possible, with Get-WmiObject, to query for specify processes:

PS C:\> Get-WmiObject -query "Select * from win32_process where workingsetsize > '
>> 10248000" -computer "DESK61"| >> format-table Name,ProcessID,WorkingSetSize -autosize
>>

Name ProcessID WorkingSetSize
---- --------- --------------

Managing Processes

381

MsMpEng.exe 1136 21778432
svchost.exe 1180 47415296
explorer.exe 2528 30642176
xfilter.exe 3536 15269888
procexp.exe 3560 28946432
msnmsgr.exe 3700 20414464
SnagIt32.exe 2472 15695872
powershell.exe 2972 17870848
thunderbird.exe 1284 146759680
firefox.exe 4832 58589184
WINWORD.EXE 9588 83107840
PrimalScript.exe 9448 90677248

After using Get-Process for awhile, you may come to expect the same results when querying a remote
computer using Get-WmiObject. You can get the same information with an expression like this:

Get-WmiObject -Query "Select * from win32_process" | `
Format-Table HandleCount,QuotaNonPagedPoolUsage,PageFileUsage,`
WorkingSetSize,VirtualSize,KernelModeTime,ProcessID,Name | `
Format-Table -autosize

But if you execute this code, you’ll see the formatting isn’t quite what you might expect. This is because
PowerShell has defined a default view for the Get-Process cmdlet that handles all the formatting. You
can achieve a similar result with an expression like this:

Get-WmiObject -Query "Select * from win32_process" | sort Name | Format-Table `
@{Label="Handles";Expression={$_.HandleCount}},`
@{Label="NPM(K)";Expression={"{0:F0}" -f ($_.QuotaNonPagedPoolUsage/1KB)}},`
@{Label="PM(K)";Expression={"{0:F0}" -f ($_.PageFileUsage/1KB)}},`
@{Label="WS(K)";Expression={"{0:F0}" -f ($_.WorkingSetSize/1KB)}},`
@{Label="VM(M)";Expression={"{0:F0}" -f ($_.VirtualSize/1MB)}},`
@{Label="CPU(s)";Expression={"{0:N2}" -f (($_.KernelModeTime/10000000)+`
($_.UserModeTime/10000000))}},`
@{Label="ID";Expression={$_.ProcessID}},`
@{Label="ProcessName";Expression={$_.Name}} `
-autosize

The results of the Get-WmiObject cmdlet are sorted and then sent to Format-Table. We then define
custom labels and values using script blocks that will give us the same results as the Get-Process cmd-
let. The added benefit is that we can specify a remote computer. Since this is a lot to type each time you
want to use it, we recommend creating a script block:

$pswmi={Get-WmiObject -Query "Select * from win32_process" | sort Name | `
Format-Table `
@{Label="Handles";Expression={$_.HandleCount}},`
@{Label="NPM(K)";Expression={"{0:F0}" -f ($_.QuotaNonPagedPoolUsage/1KB)}},`
@{Label="PM(K)";Expression={"{0:F0}" -f ($_.PageFileUsage/1KB)}},`
@{Label="WS(K)";Expression={"{0:F0}" -f ($_.WorkingSetSize/1KB)}},`
@{Label="VM(M)";Expression={"{0:F0}" -f ($_.VirtualSize/1MB)}},`
@{Label="CPU(s)";Expression={"{0:N2}" -f (($_.KernelModeTime/10000000)+`
($_.UserModeTime/10000000))}},`
@{Label="ID";Expression={$_.ProcessID}},`
@{Label="ProcessName";Expression={$_.Name}} `
-autosize}

Anytime you want to run this simply type:

382

Windows PowerShell: TFM • 2nd Edition

&$pswmi

An even better approach would be to add the -Computer parameter:

$pswmi={Get-WmiObject -Query "Select * from win32_process" -computer $computer `
 | sort Name | Format-Table `
@{Label="Handles";Expression={$_.HandleCount}},`
@{Label="NPM(K)";Expression={"{0:F0}" -f ($_.QuotaNonPagedPoolUsage/1KB)}},`
@{Label="PM(K)";Expression={"{0:F0}" -f ($_.PageFileUsage/1KB)}},`
@{Label="WS(K)";Expression={"{0:F0}" -f ($_.WorkingSetSize/1KB)}},`
@{Label="VM(M)";Expression={"{0:F0}" -f ($_.VirtualSize/1MB)}},`
@{Label="CPU(s)";Expression={"{0:N2}" -f (($_.KernelModeTime/10000000)+`
($_.UserModeTime/10000000))}},`
@{Label="ID";Expression={$_.ProcessID}},`
@{Label="ProcessName";Expression={$_.Name}} `
-autosize}

As long as $computer has been defined, we can successfully run this script block. Need a refresher on
script blocks, take a look at the Script Blocks section.

Finally, here’s one more approach:

Function Get-PS {
Param([string]$computer="localhost",`
[System.Management.Automation.PSCredential]$credential)

if ($credential)
 {#use alternate credentials if supplied

 Get-WmiObject -Query "Select * from win32_process" -computer $computer `
 -credential $credential | sort Name | Format-Table `
 @{Label="Handles";Expression={$_.HandleCount}},`
 @{Label="NPM(K)";Expression={"{0:F0}" -f ($_.QuotaNonPagedPoolUsage/1KB)}},`
 @{Label="PM(K)";Expression={"{0:F0}" -f ($_.PageFileUsage/1KB)}},`
 @{Label="WS(K)";Expression={"{0:F0}" -f ($_.WorkingSetSize/1KB)}},`
 @{Label="VM(M)";Expression={"{0:F0}" -f ($_.VirtualSize/1MB)}},`
 @{Label="CPU(s)";Expression={"{0:N2}" -f (($_.KernelModeTime/10000000)+`
 ($_.UserModeTime/10000000))}},`
 @{Label="ID";Expression={$_.ProcessID}},`
 @{Label="ProcessName";Expression={$_.Name}}`
 -autosize

 } else {

 Get-WmiObject -Query "Select * from win32_process" -computer $computer `
 | sort Name | Format-Table `
 @{Label="Handles";Expression={$_.HandleCount}},`
 @{Label="NPM(K)";Expression={"{0:F0}" -f ($_.QuotaNonPagedPoolUsage/1KB)}},`
 @{Label="PM(K)";Expression={"{0:F0}" -f ($_.PageFileUsage/1KB)}},`
 @{Label="WS(K)";Expression={"{0:F0}" -f ($_.WorkingSetSize/1KB)}},`
 @{Label="VM(M)";Expression={"{0:F0}" -f ($_.VirtualSize/1MB)}},`
 @{Label="CPU(s)";Expression={"{0:N2}" -f (($_.KernelModeTime/10000000)+`
 ($_.UserModeTime/10000000))}},`
 @{Label="ID";Expression={$_.ProcessID}},`
 @{Label="ProcessName";Expression={$_.Name}} `
 -autosize
 }
}

This function takes parameters for the computer name and alternate credentials.

Managing Processes

383

Get-PS file02 (get-credential SAPIEN\administrator)

If a computer name is not passed the default will be Localhost:

Param([string]$computer="localhost",`

If the user passes an alternate credential object, then a version of the Get-WmiObject script block that
uses -Credential will be called:

 Get-WmiObject -Query "Select * from win32_process" -computer $computer `
 -credential $credential | sort Name | Format-Table '

Otherwise, the function executes Get-WmiObject with the current credentials:

 Get-WmiObject -Query "Select * from win32_process" -computer $computer `

There are many variations on this you might want to consider. The right approach will depend on your
needs.

Creating a Remote Process
To create a process on a remote computer, we need to use WMI and the [wmiclass] type adapter in the
same way we created a local process:

$computer="Exch01"
 [wmiclass]$remoteproc="\\$computer\root\cimv2:Win32_Process"
 $spawn=$remoteproc.Create("calc.exe")
 if ($spawn.returnvalue -eq 0) {
 Write-Host "Process is now running with process id"$spawn.ProcessID
 } else {
 Write-Host "Process failed to start. Return value ="$spawn.ReturnValue
 }

The primary difference is that we need to specify a complete path, including the computer name to the
Win32_class:

[wmiclass]$remoteproc="\\$computer\root\cimv2:Win32_Process"

After that, everything is the same except that the remote process is not interactive. In our example, the
Windows calculator will not automatically appear on the desktop on Exch01, but it can be seen in Task
Manager. If you launch remote processes, you need to realize they will run until someone stops them or
they complete on their own.

Stopping Remote Process
To stop a remote process, you need to obtain a reference to it using Get-WmiObject:

PS C:\> $calc=Get-Wmiobject -query "Select * from win32_Process where name='calc.exe'" `
>> -computer FILE02
>>
PS C:\> $calc.Terminate()

384

Windows PowerShell: TFM • 2nd Edition

This expression will terminate the Windows calculator running on FILE02. As with starting processes,
the Terminate() method will return an object with a ReturnValue property. A value of 0 will indicate
success. This command can be executed as a one-liner as well:

PS C:\ (Get-Wmiobject -query "Select * from win32_Process where name='calc.exe'" '
>> -computerFILE02).Terminate()
>>

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0

PS C:\>

The Get-Process cmdlet is terrific for working with local processes and has a wealth of information.
However, it cannot get process information on remote systems. But, as you’ve seen, using Get-
WmiObject is easy to use and can achieve the same results. You might even consider writing functions
for process management tasks using Get-WmiObject that replicate the functionality of Get-Process. If
you do, we hope you’ll share.

Managing the Registry

385

Chapter 30
Managing the Registry

One of the great features in PowerShell is its ability to treat the registry like a file system. Now you can
connect to the registry and navigate it just as you would a directory. This is because PowerShell has a
Registry provider that presents the registry as a drive. That shouldn’t come as too much of a surprise
because the registry is a hierarchical storage system much like a file system. So, why not present it as
such?

In fact, PowerShell accomplishes this feat for other hierarchical storage types. If you run Get-Psdrive,
you can see the available “drives” and their providers:

PS C:\> get-psdrive

Name Provider Root
---- -------- ----
Alias Alias
C FileSystem C:\
cert Certificate \
D FileSystem D:\
Env Environment
F FileSystem F:\
Function Function
G FileSystem G:\
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE
M FileSystem M:\
N FileSystem N:\
P FileSystem P:\
Variable Variable
Z FileSystem Z:\

386

Windows PowerShell: TFM • 2nd Edition

Even though the list shows drives mapped to network shares, you cannot access remote registries. We’ll
show you later how to use Get-WmiObject to accomplish that task. In the meantime, you can use Set-
Location or its alias cd to change to any of these PSDrives just as if they were another hard drive in your
computer:

PS C:\> cd HKLM:System
PS HKLM:\System> dir

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\System

SKC VC Name Property
--- -- ---- --------
 4 0 ControlSet001 {}
 4 0 ControlSet003 {}
 0 0 LastKnownGoodRecovery {}
 0 32 MountedDevices {\??\Volume{1edc8241-c4b6-11d9-8
 0 4 Select {Current, Default, Failed, LastK
 2 6 Setup {SetupType, SystemSetupInProgres
 7 0 WPA {}
 4 0 CurrentControlSet {}

PS HKLM:\> cd currentcontrolset\services\tcpip
PS HKLM:\system\currentcontrolset\services\tcpip> dir

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\system\currentc
ontrolset\services\tcpip

SKC VC Name Property
--- -- ---- --------
 0 3 Linkage {Bind, Route, Export}
 5 16 Parameters {NV Hostname, DataBasePath, Name
 0 6 Performance {Close, Collect, Library, Open.
 0 1 Security {Security}
 0 7 ServiceProvider {Class, DnsPriority, HostsPriori
 0 3 Enum {0, Count, NextInstance}

PS HKLM:\system\currentcontrolset\services\tcpip>

For example, if we want to see the keys in our current registry location, we would use an expression like
this:

PS HKLM:\system\currentcontrolset\services\tcpip> get-itemproperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\system
 \currentcontrolset\services\tcpip
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\system
 \currentcontrolset\services
PSChildName : tcpip
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
Type : 1
Start : 1
ErrorControl : 1
Tag : 5
ImagePath : System32\DRIVERS\tcpip.sys
DisplayName : TCP/IP Protocol Driver
Group : PNP_TDI

Managing the Registry

387

DependOnService : {IPSec}
DependOnGroup : {}
Description : TCP/IP Protocol Driver

PS HKLM:\system\currentcontrolset\services\tcpip>

In fact, you have to use Get-Itemproperty to retrieve any registry keys. You can use this cmdlet without
even having to change your location to the registry:

PS C:\> get-itemproperty HKLM:\software\microsoft\windows\currentversion\run

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\softwar…
 tversion\run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\softwar…
 tversion
PSChildName : run
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
Apoint : C:\Program Files\Apoint\Apoint.exe
NvCplDaemon : RUNDLL32.EXE C:\WINDOWS\system32\NvCpl.dll,NvStartup
nwiz : nwiz.exe /installquiet
Broadcom Wireless Manager UI : C:\WINDOWS\system32\WLTRAY.exe
IntelliPoint : "C:\Program Files\Microsoft IntelliPoint\point32.exe"
Windows Defender : "C:\Program Files\Windows Defender\MSASCui.exe" -hide
SunJavaUpdateSched : "C:\Program Files\Java\jre1.6.0_01\bin\jusched.exe"
TrueImageMonitor.exe : C:\Program Files\Acronis\TrueImageWorkstation\TrueImageMonitor…
AcronisTimounterMonitor : C:\Program Files\Acronis\TrueImageWorkstation\TimounterMonito….
Acronis Scheduler2 Service : "C:\Program Files\Common Files\Acronis\Schedule2\schedhlp.exe"
GrooveMonitor : "C:\Program Files\Microsoft Office\Office12\GrooveMonitor.exe"
AVG7_CC : C:\PROGRA~1\Grisoft\AVGFRE~1\avgcc.exe /STARTUP
ProcExp : "c:\windows\procexp.exe" /t
NeroFilterCheck : C:\Program Files\Common Files\Ahead\Lib\NeroCheck.exe
QuickTime Task : "C:\Program Files\QuickTime\qttask.exe" -atboottime
iTunesHelper : "C:\Program Files\iTunes\iTunesHelper.exe"

This expression lists registry keys that indicate what programs are set to run when the computer starts
up. We didn’t have to change our location to the registry; we only had to specify the registry location as
if it were a folder.

You can also create a variable for an item’s properties. Here we get the registry keys for Parameters from
our current location using the Get-Itemproperty cmdlet:

PS HKLM:\system\currentcontrolset\services\tcpip> '

>>$ipparams=get-itemproperty Parameters
>>
PS HKLM:\system\currentcontrolset\services\tcpip>$ipparams

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_M
 ACHINE\system\currentcontrolset\services\tcpip\P
 arameters
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_M
 ACHINE\system\currentcontrolset\services\tcpip
PSChildName : Parameters
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
NV Hostname : godot

388

Windows PowerShell: TFM • 2nd Edition

DataBasePath : E:\WINDOWS\System32\drivers\etc
NameServer :
ForwardBroadcasts : 0
IPEnableRouter : 0
Domain :
Hostname : godot
SearchList :
UseDomainNameDevolution : 1
EnableICMPRedirect : 1
DeadGWDetectDefault : 1
DontAddDefaultGatewayDefault : 0
EnableSecurityFilters : 0
TcpWindowSize : 64512
DisableTaskOffload : 1
ReservedPorts : {1433-1434}

PS HKLM:\system\currentcontrolset\services\tcpip>

PS HKLM:\system\currentcontrolset\services\tcpip> `
>> $ipparams.tcpwindowsize
>>
64512
PS HKLM:\system\currentcontrolset\services\tcpip>

We defined $ipparams to hold the registry keys from HKLM\System\CurrentControlSet\Services\
Tcpip\Parameters. Invoking the variable $ipparams, lists all the keys and their values. Alternatively, we
can get a specific key and value by using a property name:

$ipparams.tcpwindowsize

We can set a registry value using Set-Itemproperty. Here we changed the Domain key under param-
eters that had no value, to a value of SAPIEN:

PS HKLM:\system\currentcontrolset\services\tcpip\parameters> `
>> set-itemproperty -path . -name Domain -value SAPIEN
>>
PS HKLM:\system\currentcontrolset\services\tcpip\parameters> `
>> (get-itemproperty .).Domain
>>
SAPIEN
PS HKLM:\system\currentcontrolset\services\tcpip\parameters>

To properly use Set-Itemproperty, you should specify a path. In this example, we used a “.” to indicate
the current location, the name of the key, and its new value.

Because accessing the registry in PowerShell is like accessing a file system, you can recurse through it,
search for specific items, or do a massive search and replace.

You can use New-Item and New-Itemproperty to create new registry keys and properties. Let’s change
our location to HKEY_Current_User and look at the current items in the root:

PS HKCU:\> dir

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

SKC VC Name Property

Managing the Registry

389

--- -- ---- --------
 2 0 AppEvents {}
 3 32 Console {ColorTable00, ColorTable01, ColorTab..
 26 1 Control Panel {Opened}
 0 4 Environment {TEMP, TMP, USERNAME, EnvironmentVari..
 1 6 Identities {Identity Ordinal, Migrated5, Last Us..
 2 0 Keyboard Layout {}
 0 0 Network {}
 4 1 Printers {DeviceOld}
 1 0 S {}
 77 0 Software {}
 1 0 SYSTEM {}
 0 0 UNICODE Program Groups {}
 2 0 Windows 3.1 Migration Status {}
 0 1 SessionInformation {ProgramCount}
 0 7 Volatile Environment {LOGONSERVER, CLIENTNAME, SESSIONNAME..

PS HKCU:\>

Creating Registry Items
In PowerShell it is very easy to create new registry keys and values. We’ll create a new sub key called
PowerShell TFM under HKCU using the New-Item cmdlet:

PS HKCU:\> new-item "PowerShell TFM"

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 PowerShell TFM {}

PS HKCU:\> cd "PowerShell TFM"
PS HKCU:\PowerShell TFM>

The New-Item cmdlet creates the appropriate type of object because it realizes we are in the registry. To
create registry values we use New-Itemproperty:

PS HKCU:\PowerShell TFM> new-itemproperty -path .'
>> -name "Pub" -value "SAPIEN"
>>

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_...
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
PSChildName : PowerShell TFM
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
Pub : SAPIEN

PS HKCU:\PowerShell TFM>

We now have a String entry called Pub with a value of SAPIEN. If you want to create a different regis-

390

Windows PowerShell: TFM • 2nd Edition

try entry, such as a DWORD, then use the -PropertyType parameter:

PS HKCU:\PowerShell TFM> new-itemproperty -path . '
>> -PropertyType DWORD -name "Recommend" -value 1
>>

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USE...
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
PSChildName : PowerShell TFM
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
Recommend : 1

PS HKCU:\PowerShell TFM>

Removing Registry Items
To remove an item, we call Remove-Itemproperty:

PS HKCU:\PowerShell TFM> remove-itemproperty -path . -name Recommend

We use Remove-Item to remove the sub key we created:

PS HKCU:\> remove-item "PowerShell TFM"

Standard Registry Rules Apply
Since PowerShell takes a new approach to managing the registry, take great care in modifying the
registry. Be sure to test your registry editing skills with these new expressions and cmdlets on a
test system before even thinking about touching a production server or desktop.

Searching the Registry
Searching the registry for information is not that much different from searching any other file system.
However, because there is so much information, you’ll want to filter it in some way. Here’s one example:

PS HKLM:\software> dir . | where {$_.name -match "Sapien"}

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software

SKC VC Name Property
--- -- ---- --------
 2 0 SAPIEN {}
 2 0 SAPIEN Technologies, Inc. {}

PS HKLM:\software>

Managing the Registry

391

From the current location, we’re searching for any child keys that match the word “Sapien”. We could
take this a step further and enumerate all the matching registry keys:

PS HKLM:\software> dir . | where {$_.name -match "Sapien"} | dir -recurse

As you work with the registry in PowerShell, you will realize that you need to use Get-ChildItem to
enumerate child keys and Get-Itemproperty to retrieve values, sometimes you need to combine the two
cmdlets:

PS HKLM:\software> foreach ($item in (dir . | where {$_.name -match "Sapien"} | `
>> dir -recurse)) {$item;Get-ItemProperty $item.pspath | select * -exclude `
>> PSDrive,PS*Path,PSChild*,PSProv*
>> }
>>

This snippet is a little trickier, so follow along carefully. First, we will search from the current location for
registry key with the word “Sapien”.

dir . | where {$_.name -match "Sapien"}

The results of this expression are then processed by the dir alias recursively:

| dir -recurse

Each of the results is a registry location that we want to enumerate using Get-Itemproperty. Therefore,
everything we’ve done so far is part of a larger foreach expression. For every matching registry key
found, the key name will be displayed and then Get-Itemproperty is called:

{$item;Get-ItemProperty $item.pspath

The resulting object is a custom object that includes some PowerShell properties, like PSDrive and
PSPath, that we can ignore. We pipe everything to the Select cmdlet, excluding the properties we aren’t
interested in:

select * -exclude PSDrive,PS*Path,PSChild*,PSProv*

When executed, we get information like this:

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software\SAPIEN Technologies…

SKC VC Name Property
--- -- ---- --------
 0 1 2007 {(default)}

(default) : C:\Program Files\SAPIEN\PrimalScript 2007 Enterprise\PrimalScript.exe

 0 2 Wizards {WMI Wizard, ADSI Wizard}

WMI Wizard : WMIWizard.WMIWiz
ADSI Wizard : ADSIWizard.ADSIWiz

Finally, suppose you recall part of registry value but not sure the exact location. We might use a process

392

Windows PowerShell: TFM • 2nd Edition

like this:

PS HKLM:\software\microsoft> $errorActionPreference="SilentlyContinue"
PS HKLM:\software\microsoft> foreach ($item in dir . -recurse) {
>> if (($item.GetValueNames()) -eq "RegisteredOwner") {
>>$item.name;$item.GetValue("RegisteredOwner")}}

HKEY_LOCAL_MACHINE\software\microsoft\Windows NT\CurrentVersion
SAPIEN Scripting Guru
PS HKLM:\software\microsoft> $errorActionPreference="Continue"
PS HKLM:\software\microsoft>

We first set our error action preference to “SilentlyContinue” so that all the errors about non-existing
keys will be ignored. The main expression evaluates each result of the dir command:

PS HKLM:\software\microsoft> foreach ($item in dir . -recurse) {

If the result of the GetValueNames() method equals “RegisteredOwner”, we’ll return the item name as
well as getting the value of the “RegisteredOwner” key using the GetValue() method:

>> if (($item.GetValueNames()) -eq "RegisteredOwner") {
>>$item.name;$item.GetValue("RegisteredOwner")}}

The result is the registry key and the value of the “RegisteredOwner” key. When finished we set our
error action preference back to “Continue”.

Working with Remote Registries
To access remote registries, you need to use WMI and the StdReg provider:

$Reg = [WMIClass]"root\default:StdRegProv"

This will connect you to the local registry via WMI. We recommend you test things locally first. When
you are ready, you can connect to a remote registry by specifying a computer name in the path:

$Reg = [WMIClass]\\Computername\root\default:StdRegProv

You must be running PowerShell with credentials that have administrative rights on the remote com-
puter. There is no mechanism to specify alternate credentials.

Once you have this object, you can use its methods as shown in the following table:

StdRegProv Class

Name MemberType
Name AliasProperty
CheckAccess Method
CreateKey Method
DeleteKey Method
DeleteValue Method
EnumKey Method

Managing the Registry

393

Name MemberType
EnumValues Method
GetBinaryValue Method
GetDWORDValue Method
GetExpandedStringValue Method
GetMultiStringValue Method
GetStringValue Method
SetBinaryValue Method
SetDWORDValue Method
SetExpandedStringValue Method
SetMultiStringValue Method
SetStringValue Method
ConvertFromDateTime ScriptMethod
ConvertToDateTime ScriptMethod
CreateInstance ScriptMethod
Delete ScriptMethod
GetRelatedClasses ScriptMethod
GetRelationshipClasses ScriptMethod
GetType ScriptMethod
Put ScriptMethod

You can get this same information by piping $reg to the Get-Member cmdlet.

To use the WMI object, almost all the methods will require you to specify a hive constant. Add
these commands to your profile or any remote registry scripts:

$HKLM=2147483650
$HKCU=2147483649
$HKCR=2147483648
$HKEY_USERS=2147483651

Due to the WMI architecture and security, you cannot access the HKEY_CURRENT_USER hive
on a remote machine. We’ve included it here for any PowerShell scripts you plan to run locally that
will use WMI to access the registry. Most of your remote registry commands will use the constant for
HKEY_LOCAL_MACHINE.

Enumerating Keys
The EnumKey() method is used to enumerate registry keys, starting from a given key:

PS C:\> $reg.EnumKey($HKLM,"Software")

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :

394

Windows PowerShell: TFM • 2nd Edition

__NAMESPACE :
__PATH :
ReturnValue : 0
sNames : {Acronis, ahead, Alps, ALPS Electric Co., Ltd....}

You need to specify the hive constant and the name of registry key. In this example, we are enumerating
the keys directly in HKEY_LOCAL_MACHINE\Software. The returned values are stored as an array
in the sNames property. Thus, a more complete way to enumerate the keys would be something like this:

PS C:\> foreach ($app in ($reg.EnumKey($HKLM,"Software")).sNames) {$app}

If you wanted to recurse through sub keys, you would need an enumeration function. We’ll show you
one later.

Enumerating Values
To enumerate values for registry keys use the EnumValues() method:

PS C:\> $regpath="SOFTWARE\Microsoft\Windows\CurrentVersion\Run"
PS C:\> $values=$reg.EnumValues($HKLM,$RegPath)
PS C:\> foreach ($value in $values.sNames) {$value}
Apoint
NvCplDaemon
nwiz
Broadcom Wireless Manager UI
IntelliPoint
Windows Defender
SunJavaUpdateSched
TrueImageMonitor.exe
AcronisTimounterMonitor
Acronis Scheduler2 Service
GrooveMonitor
AVG7_CC
XFILTER
ProcExp
NWEReboot
NeroFilterCheck
QuickTime Task
iTunesHelper
PS C:\>

As with the EnumKeys() method, you need to specify a hive and registry path. The returned values are
stored in the sNames property, which is why we enumerate them like an array.

In this particular example, we are returning the values of the registry keys in HKEY_LOCAL_
MACHINE\ SOFTWARE\Microsoft\Windows\CurrentVersion\Run. The semantics Microsoft chose
are a little misleading. Even though we’re getting values for registry keys, we don’t know the data associ-
ated with each key. In this example, the value may be sufficient. But what about something like this:

PS C:\> $regpath="SOFTWARE\Microsoft\Windows NT\CurrentVersion"
PS C:\> $values=$reg.EnumValues($HKLM,$RegPath)
PS C:\> foreach ($value in $values.sNames) {$value}
SubVersionNumber
CurrentBuild
InstallDate
ProductName
RegDone

Managing the Registry

395

RegisteredOrganization
RegisteredOwner
SoftwareType
CurrentVersion
CurrentBuildNumber
BuildLab
CurrentType
CSDVersion
SystemRoot
SourcePath
PathName
ProductId
DigitalProductId
LicenseInfo
PS C:\>

We need the associated data for each of these key values. The registry provider has several methods for
getting key data. But you need to know what type of data is in each key. We’ll show you one way to get
the type information a little bit later.

In our example above, we know that all the data are strings, so we will use the GetStringValue()
method:

PS C:\> foreach ($value in $values.sNames) {$value+" = '
>> "+$reg.GetStringValue($HKLM,$regpath,$value).sValue}
>>
SubVersionNumber =
CurrentBuild = 1.511.1 () (Obsolete data - do not use)
InstallDate =
ProductName = Microsoft Windows XP
RegDone =
RegisteredOrganization = SAPIEN Technologies
RegisteredOwner = Scripting Guru
SoftwareType = SYSTEM
CurrentVersion = 5.1
CurrentBuildNumber = 2600
BuildLab = 2600.xpsp_sp2_qfe.070227-2300
CurrentType = Uniprocessor Free
CSDVersion = Service Pack 2
SystemRoot = C:\WINDOWS
SourcePath = D:\I386
PathName = C:\WINDOWS
ProductId = 55274-770-4022292-22510
DigitalProductId =
LicenseInfo =
PS C:\>

The method requires the registry hive, the path, and the value to get:

"+$reg.GetStringValue($HKLM,$regpath,$value)

The code is getting each value and passing it to the GetStringValue() method. You could manually get
the value for a single value like this:

PS C:\> $reg.GetStringValue($hklm,"software\microsoft\windows nt\currentversion",'
>>"RegisteredOwner")

__GENUS : 2

396

Windows PowerShell: TFM • 2nd Edition

__CLASS : __PARAMETERS
__SUPERCLASS :
__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 2
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 0
sValue : Scripting Guru

As before, the data is stored in the sValue property. That’s why in our snippet we use:

>> "+$reg.GetStringValue($HKLM,$regpath,$value).sValue}

to return the data.

Searching the Registry
To search the registry with WMI requires a little fancy footwork. You have to get each key and its val-
ues, then repeat the process for every sub key. We’ve put together a few functions to make this easier.
The first function is used to enumerate a registry path:

Function Get-RegistryPath {

Param([Management.ManagementObject]$Reg,[int64]$Hive,[string]$regpath)
#Get-RegistryPath $reg $HKLM "Software\Microsoft\Windows NT\CurrentVersion"

#$reg must previously defined
#$Reg = [WMIClass]"root\default:StdRegProv"
or
#$Reg = [WMIClass]"\\servername\root\default:StdRegProv"
#$Hive is a numeric constant
$HKLM=2147483650
$HKCU=2147483649

#get values in root of current registry key
 $values=$Reg.enumValues($Hive,$regpath)
 if ($values.snames.count -gt 0) {
 for ($i=0;$i -lt $values.snames.count;$i++) {
 $iType = $values.types[$i]
 $value = $values.snames[$i]
 Get-RegistryValue $Reg $Hive $regpath $value $iType
 }
 }

$keys=$Reg.EnumKey($Hive,$regpath)

enumerate any sub keys
if ($keys.snames.count -gt 0) {
 foreach ($item in $keys.snames) {

 #recursively call this function
 Get-RegistryPath $Reg $hive "$regpath\$item"

 }
 }
}

Managing the Registry

397

The function takes parameters for the WMI registry object, the hive constant and the starting registry
path:

Get-RegistryPath $reg $HKLM "Software\Microsoft\Windows NT\CurrentVersion"

The function calls another function which returns key data for any keys in the starting location. Then
it enumerates any sub keys, and if the count is greater than 0, the function recurses and calls itself. In
this way, the entire registry key is recursively enumerated. To get the data for each key, we’ll use this
function:

Function Get-RegistryValue {

Param([Management.ManagementObject]$Reg,[int64]$Hive,[string]$regitem,[string]$value,`
[int32]$iType)

#$reg must previously defined
#$Reg = [WMIClass]"root\default:StdRegProv"
or
$Reg = [WMIClass]"\\servername\root\default:StdRegProv"
$Hive is a numeric constant
$HKLM=2147483650
$HKCU=2147483649

$regitem is a registry path like "software\microsoft\windows nt\currentversion"
$Value is the registry key name like "registered owner

iType is a numeric value that indicates what type of data is stored in the key.
Type 1 = String
Type 2 = ExpandedString
Type 3 = Binary
Type 4 = DWord
Type 7 = MultiString
sample usage:
$regPath="software\microsoft\windows nt\currentversion"
$regKey="RegisteredOwner"
Get-RegistryValue $reg $hklm $regPath $regKey 1

 $obj=New-Object System.Object

 switch ($iType) {
 1 {
 $data=($reg.GetStringValue($Hive,$regitem,$value)).sValue
 }
 2 {
 $data=($reg.GetExpandedStringValue($Hive,$regitem,$value)).sValue
 }
 3 {
 $data="Binary Data"
 }
 4 {
 $data=($reg.GetDWordValue($Hive,$regitem,$value)).uValue
 }
 7 {
 $data=($reg.GetMultiStringValue($Hive,$regitem,$value)).sValue
 }
 default {
 $data="Unable to retrieve value"
 }
 } #end switch

398

Windows PowerShell: TFM • 2nd Edition

 Add-Member -inputobject $obj -membertype "NoteProperty" -name Key -value $value
 Add-Member -inputobject $obj -membertype "NoteProperty" -name KeyValue -value $data
 Add-Member -inputobject $obj -membertype "NoteProperty" -name RegPath -value $regitem
 Add-Member -inputobject $obj -membertype "NoteProperty" -name Hive -value $hive
 Add-Member -inputobject $obj -membertype "NoteProperty" -name KeyType -value $iType
 return $obj
}

This function requires a registry provider, hive constant, registry path, and key name and data type as
parameters. These are passed from the Get-RegistryPath function:

$values=$Reg.enumValues($Hive,$regpath)
 if ($values.snames.count -gt 0) {
 for ($i=0;$i -lt $values.snames.count;$i++) {
 $iType = $values.types[$i]
 $value = $values.snames[$i]
 Get-RegistryValue $Reg $Hive $regpath $value $iType
 }
 }

The collection of values is checked to see if there are any. Assuming there are values, the collection is
enumerated. The $values object actually has two properties. The snames property is every key name
and the types property is the corresponding data type. The WMI registry provider doesn’t have a good
mechanism for discovering what type of data might be in a given key. So, we have to match up the data
type with the key name. These values are then passed to the Get-RegistryValue function.

This function evaluates the data type with the Switch statement and uses the appropriate method to
read the data. Binary data is skipped and a message is returned instead. We then use a custom object to
return information. The advantage is that we can use these object properties in formatting the output:

PS C:\> Get-RegistryPath $reg $hklm "software\microsoft\windows nt\currentversion" |'
>> Select Key,Keyvalue,RegPath
>>

Or you can run a command like this:

PS C:\> Get-RegistryPath $reg $hklm "software\microsoft\windows nt\currentversion" | '
>> where {$_.key -match "registeredown
>>

Enumerating or searching the registry with WMI is a slow process and over the network to a remote
computer will be even slower. But if this is your business requirement, don’t expect blazing results.

Modifying the Registry
Creating a registry key with the WMI provider is pretty simple.

PS C:\> $reg.CreateKey($HKCU,"PowerShellTFM")

This will create a key called “PowerShellTFM” under HKEY_CURRENT_USER. You can even create
a hierarchy with one command:

PS C:\> $reg.CreateKey($HKCU,"PowerShellTFM\Key1\Key2")

Managing the Registry

399

The command will create Key1 and then Key2. What about adding values to keys? It depends on the
type of data you need to store:

#create a string value
PS C:\> $reg.SetStringValue($HKCU,"PowerShellTFM\Key1","SampleKey","I am a string")

#create a dword
PS C:\> $reg.SetDWORDValue($HKCU,"PowerShellTFM\Key1","Sample Dword",1024)

#create an expanded string value
PS C:\> $reg.SetExpandedStringValue($HKCU,"PowerShellTFM\Key1\Key2",`
>> "Sample Expandable","%Username%")
>>

#create multistring value
PS C:\> $reg.SetMultiStringValue($HKCU,"PowerShellTFM\Key1\Key2",`
>> "Sample Multi",(get-content c:\file.txt))
>>
PS C:\>

When creating a multi-string value, you can’t have any blank lines. The WMI method will let you insert
blank lines, but when you edit the value with Regedit.exe, it will remove them. Make sure you have no
blank lines to begin with, and you should be fine. In all cases, you can check the Return value to verify
success. A value of 0 indicates the value was successfully written to the registry.

To delete a value, specify the hive, the registry path and the key name:

PS C:\> $reg.DeleteValue($HKCU,"PowerShellTFM\Key1","SampleKey")

To delete a key, specify the hive and key path:

PS C:\> $reg.DeleteKey($HKCU,"PowerShellTFM\Key1\Key2")

You delete a key with values, but you can’t delete a key with sub keys. If we had used this command
instead:

PS C:\> $reg.DeleteKey($HKCU,"PowerShellTFM\Key1")

you would get a return value of 5, which tells you there are sub keys that must be removed first. In this
case, that would be Key2. So, to cleanly delete the keys, we would first need to remove Key2 and then
remove Key1.

Working with remote registries via WMI is possible, but it is not the easiest management task you’ll
face. Write functions and scripts to make it a little , but don’t expect snappy performance. Hopefully,
future versions of PowerShell will provide better mechanisms for remote registry management.

Managing Directory Services

401

Chapter 31
Managing Directory Services

As we described in earlier chapters, PowerShell’s current support for ADSI is pretty minimal in the first
version of PowerShell. PowerShell relies primarily on the .NET Framework DirectoryService classes. If
you are familiar with these classes, you can work with them using the New-Object cmdlet:

$Root = New-Object DirectoryServices.DirectoryEntry 'LDAP://DC=company,dc=local'

However, the PowerShell team realized most administrators won’t have experience programming in
.NET, so they developed an ADSI type adapter, which we cover in more detail a bit later in the chapter.
This type adapter abstracts the underlying .NET Framework classes and makes it a little bit easier to
work with Active Directory objects.

Even though the ADSI type adapter is helpful, there are limitations. Fortunately, Quest Software has
developed a free set of cmdlets for managing Active Directory users and computers. These cmdlets can
create and modify basic objects, such as users, groups, and computers. We provide a brief overview on
these cmdlets in the Quest Cmdlets for Active Directory Management section.

We’ve covered PSDrives earlier in the book. Wouldn’t it be nice to mount your Active Directory store
like any other file system? PowerShell does not ship with a directory services provider, but the free
PowerShell Community Extensions includes one. When installed, it will create a new PSDrive that is
mapped to the root of your Active Directory domain. You can then navigate Active Directory just like
any other drive. This PSDrive provider is compatible with the Quest cmdlets.

Depending on your needs, there are several approaches to working with Active Directory without
resorting to third-party extensions. We’ll show you several example tasks in this chapter. After working
with these examples, you’ll realize how valuable the third-party extensions are.

402

Windows PowerShell: TFM • 2nd Edition

Working with the Directory via WMI
If your directory service management needs are simple, say you want to be able to find users, you can
actually use WMI and the Get-WmiObject cmdlet to query Active Directory:

GetLDAPUsers.ps1

#GetLDAPUsers.ps1

$user=read-host "What user credentials do you want to use for" `
"authentication to the" `n `
"domain controller? Use format domain\username."
$cred=get-credential $user
$server=read-host "What domain controller do you want to connect to?"

$rc=read-host "Do you also want to save output to a text file? [YN]"
if ($rc -eq "Y") {
$file=read-host "Enter the filename and path"
write-host "Connecting to" $server "as" $user
Get-WmiObject -class ds_user -namespace root\directory\ldap `
-computername $server -credential $cred | `
select-object DS_Name,DS_distinguishedname,DS_sAMAccountname |`
tee-object -file $file
}
else
{
write-host "Connecting to" $server "as" $user
Get-WmiObject -class ds_user -namespace root\directory\ldap `
-computername $server -credential $cred | `
select-object DS_Name,DS_distinguishedname,DS_sAMAccountname
}

This script connects to an Active Directory domain controller and returns a list of all user accounts
including their distinguished name and down-level SAM account name. You have the option of saving
the output to a text file.

The core of the script is the Get-WmiObject expression. For most other WMI-related scripts, we’ve
used the root\cimv2 namespace. However, in this script, we’re going to connect to the root\directory\
ldap namespace on the specified server. In this namespace, we are looking for objects that belong to the
ds_user class. Once we have these objects, we can use the Select-object cmdlet to return just the prop-
erties in which we are interested. This is what you get when you run the script:

What user credentials do you want to use for authentication to the
domain controller? Use format domain\username.:
mycompany\administrator
What domain controller do you want to connect to?: dc01
Do you also want to save output to a text file? [YN]: n
Connecting to dc01 as mycompany\administrator s

DS_Name DS_distinguishedname DS_sAMAccountname
------- -------------------- -----------------
Administrator CN=Administrator,CN=Use... Administrator
Guest CN=Guest,CN=Users,DC=my... Guest
SUPPORT_388945a0 CN=SUPPORT_388945a0,CN=... SUPPORT_388945a0
krbtgt CN=krbtgt,CN=Users,DC=m... krbtgt
__vmware_user__ CN=__vmware_user__,CN=U... __vmware_user__
svcSharepoint CN=svcSharepoint,CN=Use... svcSharepoint
Joe Hacker CN=Joe Hacker,OU=Testin... jhacker
Jane Cracker CN=Jane Cracker,OU=Test... jcracker

Managing Directory Services

403

ldog CN=ldog,OU=Testing,DC=m... ldog
test user1 CN=test user1,OU=omaha,... tuser1
Test User2 CN=Test User2,OU=Testin... tuser2
Test User3 CN=Test User3,OU=Testin... tuser3
Test User4 CN=Test User4,OU=Testin... tuser4
Lucky Dog CN=Lucky Dog,OU=home,DC... lucky
Steve McQueen CN=Steve McQueen,OU=Tes... smqueen
Bill Shakespeare CN=Bill Shakespeare,OU=... bills
azygot CN=azygot,OU=Testing,DC... azygot

PS C:\>

If you’re interested in all properties for a specific account, such as Administrator, or if you want to learn
what user properties are available, you can use an expression like this:

Get-WmiObject -class ds_user -namespace root\directory\ldap `
>> "-computername MYDC -Credential (get-credential) | `
>> where {$_.dssAMAccountname -eq "Administrator"}
>>

Working with Users by Using the [ADSI] Type Accelerator
If you want to do more than just build Active Directory reports in PowerShell, then you need to use the
[ADSI] type accelerator. This feature allows you to create, modify, display, and delete Active Directory
objects such as users, groups, and computers. In order to use the type accelerator, you need to know the
distinguished name of the object.

PS C:\> $admin=[ADSI]"LDAP://CN=Administrator,CN=Users,DC=MyCo,DC=com"
PS C:\> $admin

distinguishedName

{CN=Administrator,CN=Users,DC=MyCo,DC=com}

PS C:\> $admin.memberof
CN=UnrestrictedUsers,OU=home,DC=MyCo,DC=com
CN=Group Policy Creator Owners,CN=Users,DC=MyCo,DC=com
CN=Domain Admins,CN=Users,DC=MyCo,DC=com
CN=Enterprise Admins,CN=Users,DC=MyCo,DC=com
CN=Schema Admins,CN=Users,DC=MyCo,DC=com
CN=Administrators,CN=Builtin,DC=MyCo,DC=com

PS C:\> $admin.WhenChanged

Tuesday, October 17, 2006 2:38:28 AM

Piping $admin to Get-Member will list what appear to be all the available ADSI properties of the
object. If you are familiar with ADSI, you’ll realize that some properties are missing. Get-Member only
displays properties with defined values. You can modify other properties as long as you already know the
property name, which we’ll show you later. One other important reminder is that when you create an
object, the property values are stored in a local cache. If the object is modified in Active Directory, you
won’t see the changes locally unless you refresh the cache. Here’s how we would do it with our previous
example:

$admin.psbase.refreshcache()

404

Windows PowerShell: TFM • 2nd Edition

We can also use the ADSI type accelerator to create an object in Active Directory. Take a look at
CreateUser.ps1:

CreateUser.ps1

#CreateUser.ps1
#specify the OU where you want to create the account
$OU=[ADSI] "LDAP://OU=Testing,DC=MyCo,DC=Local"

#using the ADSI type specifier
#Add the user object as a child to the OU
$newUser=$OU.Create("user","CN=Francis Bacon")
$newUser.Put("sAMAccountName","fbacon")
#commit changes to Active Directory
$newUser.SetInfo()
#set a password
$newUser.SetPassword("P@ssw0rd")
$newUser.SetInfo()
#Define some other user properties
$newUser.Put("DisplayName","Francis Bacon")
$newUser.Put("UserPrincipalName","Fbacon@MyCo.com")
$newUser.Put("GivenName","Francis")
$newUser.Put("sn","Bacon")
#enable account = 544
#disable account = 546
$newUser.Put("UserAccountControl","544")
$newUser.Put("Description","Created by PowerShell "`
+(get-date).ToString())

#commit changes to Active Directory
$newUser.SetInfo()
#flag the account to force password change at next logon
$newUser.Put("pwdLastSet",0)
$newUser.SetInfo()

Before you can create an object, you first must create an object for the parent container. In this example,
we’re using the Testing organizational unit. To create a new user object, we simply invoke the parent
object’s Create() method and specify the type of child object and its name:

$newUser=$OU.Create("user","CN=Francis Bacon")

To define properties, we’ll use the Put() method. When you create a user account, you have to also
define the sAMAccountname:

$newUser.Put("sAMAccountName","fbacon")

Before we can set any other properties, the object needs to be written from the local cache to Active
Directory. This is accomplished by calling the SetInfo() method:

$newUser.SetInfo()

To set the user’s password, there is a SetPassword() method that takes the new password as a parameter:

$newUser.SetPassword("P@ssw0rd")

Managing Directory Services

405

Once this is accomplished, we can define some additional properties by using the Put() method, as you
can see in the remainder of the script.

To modify an existing user, it is merely a matter of creating an ADSI user object and using the Put()
method to define user attributes. Don’t forget to call SetInfo(), or none of your changes will be commit-
ted to Active Directory.

PS C:\> $user=[ADSI]"LDAP://CN=Bill Shakespeare,OU=Testing,DC=MyCo,dc=local"
PS C:\> $user.put("Title","Playwright")
PS C:\> $user.Setinfo()
PS C:\> $user.Title
Playwright
PS C:\>

To delete a user, we create an object for the parent container, typically an organizational unit, then sim-
ply call the Delete() method:

PS C:\> $ou=[ADSI]"OU=SAPIEN,DC=MyCo,DC=local"
PS C:\> $ou.psbase.get_children()

distinguishedName

{CN=SAPIEN Authors,OU=SAPIEN,DC=MyCo,DC=local}
{CN=Test User2,OU=SAPIEN,DC=MyCo,DC=local}
PS C:\> $ou.delete("user","CN=Test User2")
PS C:\>

There is no need in this situation to call SetInfo(). As soon as you invoke the Delete() method, the
object is gone. You can use this method to delete any object. All you have to do is specify the object class
and its name.

Getting Password Age
The easiest way to obtain the password age for a user or a computer is to use the WinNT provider and
look at the PasswordAge property:

PS C:\> $user=[ADSI]"WinNT://Company/aSample,user"
PS C:\> "{0:N0}" -f ($user.passwordage[0]/84600)
78
PS C:\>

The first step is to create an ADSI object for the user employing the WinNT provider. In this example,
we are getting the user object for Ann Sample in the Company domain.

The password age is stored in the password property, but PowerShell returns it as a single element array.
Therefore, we reference it with an index number of 0. The value is in seconds, so we divide it by 86400
to obtain the number of days and use the -f format operator to display it as a simple integer. As you can
see, her password was last changed 78 days ago.

The password age for a computer account can be used to identify obsolete computer accounts. If the
password has not changed in, say, 45 days, it is very likely the computer account is no longer active.

PS C:\> $server=[ADSI]"WinNT://company/NTFile07$"
PS C:\> "{0:N0}" -f ($user.passwordage[0]/84600)
368

406

Windows PowerShell: TFM • 2nd Edition

PS C:\>

The only difference with this code, compared to the code for a user account, is that we must specify the
sAMAccountname of the computer, which should be the computer’s NetBIOS name appended with
the $ sign. The remaining code is the same. In this example, it is very clear that server NTFile07 is likely
obsolete and no longer in use, since its password age is over a year old.

Deleting Users
Deleting a user is a very straightforward task. All you need is the distinguished name of the container or
organizational unit and the Active Directory name of the user object:

PS C:\> $ou=[adsi]"LDAP://OU=employees,DC=company,dc=local"
PS C:\> $ou.Delete("user","CN=Sam Hamm")

The first line creates an ADSI object that represents the parent container—in this case, the Employees
OU. The second line calls the Delete() method, which requires the type of object and its canonical
name.

Bulk-Creating Users
With a little extra effort, we can expand the previous example to create a group of users in bulk. The fol-
lowing script will create a group of users based on information stored in a comma-separated value file:

Import Users from a CSV File

#Import-Users.ps1

$data="newusers.csv"
$imported=Import-Csv $data

#retrieve list of csv column headings
#Each column heading should correspond to an
#ADSI user property name

$properties=$imported |Get-Member -type noteproperty | `
where {$_.name -ne "OU" -and $_.name -ne "Password" `
-and $_.name -ne "Name" -and $_.name -ne "sAMAccountName"}

 for ($i=0;$i -lt $imported.count;$i++) {
 Write-Host "Creating User" $imported[$i].Name "in" $imported[$i].OU
 $OU=[ADSI]("LDAP://"+$imported[$i].OU)

 $newUser=$OU.Create("user","CN="+$imported[$i].Name)
 $newUser.Put("sAMAccountName",$imported[$i].samAccountname)
 #commit changes to Active Directory
 $newUser.SetInfo()
 #set a password
 $newUser.SetPassword($imported[$i].Password)
 $newUser.SetInfo()

 foreach ($prop in $properties) {
 #set additional properties
 $value=$imported[$i].($prop.name)
 if ($value.length -gt 0) {
 #only set properties that have values

Managing Directory Services

407

 $newUser.put($prop.name,$value)
 }
 }

 $newUser.SetInfo()
 }

Our script assumes the CSV file will have required column headings of OU, Name, sAMAccountname,
and Password. The OU column will contain the distinguished name of the organizational unit where
the new user account will be created, such as OU=Employees,DC=Company,DC=Local. The Name
property will the user’s Active Directory name and the sAMAccountname property will be the user’s
down-level logon name. You can have as many other entries as you want. Each column heading must
correspond to an ADSI property name. For example, use “SN” for the user’s last name and “GivenName”
for the user’s first name. The script begins by using the Import-CSV cmdlet to import the CSV file:

$data="newusers.csv"
$imported=Import-Csv $data

Because the CSV file will likely contain column headings for additional user properties, we’ll create an
object to store those property names. We’ll exclude the required columns by selecting all property names
that don’t match the required names:

$properties=$imported | Get-Member -type noteproperty | `
where {$_.name -ne "OU" -and $_.name -ne "Password" `
-and $_.name -ne "Name" -and $_.name -ne "sAMAccountName"}

Armed with this information, we can now run through the list of new user information using For:

for ($i=0;$i -lt $imported.count;$i++) {
 Write-Host "Creating User" $imported[$i].Name "in" $imported[$i].OU

The object, $imported, is an array, so we can access each array member by using the array index. We’ll
first create an object for the OU where the user will be created, using the ADSI type adapter:

 $OU=[ADSI]("LDAP://"+$imported[$i].OU)

Now we can create the new user by referencing the required imported user properties:

 $newUser=$OU.Create("user","CN="+$imported[$i].Name)
 $newUser.Put("sAMAccountName",$imported[$i].samAccountname)
 #commit changes to Active Directory
 $newUser.SetInfo()

At this point, we can add any other user properties that are defined in the CSV file. We accomplish this
by enumerating the property list object:

 foreach ($prop in $properties) {

For each property name, we’ll get the corresponding value from the current user:

 $value=$imported[$i].($prop.name)

408

Windows PowerShell: TFM • 2nd Edition

For example, if the property name is Title, then $value will be set to the value of $imported[$i].Title.
We put $prop.name in parentheses to instruct PowerShell to evaluate the expression, so that, in this
example, it will return Title.

This script, as written, can only set single valued properties that accept strings. The script checks the
length of $value. A length of 0 means there is no value and there’s no reason to attempt to set the prop-
erty. So, if the length of $value is greater than 0, we know there is a value, and we’ll set the user property
with it:

 if ($value.length -gt 0) {
 #only set properties that have values
 $newUser.put($prop.name,$value)
 }

After all the properties have been set, we call the SetInfo() method to write the new information to
Active Directory:

 $newUser.SetInfo()

This process is repeated for every user imported from the CSV file.

Working with Computers
Creating a new computer account is very similar to creating a new user account, and, in many ways, it’s
much easier because there are very few properties you have to define. Here’s a function you can use to
create a new computer account:

Function New-Computer {
Param([string]$name=$(Throw "You must enter a computer name."),
[string]$Path="CN=computers,DC=company,DC=Local",
[string]$description="Company Server",
[boolean]$enabled=$TRUE)

$OU=[ADSI]("LDAP://"+$Path)
$computer=$OU.Create("computer","CN=$name")
$computer.Put("SamAccountName",$name)
$computer.put("Description",$description)
if ($enabled) {
 $computer.Put("UserAccountControl",544)
 } else {
 $computer.Put("UserAccountControl",546)
}

$computer.SetInfo()

}

The function requires the name of the new computer object and, optionally, the organizational unit path,
a description, and whether or not the account should be enabled. Default values are specified for the
optional parameters:

Function New-Computer {
Param([string]$name=Throw("You must enter a computer name."),
[string]$Path="CN=computers,DC=company,DC=Local",
[string]$description="Company Server",

Managing Directory Services

409

[boolean]$enabled=$TRUE)

The function creates an ADSI object for the OU or container where you want to create the computer
object.

$OU=[ADSI]("LDAP://"+$Path)

The function next creates the computer object in the container specifying the Active Directory name
and the sAMAccountname.

$computer=$OU.Create("computer","CN=$name")
$computer.Put("SamAccountName",$name)

The description is defined:

$computer.put("Description",$description)

By default, the computer account is enabled, but if specified it can be disabled. The UserAccountControl
property defines this setting:

if ($enabled) {
 $computer.Put("UserAccountControl",544)
 } else {
 $computer.Put("UserAccountControl",546)
}

Finally, we call the Setinfo() method to write the new account to the Active Directory database:

$computer.SetInfo()

Delete Computer Accounts
Deleting a computer is essentially the same as with user accounts. All you need are the distinguished
name of the container or organizational unit and the Active Directory name of the computer object:

PS C:\> $ou=[adsi]"LDAP://OU=Desktops,DC=company,dc=local"
PS C:\> $ou.Delete("computer","CN=XPDesk81")

The first line creates an ADSI object that represents the parent container—in this case ,the Desktops
OU. The second line calls the Delete() method, which requires the type of object and its canonical
name.

Working with Groups
Creating a group is very similar to creating a user:

PS C:\> $OU=[ADSI]"LDAP://OU=SAPIEN,DC=MyCo,dc=local"
PS C:\> $newGroup=$OU.Create("group","CN=SAPIEN Authors")
PS C:\> $newGroup.Put("sAMAccountName","SAPIEN-Authors")
PS C:\> $newGroup.Put("Description","Contract Writers")

410

Windows PowerShell: TFM • 2nd Edition

PS C:\> $newGroup.SetInfo()
PS C:\>

Modifying group membership is not especially difficult. If you are familiar with this task in ADSI, it’s
not too different conceptually in PowerShell. As with ADSI, you need a DirectoryEntry object for the
group. You also need to know the distinguished name of the user object you want to add. Armed with
that information, it’s a matter of adding the user’s distinguished name to the object’s Member property.
Here’s a script that demonstrates how to modify group membership:

AddToGroup.ps1

#AddToGroup.ps1

$Grp=[ADSI]"LDAP://CN=SAPIEN Authors,OU=SAPIEN,DC=MyCo,DC=local"
$NewUserDN="CN=Bill Shakespeare,OU=Testing,DC=MyCo,DC=local"

#create an array object from current group members
$grpMembers=@($Grp.Member)

#display current group membership
Write-Host "There are currently" $grpMembers.Count "members in" $Grp.Name
foreach ($user in $grpMembers) {$user}

Write-Host `n; Write-Host "Adding" $NewUserDN
($grp.Member).add($NewUserDN) > $NULL

#commit changes to Active Directory
$Grp.SetInfo()

#refresh object and display new membership list
$Grp.psbase.refreshCache()
$grpMembers=@($grp.Member)

#display new membership
Write-Host "There are now" $grpMembers.Count "members in" $grp.Name
foreach ($user in $grpMembers) {
 if ($user -eq $NewUserDN) {
 write-Host -foregroundcolor Green $user
 }
 else
 {
 write-Host $user
 }
}

This script creates an ADSI object for the SAPIEN Authors group and also creates an object for the
current membership list that is displayed using ForEach. Adding the new user appears a little confusing
at first:

($grp.Member).add($NewUserDN) > $NULL

What we need to do is to call the Add() method for the group’s Member property, which is a collection,
and specify the user’s distinguished name. By the way, if we wanted to nest another group, we would
specify that group’s distinguished name. The reason we redirect output to $Null is purely cosmetic.
Without the redirection, the expression returns the number of members currently in the group. In the
course of running the script, displaying that number here serves no purpose and is distracting. We elimi-
nate it by redirecting any output to $Null.

Managing Directory Services

411

None of this work means anything until we commit the change to Active Directory using SetInfo().
The script finishes by refreshing the local cache and listing its new members, indicating the new user in
a green font.

Moving Objects
PowerShell and the .NET Framework use a slightly different method for moving objects in Active
Directory. You should be able to call the MoveTo() method like this:

PS C:\> $obj=[ADSI]"LDAP://CN=Desk61,CN=Computers,DC=company,dc=local"
PS C:\> $obj.MoveTo([ADSI]"LDAP://OU=Desktops,DC=Company,dc=local")

All you have to do is specify the container where the object should be moved to. However, this code
does not appear to work in the current version of PowerShell. PowerShell abstracts the .NET classes,
but, in this situation, there appears to be a bug in the process. At some point, we expect this to be cor-
rected, and then you can use code like this.

In the mean time, the Active Directory provider in the PowerShell Community Extensions can be used
to move objects. Because the provider allows you to navigate your Active Directory domain as if it were
a file system, you can use the Move command much the same way you would move a file:

PS COMPANY:\computers> move XPDesk02 company:\desktops

We discuss the PowerShell Community Extensions in more detail in the section, PowerShell
Community Extensions.

WinNT:// Provider
Even though we’ve been showing you how to use the ADSI type with the LDAP:// provider and Active
Directory, it will also work with the WinNT:// provider. You can use this provider if you want a flat view
of your domain or if you are working with member servers and desktops.

ListWinNT.ps1

#ListWinNT.ps1
$member=[ADSI]"WinNT://MyServer"
 foreach ($item in $member.psbase.children) {
 if ($item.psbase.schemaclassname -eq "user") {
 Write-Host $item.Name
 }
 }

This script will list every object that is of the user schema class and display the user name. If MyServer
is a member workstation, it will list local user accounts. If you substitute MyServer with the flat name
of your domain, you will get a list of all user accounts, regardless of what organizational unit they might
belong to. The displayed name will be the sAMAccountname.

Searching for Users
We’ll wrap up this chapter by showing you how easy it is to search in Active Directory with PowerShell.
Because PowerShell is based on .NET, it can create a DirectorySearcher object using the New-Object

412

Windows PowerShell: TFM • 2nd Edition

cmdlet. Here’s a short script that will return the distinguished name of every user account in an Active
Directory domain:

SearchForAllUsers.ps1

#SearchForAllUsers.ps1
$searcher=New-object DirectoryServices.DirectorySearcher
$searcher.Filter="(&(objectcategory=person)(objectclass=user))"
$users=$searcher.FindAll()
#display the number of users
Write-Host "There are "$users.count"users in this domain."
#display each user's distinguishedname
foreach ($user in $users) {
 Write-Host $user.properties.distinguishedname
}

After the Directory Searcher object is created, we define a search filter. The filter is an LDAP query
string. In this case, we want to find all objects that are basically user accounts. The Directory Searcher
has two methods you are most likely to use: FindAll() and FindOne(). The former will return all objects
that match the query, and the latter will only return the first one it finds. In this script, we create a new
object to hold the query results. We can then use the For-Each cmdlet to display the distinguishedname
property of each user in the result collection.

Fun with LDAP Filters
You don’t have to have extensive knowledge about LDAP to build a complex query. If you are run-
ning Windows 2003, you already have a tool that will do it for you. In Active Directory Users and
Computers, there is a Saved Queries feature. When you create a query, an LDAP query string
is generated. All you need to do is copy the string and use it as the directory searcher filter. For
example, we created a saved query to find all disabled users that created a LDAP query string of
(&(objectCategory = person) (objectClass = user) (userAccountControl:1.2.840.113556.1.4.803: =
2)). When we substitute this string for the filter in SearchForAllUsers.ps1, we get a list of every dis-
abled user. The tool is pretty powerful and can create some very complex query strings. Now, you
can also use them in your PowerShell scripts.

There is a subtle but important fact to remember when using the Directory Searcher object. The
objects returned by the query aren’t really the Active Directory objects but are more like pointers.
The search result can give you some property information like distinguishedname, but if you want
more specific object information, you need to get the object itself. This script is slightly modified from
SearchForAllUsers.ps1:

SearchForAllUsersAdvanced.ps1

#SearchForAllUsersAdvanced.ps1
$searcher=New-object DirectoryServices.DirectorySearcher
$searcher.Filter="(&(objectcategory=person)(objectclass=user))"
$users=$searcher.FindAll()
#display the number of users
Write-Host "There are "$users.count"users in this domain."
foreach ($user in $users) {
 foreach ($user in $users) {
 $entry= $user.GetDirectoryEntry()
 $entry |Select displayname,samaccountname,description,distinguishedname
 }

Managing Directory Services

413

}

In the ForEach loop, we create a new object called $entry by invoking the GetDirectoryEntry()
method of the object that was returned by the query. This object gives us access to all the properties in
Active Directory. In this script, we selected to show DisplayName, sAMAccountName,Description, and
DistinguishedName. When executed we get a result like this:

displayname samaccountname description distinguishedname
----------- -------------- ----------- -----------------
{Administrator} {Administrator} {Built-in ac... {CN=Administrat..
{Joe Hacker} {jhacker} {Another test user} CN=Joe Hacker...
{Jane Cracker} {jcracker} {Test user} {CN=Jane Crack...
{Bill Shakespeare}{bills} {Sample User Acc...{CN=Bill Shake...
{} {azygot} {} {CN=azygot,OU=...
{Jack W. Frost} {jfrost} {TFM} {CN=Jack Frost...
{Francis Bacon} {fbacon} {Created by Pow... {CN=Francis Ba...

We mentioned that the directory searcher also has a FindOne() method. This is very useful when you
know there is only one result, such as finding the distinguishedname of a user when all you know is the
user’s sAMAccountname.

FindUserDN.ps1

#FindUserDN.ps1
$sam=Read-Host "What user account do you want to find?"
$searcher=New-Object DirectoryServices.DirectorySearcher
$searcher.Filter="(&(objectcategory=person)(objectclass=user)"`
+"(sAMAccountname="+$sam+"))"
$results=$searcher.FindOne()
if ($results.path.length -gt 1)
 {write-host $results.path}
else
 {write-host "User" $sam "was not found."}

This script is very similar to the other searching scripts. The primary difference is that the search filter is
looking for user objects where the sAMAccountname is equal to a value specified by the user with the
Read-Host cmdlet. Since we know there will only be one result, the searcher can stop as soon as it finds
a match. We’ve added some error checking in the script. If a match was found, then the length of the
path property will be greater than one, so we can display it. Otherwise, there is no path, which means no
match was found, and so we can display a message to that effect.

The ADSI type accelerator is really just a wrapper for .NET directory service objects. It hides a lot of
the underlying functionality. You can create PowerShell scripts that directly create and manipulate the
.NET objects, but in our opinion that process is more like systems programming than scripting. We
believe you’ll find it much easier to manage Active Directory with the free third-party snap-ins from
Quest Software and the PowerShell Community Extensions.

Read More About It
The MSDN documentation for the .NET directory service objects and the System.
DirectoryServices.Namespace can be found at: http://msdn2.microsoft.com/en-us/library/system.
directoryservices(vs.80).aspx.

IVAdvanced Windows PowerShell
Part IV

Scope in Windows PowerShell

417

Chapter 32
Scope in Windows PowerShell

In the chapter “Scripting Overview,” we touched on the concept of scope in PowerShell. In that chapter,
we were primarily concerned with variables and functions, the two elements of PowerShell where scope
is of most concern. But scope in PowerShell is much more flexible and functional than we let on in that
earlier chapter, so we’re taking the time in this chapter to explain it in all its gory detail.

First, the term scope is defined in the dictionary as “extent or range of view, outlook, application, effec-
tiveness, etc.” That’s a good definition for our purposes, because PowerShell’s scope does define the range
of effectiveness for a number of elements, including variables, functions, aliases, and more.

Types of Scope
PowerShell starts with one top-level scope: The global scope. This is the only scope that is not contained
within any other scope; you can think of it as the ultimate “parent” scope, or the “root” scope. The com-
mand line itself exists within the global scope, and any variables, PSDrives, aliases, or functions that you
define interactively all exist in the global scope.

Whenever you run a script, a new scope is created to contain the script. This script scope is a child of the
scope that ran the script. In other words, if you run a script in the global scope, the new script scope is a
child of the global scope. If one script runs another, then the second script’s scope is a child of the first
script’s scope, and so forth. It’s essentially a hierarchy, not unlike the file system’s hierarchy of folders and
subfolders.

The inside of a function, script block, or filter is a private scope as well, and it is a child of whatever
scope contains it. A function within a script has a scope which is a child of the script’s scope—again,
similar to the hierarchy of folders on the file system.

418

Windows PowerShell: TFM • 2nd Edition

Scope-Aware Elements
Several elements of PowerShell are scope-aware:

Variables•

Functions•

Aliases•

PSDrives•

Those last two may be surprising, but, in fact, you can define an alias within a script—which has its own
scope—and that alias will exist only within that scope. This plays directly into PowerShell’s scoping rules,
which we’ll discuss next.

Scope Rules
PowerShell’s rules regarding scopes are simple: When you try to access an element, PowerShell first
looks to see if it’s defined in the current scope. If it is, then you’ll be able to access it for both reading
and writing—meaning you’ll be able to use the element and change the element, if desired.

If the specified element isn’t available in the current scope, then PowerShell starts looking up the hierar-
chy, starting with the parent of the current scope, then its parent, then its parent, and so forth, up to the
top-level global scope. If the specified element is found at some point, then you’ll have access to use it,
but not change it—at least, not without using a special technique. A simple script is probably the easiest
way to illustrate this:

function test1 {
 write-host $example # line 2
 $example = "Two" # line 3
 write-host $example # line 4
}

$example = "One" # line 7
Write-host $example # line 8
test1 # line 9
write-host $example # line 10

This produces the following output:

One
One
Two
One

On line 7, the value “One” is placed into the variable $example. Line 8 writes this, resulting in the first
line of output. Line 9 then calls the function, which is a new scope. Line 2 writes the current value
of $example. This variable doesn’t exist in the function’s scope, so PowerShell looks up one scope to
the function’s parent, which is the script itself. The $example variable is found, and line 2 outputs it—
resulting in our second line of output. Line 3 changes the value of the $example variable. However, by
default a scope cannot change elements from its parent. Therefore, PowerShell creates a new $example
variable within the current scope. Line 4 attempts to access $example, and now it does exist in the current
scope, resulting in our third line of output. With the function complete, we execute line 10. Our last line
of output is “One,” because that’s still the value of $example within the current scope. Parent scopes—the
script, in this case—cannot “see” inside their child scopes; they cannot see the function.

Scope in Windows PowerShell

419

The same thing applies to functions, aliases, and PSDrives. Here’s another example:

function test1 {
 new-psdrive Z filesystem c:\test
 dir z:
}

test1
dir Z:

Try running this (assuming you have a folder named C:\Test). The function maps a new drive, Z:, to the
C:\Test folder, and gets a directory listing. After the function exits, the script tries to get a directory list-
ing of Z:, and fails because the Z: mapping only exists inside the function’s scope.

Aliases work the same way:

function test1 {
 new-alias plist get-process
 plist
}

test1
plist

Again, the function defines a new alias and then uses it; the script is unable to use that alias because the
alias definition only exists within the function’s scope.

420

Windows PowerShell: TFM • 2nd Edition

Specifying Scope
When you look at these four elements—functions, aliases, PSDrives, and variables—you’ll find that
three of them have specific cmdlets used to create new elements:

New-Alias•	 is used to create new aliases.

New-Variable•	 is used to create new variables.

New-PSDrive•	 is used to create new PSDrives.

Each of these three cmdlets supports a -scope parameter, which allows you to create a new element in a
scope other than the current one. The Set-Variable cmdlet, which allows you to change an existing variable,
also has a -scope parameter, which allows you to change the value of a variable in a scope other than the
current one.

By the Way…
Other cmdlets used to deal with aliases, variables, and PSDrives also support a -scope parameter,
such as Remove-Alias and Get-PSDrive.

All of these -scope parameters can accept one of several values:

“Global” references the global scope.•

“Script” references the first script that is a parent of the current scope.•

“Local” references the current scope.•

A numeric value, with 0 representing the current scope, 1 representing the current scope’s parent, •
and so forth.

As a general rule, it’s considered a poor practice to have one scope modify anything in its parent or
parents. That’s because, as an element—such as a script or function—is moved around and re-used in
different ways, you can’t be sure what the state of the parent scope will be. Modifying a parent scope
involves a risk that you’ll impact some other process or operation. However, sometimes it’s necessary,
which is why the -scope parameter exists. For example, to create a function that defines a new alias in
the global scope, you’d do something like this:

Function test1 {
 New-Alias plist get-process -scope global
}

Or, to change the value of a global variable named $example:

Set-Variable $example "New Value" -scope global

Variables provide a shortcut reference, which may be easier to remember:

$global:example = "New Value"

Again, the keywords Global, Local, and Script can all be used with this syntax.

Scope in Windows PowerShell

421

Best Practices for Scope
As we’ve already mentioned, avoid modifying parent scopes unless there’s absolutely no other way to
accomplish what you need. Functions are a good example: A function should never do this:

Function example {
 $script:var = "New Value"
}

$var = "Old value"
example

Why? Well, for one, if this function is ever re-used in a different script, $var might not be the right vari-
able name. By tying the function to this script, we’ve limited the function’s reusability. Instead, functions
should output their return values or collections:

Function example {
 return "New Value"
}

$var = "Old value"
$var = example

This way, the function can be easily dropped into any script, or even the global shell, and used safely.

Our second recommendation is to always assign a value to a variable before using it in the current scope.
Consider this sample function:

Function sample {
 $var = $input1 + $input2
 Return $var
}

What will the function return? Well, we’ve no idea—it depends on what $input1 and $input2 contain.
The script that this function lives in might have defined those variables, or it might not have. Instead,
use variables only after they’ve been explicitly assigned a value in the current scope:

Function sample {
 $input1 = 1
 $input2 = 2
 $var = $input1 + $input2
 Return $var
}

Or, in the case of a function, define them as input arguments with default values:

Function sample ($input1 = 1, $input2 = 2) {
 $var = $input1 + $input2
 Return $var
}

This ensures that the function won’t “pick up” a variable from a parent scope by accident. Another way to
look at this best practice is that functions should never rely on a variable from a parent scope. If infor-
mation needs to be used inside of a function, pass it into the function via arguments. So, the only way

422

Windows PowerShell: TFM • 2nd Edition

data gets in a function is via arguments, and the only way data gets out of a function is by being returned
from the function. This makes functions self-contained and self-reliant, and you won’t need to worry
about their parent scope.

Dot Sourcing
Dot sourcing is a clever technique that tells PowerShell to execute something—usually a script—in the
current scope, rather than creating a new scope. For example, consider the following script, which we’ll
pretend is named Sample.ps1:

New-Alias PList Get-Process
PList

This simple script defines a new alias and then uses it. Just run this script:

PS C:\> test\sample

The alias is defined, executed, and then the script scope is discarded when the script ends, so the alias no
longer exists. However, if you dot source the script:

PS C:\> . test\sample

Now the script runs without creating a new scope. Since it was run from the shell, which is the global
scope, the script’s commands all execute within the global scope. Now the PList alias will remain defined
after the script runs, because the New-Alias cmdlet was executed within the global scope.

Dot-sourcing can be a useful technique for “including” a script library file. For example, suppose you
have a script file named Library.ps1, which contains a function named Ping-Computer. You can easily
reuse that across multiple scripts. Here’s an example of a script that “includes” Library.ps1:

include library functions
. path\library

use library function
Ping-computer localhost

The script shown dot sources Library.ps1, so Library.ps1 executes in this script’s scope, rather than launch-
ing in a new child scope. Therefore, everything defined in Library.ps1, including the Ping-Computer
function, is now defined inside this script’s scope, making those functions available for use. PowerShell
doesn’t include a dedicated “include” statement simply because dot-sourcing provides that functionality
already.

Scope in Windows PowerShell

423

By the Way…
PowerShell follows its execution policy when dot-sourcing scripts. For example, if we had located
Library.ps1 on a network folder and accessed it via a UNC path, then Library.ps1 would have to be
digitally signed and the execution policy in PowerShell would need to be set to RemoteSigned. If
both of those conditions weren’t true, PowerShell would pause the script execution and prompt you
for permission to run Library.ps1.

Nested Prompts
Earlier, we introduced you to the concept of nested prompts. A nested prompt exists in the same scope as
it was created. In other words, imagine we have a script like this:

Function Test1 {
 $var = 3
 Function Test2 {
 $var = 5
 $host.EnterNestedPrompt()
 }
 Test2
}
$var = 1
Test1

When we run this, $var is set to 1, and function Test1 is called. It sets $var to 3, creating a new $var in
this scope, and calls Test2. Test2 sets $var to 5, creating yet another version of $var in the local scope.
Test2 then opens a nested prompt. If, within that nested prompt, we examined the value of $var, we
would find it to be 5:

PS C:\> test\demo1
PS C:\>>> $var
5
PS C:\>>> exit
PS C:\>

This behavior ensures that nested prompts remain a useful debugging technique: The nested prompt
exists within the scope in which the prompt is called, so it has access to all of that scope’s PSDrives,
variables, aliases, functions, and so forth.

Tracing Complicated Nested Scopes
Dealing with scopes can become complicated when they’re very deeply nested—in fact, that complica-
tion is just one more reason to observe our two main best practices: Don’t use one scope to mess with
another, and don’t use variables without assigning them a value inside the current scope. Consider the
following example, and assume that the script Library.ps1 (referred to in the example) contains a func-
tion named Four:

function One {
 $var1 = "One"

 function Two {
 $var2 = "Two"

424

Windows PowerShell: TFM • 2nd Edition

 function Three {
 $var3 = "Three"
 test/ExternalScript
 . test/Library
 }

 $host.EnterNestedPrompt()
 }
}
$var = "Zero"

Here are some statements regarding this code:

The variable $var exists in the script scope, which is a child of the global scope.•

The variable $var2 exists in the scope of function Two, which is a child of function One, which is a •
child of the script, which is a child of the global scope—that means $var2 is four levels deep.

Function Four, which we said is defined inside Library.ps1, exists five levels deep: It was dot-•
sourced into function Three. Inside function Four is a new scope, which is six levels deep.

ExternalScript is running in its own scope, because it wasn’t dot-sourced. The script scope for •
ExternalScript is six levels deep: It’s a child of function Three, which is a child of function Two,
which is a child of function One, which is a child of the script, which is a child of the global scope.

Function Two creates a nested prompt, which is in the same scope—four levels deep—as function •
Two itself.

PowerShell doesn’t provide any built-in means of determining how deeply nested the current scope
is, so you have to pay close attention to scopes as you’re writing and working with scripts. You have to
remember the rules for scope use and dot-sourcing, and keep track of these things—on a piece of paper,
if necessary!

Working with COM Objects

425

Chapter 33
Working with COM Objects

Just because PowerShell is based on the .NET Framework doesn’t mean you can’t use older Component
Object Model (COM) components in your scripts. For example, using Add-PSDrive to map a network
drive in PowerShell doesn’t add the drive mapping to Windows Explorer; you can, however, still use the
WshNetwork COM component to perform this task. You’ll use the New-Object cmdlet to instantiate
the COM component, and then call its methods or access it properties much as you may have done in
VBScript or some other language. Here’s an example:

PS C:\> $network = new-object -com "WScript.Network"
PS C:\> $network.MapNetworkDrive("z:","\\localhost\c$")
PS C:\> z:
PS Z:\>

You’ll need to know the unique ProgID (“WScript.Network,” in this case) of the COM component you
want to use. You’ll notice that PowerShell’s tab completion (which we covered in the “Practical Tips and
Tricks” chapter) works for many COM components as well.

Oops…
Don’t forget to add the -comObject parameter to New-Object (we’ve used a shortened version of
the parameter name). If you do forget, New-Object won’t work properly.

There’s an incredible amount of trickery going on under the hood when PowerShell instantiates a COM
component, and it can get complicated. For example, sometimes a COM component has what’s called
an interop assembly, which is a special .NET assembly that connects complex COM components to the

426

Windows PowerShell: TFM • 2nd Edition

.NET Framework—and, thus, to PowerShell. Other COM components don’t have an interop assembly
available. Sometimes, when you try to instantiate a COM component that does have an interop assembly,
PowerShell winds up “connected” to that interop assembly, and not the actual COM component, which
means you won’t have access to the properties and methods you need.

To force PowerShell to throw an error in this condition, you can add the -strict parameter to New-
Object:

PS C:\> $network = new-object -com "WScript.Network" -strict

This way, if PowerShell “sees” an interop assembly, an exception will be raised that you can trap (read
the “Error Handling” chapter for details), and your script will “know” that it has to work differently.
This particular error still returns the COM component, but lets you know that you might have to take
different steps to use it, because you’ll actually be working with the interop wrapper. This technique is
especially important when you’re deploying a script to different machines. Some machines may have an
interop assembly for your COM component, while other machines might not; the -strict parameter lets
your script detect machines that do have an interop assembly and at least fail somewhat more gracefully.

Working with COM components can be frustrating sometimes, because in many cases, the COM com-
ponents don’t expose the full functionality available from a given piece of Windows. For example, the
WshNetwork object gives you access to the current computer, user, and domain name, but not the site
name or forest name. For that information, you’ll have to use a different COM component, ADSysInfo.
That component, however, won’t map drives—you’ll still need WshNetwork for that. So, COM scripting
becomes a patchwork exercise, an exercise that PowerShell was actually designed to improve, actually, by
having all functionality exposed through cmdlets. Until that happy day arrives, however, we’re left with
COM for many tasks.

A complete review of all the COM components available in Windows is far beyond the scope of this
book—there are literally thousands. However, Bruce Payette’s book, Windows PowerShell in Action (we’re
firm believers that you can’t have too many PowerShell books), provides a number of fun examples for
using COM to automate Internet Explorer, Windows Explorer, Microsoft Word, and other common
applications. You can also pick up a copy of Don Jones’ VBScript, WMI, and ADSI Unleashed (SAMS),
which covers a number of COM components that are useful for scripting.

Finally, don’t forget that if you want to learn more about a particular COM object, after you’ve created it
in PowerShell, pipe the object to Get-Member. Most of the properties should be self-explanatory.

Practical Examples of Using COM
We’d like to share a few valuable COM components that you may have use for in your administrative
scripts. None of these examples are long or complicated, which means you can put them to use right
away.

Mapping Network Drives and Printers
When you use New-PSDrive to add a mapped drive—that is, a local drive mapped to a shared fold-
er—to the shell, you’re only adding that mapped drive to PowerShell. It won’t show up in Windows
Explorer at all, which means New-PSDrive isn’t such a good technique for mapping drives in a logon
script. But you do have two alternatives: First, you could simply run Net Use, the same command you’d
run in Cmd.exe to map a drive. Or, you could use a COM object:

Working with COM Objects

427

PS C:\> $net = new-object -com "WScript.Network"
$net.MapNetworkDrive("Z:\","\\Server\Share")

This is essentially the same thing you’d do to accomplish this task in VBScript, which brings up an
excellent point: PowerShell can do many of the same things as a VBScript, in the exact same way. So, you
don’t necessarily have to learn a new technique for everything; while the “VBScript way” might not be
the most efficient use of PowerShell, many times it’ll still work.

Accessing Local Domain, Site, Forest, and Logon Information
This is another task example where PowerShell doesn’t contribute a lot of specific functionality, but
where an old VBScript-style technique can address the problem perfectly. For example, to access the
name of the local computer, the logged-on user, or the user’s logon domain, do this:

PS C:\> $net = new-object -com "WScript.Network"
PS C:\> $net.UserName
JJones
PS C:\> $net.UserDomain
SAPIEN
PS C:\>$net.ComputerName
XPDESK02
PS C:\>

The WScript.Network object, however, is relatively old, and doesn’t provide Active Directory-specific
information. The ADSysInfo COM object could help with that; however, the object appears to be lack-
ing a means of interoperating with the .NET framework. You can get this COM object to work in
PowerShell, but it’s frankly not worth the effort. This is another reminder that not all COM objects are
readily usable in PowerShell.

Automating Internet Explorer
One of our favorite uses for COM is to pop up an Internet Explorer window and direct it to a particular
Web site. For example, if your company has an intranet Web server, you could post a “message of the
day” Web page there. Then, in a PowerShell logon script, you could pop up Internet Explorer and navi-
gate it to that page each time a user logs on. It’s a great way to convey important information. Here’s
how to do it from the PowerShell command line:

PS C:\> $ie = new-object -com "InternetExplorer.Application"
PS C:\> $ie.navigate("www.microsoft.com")
PS C:\> $ie.visible = $true

Of course, doing this in a script uses exactly the same commands.

Controlling an Interactive Character
This is another fun trick that might find its way into a logon script you write. PowerShell architect
Jeffrey Snover uses this at the beginning of his talks on Windows PowerShell, and it’s very attention-
getting! The idea is to instantiate a Microsoft Agent character—a little cartoon person not unlike the
old Office Assistant characters—and get it to say something. Here’s how to do it:

PS C:\> $agent = new-object -com "Agent.Control.2"
PS C:\> $agent.connected = $true
PS C:\> $character = join-path $env:windir "msagent\chars\merlin.acs"

428

Windows PowerShell: TFM • 2nd Edition

PS C:\> [void]$agent.characters.load("merlin",$character)
PS C:\> $merlin = $agent.characters.item("merlin")
PS C:\> $action = $merlin.moveto(100,100)
PS C:\> $action = $merlin.show()
PS C:\> $action= $merlin.speak("Hello, there, everybody!")
PS C:\> $action = $merlin.hide()
PS C:\> $agent.connected = $false

You can use the agent’s MoveTo(), Show(), Hide(), and Speak() methods to control it. Notice that
each of these methods returns a status code, which is why we’ve assigned the result of the method to
the $action variable—we don’t need the status code, but if we don’t put it into a variable, PowerShell will
try and display it. Merlin is the only character we found on our Windows Vista computer; Robbie the
Robot, Peedy the Parrot, and Genie characters might be available on your system—check the folder we
referenced above for the appropriate .ACS files.

Making Your Computer Talk
In the previous example, we showed you an example of controlling Microsoft Agent, an interactive
character that includes speech synthesis capabilities. But what if you just want the speech, without the
cartoon character? No problem:

PS C:\> $voice = new-object -com "SAPI.SPVoice"
PS C:\> $voice.speak("This PowerShell stuff rocks!")

Feed it any text you like, and it’ll say it. Not always the best pronunciation, perhaps, but usually
comprehensible.

Issues with COM in PowerShell
COM is not completely trouble-free when used in PowerShell. For one, not every COM component
can be successfully adapted into PowerShell; sometimes, you’ll have to figure out some strange tech-
niques in order to get things to work properly. This is primarily due to the way the .NET Framework
deals with COM components—that is, not always very well.

COM component threading also causes some issues. PowerShell is what’s called a multi-threaded apart-
ment application, or MTA application. Many COM components won’t work unless the application
using them is single-threaded, or STA, so the PowerShell COM adapter basically tries to fake it if need
be. There’s a workaround for COM components that don’t work properly because of this threading issue,
but it essentially requires .NET programming, and it’s pretty hardcore, and frankly we don’t understand
it very well—it’s a bit beyond the purview of a systems administrator.

Working with XML Documents

429

Chapter 34
Working with XML Documents

PowerShell has a very powerful and intuitive way of allowing you to work with complex XML docu-
ments. Essentially, PowerShell adapts the structure of the XML document itself into an object hierarchy,
so that working with the XML document becomes as easy as referring to object properties and methods.

What PowerShell Does with XML
When PowerShell converts text into XML, it parses the XML’s document hierarchy and constructs a
parallel object model. For example, take the following XML document (which you can type into a text
file that has an XML filename extension):

<Pets>
 <Pet>
 <Breed>Ferret</Breed>
 <Age>3</Age>
 <Name>Patch</Name>
 </Pet>
 <Pet>
 <Breed>Bulldog</Breed>
 <Age>5</Age>
 <Name>Chesty</Name>
 </Pet>
</Pets>

You can load that XML into PowerShell as follows:

430

Windows PowerShell: TFM • 2nd Edition

PS C:\> [xml]$xml = get-content c:\pets.xml

PowerShell then constructs the object hierarchy. For example, you could access the breed of the first pet
as follows:

PS C:\> $xml.pets.pet[0].breed
Ferret

The $xml variable represents the XML document itself. From there, you simply specify the document
elements as properties: The top-level <Pets> element, the first <Pet> element (indicated by pet[0], just
like an array), and then the <Breed> element. If you don’t specify a sub-element, PowerShell treats sub-
elements as properties. For example, to view all of the properties—sub-elements, that is—of the second
pet, you’d do this:

PS C:\> $xml.pets.pet[1]

Breed Age Name
----- --- ----
Bulldog 5 Chesty

This is a pretty creative way of working with XML and doesn’t require you to use any of the more com-
plex mechanisms that software developers usually have to deal with. Let’s move on to a more complex
example.

Basic XML Manipulation
As an example, we went to our own blog’s RSS feed—RSS just being an XML application, after all—
located at http://blog.sapien.com/current/rss.xml, and saved the RSS XML as a local file so that we
could work with it. The following page includes an excerpt; the remainder of the file just has additional
<Item> nodes containing more blog entries. With this XML in a local file, our first step is to get this
loaded into PowerShell and recognized as XML:

PS C:\> [xml]$rss = get-content c:\users\don\documents\rssfeed.xml

Simple enough: By specifically casting $rss as an [xml] type, we’ve let PowerShell know that some XML
is coming its way. Get-Content loads the text from the file, and PowerShell does the rest.

<?xml version="1.0" encoding="UTF-8"?>
<rss xmlns:content="http://purl.org/rss/1.0/modules/content/" xmlns:wfw="http://wellformedweb.org/
CommentAPI/" xmlns:itunes="http://www.itunes.com/dtds/podcast-1.0.dtd" xmlns:dc="http://purl.org/
dc/elements/1.1/" version="2.0">
 <channel>
 <title>
 The SAPIEN Scripting Blog
 </title>
 <link>
 http://blog.sapien.com/current/
 </link>
 <description>
 Scripting news, Windows PowerShell, VBScript, PrimalScript software, scripting
 books, and more.
 </description>
 <copyright>
 Copyright ©2007 SAPIEN Technologies, Inc.

Working with XML Documents

431

 </copyright>
 <language>
 en-US
 </language>
 <generator>
 Squarespace v3.5 (http://www.squarespace.com/)
 </generator>
 <item>
 <title>
 WSH and VBScript Core: TFM
 </title>
 <category>
 Books and Training
 </category>
 <category>
 VBScript
 </category>
 <dc:creator>
 Jeffery Hicks
 </dc:creator>
 <pubDate>
 Wed, 18 Apr 2007 13:01:45 +0000
 </pubDate>
 <link>
 http://blog.sapien.com/current/2007/4/18/wsh-and-vbscript-core-tfm.html
 </link>
 <guid isPermaLink="false">
 121527:1089428:1015063
 </guid>
 <description>
 <![CDATA[You know how in discussion forums, including ScriptingAnswers.com, people are
always referring you to Microsoft documentation for more information? Well, if you’ve looked
at the official WSH and VBScript documentation, you’ve probably found it lacking any real
meat. But we deserve better.
]]>
 </description>
 <wfw:commentRss>
 http://blog.sapien.com/current/rss-comments-entry-1015063.xml
 </wfw:commentRss>
 </item>
 <item>
 <title>
 Control Your PowerShell(s)!
 </title>
 <category>
 Windows PowerShell
 </category>
 <dc:creator>
 Don Jones
 </dc:creator>
 <pubDate>
 Sun, 15 Apr 2007 14:55:18 +0000
 </pubDate>
 <link>
 http://blog.sapien.com/current/2007/4/15/control-your-powershells.html
 </link>
 <guid isPermaLink="false">
 121527:1089428:1010385
 </guid>
 <description>
 <![CDATA[FYI: If you’ve been seeking to gain some centralized control over
PowerShell’s ExecutionPolicy, Microsoft has a downloadable ADM template that will allow you
to control the shell via Group Policy. It’s at http://www.microsoft.com/downloads/details.
aspx?familyid=2917A564-DBBC-4DA7-82C8-FE08B3EF4E6D&mg_id=10050&displaylang=en.

432

Windows PowerShell: TFM • 2nd Edition

]]>
 </description>
 <wfw:commentRss>
 http://blog.sapien.com/current/rss-comments-entry-1010385.xml
 </wfw:commentRss>
 </item>

You may have noticed that the top-level element, which we’ve boldfaced in the excerpt, is the <rss> tag
(the <xml> tag doesn’t count; that’s considered a meta-tag and simply defines the version of XML we’re
using). We can access this element in PowerShell very easily:

PS C:\> $rss.rss

content : http://purl.org/rss/1.0/modules/content/
wfw : http://wellformedweb.org/CommentAPI/
itunes : http://www.itunes.com/dtds/podcast-1.0.dtd
dc : http://purl.org/dc/elements/1.1/
version : 2.0
channel : channel

What you’re looking at here is the <rss> element of $rss, our XML document, and you’re seeing the
attributes of the <rss> tag—go back and refer to the XML excerpt, and you’ll see where these values
came from. We didn’t have to do anything special to access them, though—PowerShell just knew how.

Underneath the <rss> tag is a <channel> tag, and underneath that is a <title> tag. We can access the
feed’s title as follows:

PS C:\> $rss.rss.channel.title

 The SAPIEN Scripting Blog

In other words, the object hierarchy—rss.channel.title—mirrors the hierarchy of tags in the XML docu-
ment. Underneath the <channel> tag we’ll also find multiple <item> tags, each one representing a blog
posting. Each <item> tag has various sub-tags, including a <title> tag, which is the title of that blog
posting. Because PowerShell will find more than one <item> section, it will create a collection out of
them. So, to access the title of the first blog post:

PS C:\> $rss.rss.channel.item[0].title

 WSH and VBScript Core: TFM

Or, if we wanted to see all the post titles, we could enumerate through the <item> collection:

PS C:\> foreach ($post in $rss.rss.channel.item) { $post.title }

 WSH and VBScript Core: TFM

 Control Your PowerShell(s)!

 Techmentor Orlando 2007 Session Material

 I can name that OS in one note

Working with XML Documents

433

What if we wanted to change the title of the second post?

PS C:\> $rss.rss.channel.item[1].title = "Alternate title"

We could, of course, pipe the $rss variable to Out-File to save the altered XML back to disk, if we
wanted to. So, working with XML in PowerShell is fairly straightforward.

Our little example here illustrates how easily you can work with a fairly straightforward XML file; more
complicated files simply create a deeper object hierarchy—more complex files don’t really change how
things work. It’s a bit beyond the scope of this book to get into really complicated XML operations
like XPath queries and so forth. However, we hope this quick look at XML has given you an idea of
what PowerShell can do and offered some possibilities for parsing XML files that you may have in your
environment.

A Practical Example
So, what good is all this XML stuff? Let’s look at a real-world example—one that will also introduce
you to additional XML techniques. We’re going to start with a basic XML file that contains computer
names:

<Computers>
 <Computer Name="DON-LAPTOP" />
 <Computer Name="LOCALHOST" />
 <Computer Name="SERVER2" />
</Computers>

Our goal is to inventory some basic information from these computers (of course, you could add more
to your list, if you wanted to), including their Windows build number, service pack version, and the
amount of free space on their local disk drives. We want our final result to look something like this:

<Computers>
 <Computer Name="DON-LAPTOP">
 <Status>Complete</Status>
 <OS BuildNumber="6000" ServicePack="0" />
 <Disks>
 <Disk DeviceID="C:" FreeSpace="10MB" />
 <Disk DeviceID="E:" FreeSpace="22MB" />
 </Disks>
 </Computer>
 <Computer Name="LOCALHOST">
 <Status>Complete</Status>
 <OS BuildNumber="6000" ServicePack="0" />
 <Disks>
 <Disk DeviceID="C:" FreeSpace="10MB" />
 <Disk DeviceID="E:" FreeSpace="22MB" />
 </Disks>
 </Computer>
 <Computer Name="SERVER2">
 <Status>Unreachable</Status>
 </Computer>
</Computers>

Our goal is to build a PowerShell script not only capable of retrieving the necessary information, but
also capable of putting it into this XML format and saving it all back to disk. We’ll start by defining a
GetStatus function, which we’ll use to ensure WMI connectivity to a remote computer. This function

434

Windows PowerShell: TFM • 2nd Edition

simply makes an attempt to query a WMI class from the specified computer; its -ErrorAction param-
eter is set to SilentlyContinue, so that in the event of an error, no error message will be shown. The
built-in $? variable contains a TRUE or FALSE value, depending on whether the previous command
completed successfully or not, so we’re simply outputting that variable as the result of the function.

function GetStatus([string]$computer) {
 gwmi win32_operatingsystem -computer $computer `
 -ea silentlycontinue
 Write-Output $?
}

Next, we write out a status message and load our inventory XML file from disk. Notice that we’re
explicitly declaring $xml as an [XML] data type, forcing PowerShell to parse the text file as XML.

Write-Host "Beginning inventory..."

load XML
[xml]$xml = gc c:\test\inventory.xml

Next, we’re going to repeat a large block of code once for each <computer> node found in the XML.
We start by pulling the Name attribute of the <computer> tag into the variable $name. Be careful here
because working with XML is case-sensitive. Make sure the attribute you are calling is the same case as
the XML file.

for ($i=0; $i -lt $xml.computers.computer.count; $i++) {

 # get computername
 $name = $xml.computers.computer[$i].getattribute("Name")

We create a new XML node named <Status>. Notice that the main XML document, stored in $xml, has
the capability of creating new nodes—we’re specifically creating an element, which is basically an XLM
tag. We’re then executing our GetStatus function, passing it the current computer name to test.

 # create status node and get status
 $statusnode = $xml.CreateNode("element","Status","")
 $status = GetStatus $name

If the status comes back as FALSE—that is, not TRUE, as indicated by the ! operator—we set the
<Status> node’s inner text—the text appearing between <Status> and </Status>--to “Unreachable.”
Otherwise, we set the inner text to “Complete” and continue with the rest of our script.

 if (! $status) {
 $statusnode.set_innertext("Unreachable")
 } else {
 $statusnode.set_innertext("Complete")

If our status check was successful, we’ll query the Win32_OperatingSystem class from the remote com-
puter. We’re also submitting a WMI query to retrieve all instances of Win32_LogicalDisk where the
DriveType property is equal to 3, indicating a local disk. We issued the query this way because it’ll actu-
ally be processed by the remote computer; we could have queried all instances of Win32_LogicalDisk
and piped them to Where-Object to filter for the ones with a DriveType of 3, but that would have
brought all the remote disks’ data over to our computer first. This way, we’re filtering out what we don’t

Working with XML Documents

435

want right at the source.

 # get OS info
 $os = gwmi win32_operatingsystem -computer $name

 # get local disks
 $disks = gwmi -computer $name -query `
 "select * from win32_logicaldisk where drivetype=3" `

We’ll ask the XML document, in $xml, to create an <OS> and <Disks> element. We’ll continue work-
ing with these elements to populate them with inventory data.

 # create os node, disks node
 $osnode = $xml.CreateNode("element","OS","")
 $disksnode = $xml.CreateNode("element","Disks","")

Since we have the operating system build number and service pack information available, we can add
those attributes to the <OS> element.

 # append OS attrs to node
 $osnode.setattribute("BuildNumber",$os.buildnumber)
 $osnode.setattribute("ServicePack", `
 $os.servicepackmajorversion)

Now we append the complete <OS> element to the current <Computer> node. Notice that we’re pip-
ing the output of AppendChild() to the Out-Null cmdlet. That’s because AppendChild() normally
displays the node it just finished appending; that output looks messy when we run our script, so we’re
sending the output to Out-Null to get rid of it.

 # append OS node to Computer node
 $xml.computers.computer[$i].appendchild($osnode)`
 | Out-Null

Now it’s time to enumerate through the logical disks we retrieved from WMI. We start by creating a
new XML element named <Disk>, which will store our device ID and free space information.

 # go through the logical disks
 foreach ($disk in $disks) {
 # create disk node
 $disknode = $xml.CreateNode("element","Disk","")

Next we create the DeviceID attribute on the <Disk> node. We also convert the free space to
megabytes, rather than bytes, by dividing the FreeSpace property by 1MB. We then use the .NET
Framework’s System.Math class to round the megabyte measurement to the nearest megabyte, so that
we don’t wind up with a decimal value. Finally, we convert the numeric free space measurement to a
string, and concatenate the letters “MB” to provide a unit of measurement in our inventory file. We set
the <Disk> node’s FreeSpace attribute equal to our megabyte measurement.

 #create deviceid and freespace attribs
 $disknode.setattribute("DeviceID",$disk.deviceid)
 $freespace = $disk.freespace / 1MB
 $freespace = [system.math]::round($freespace)
 $freespace = $freespace.tostring() + "MB"

436

Windows PowerShell: TFM • 2nd Edition

 $disknode.setattribute(,"FreeSpace",$freespace)

We’re now ready to append the current <Disk> node to the overall <Disks> node. After completing all
of the available logical disks, we append the completed <Disks> node to the current <Computer> node.
Again, we’re using Out-Null to keep the output from AppendChild() from displaying.

 # append Disk node to Disks node
 $disksnode.appendchild($disknode) | Out-Null
 }

 # append disks node to Computer node
 $xml.computers.computer[$i].appendchild($disksnode) `
 | Out-Null
 }

We’ve reached the end of our If/Else construct, which had checked the result of our GetStatus function.
We can, therefore, append the <Status> node, which will either contain “Complete” or “Unreachable”, to
the <Computer> node. Again, we’re piping the output of the AppendChild() method to Out-Null in
order to suppress the output text.

 # append status node to Computer node
 $xml.computers.computer[$i].appendchild($statusnode) `
 | out-null

}

At this point, we’ve reached the end of our original For loop. We’re ready to delete any existing output
file and write our modified XML to a new filename, complete with all the inventory information we’ve
added.

output XML
del "c:\test\inventory-out.xml" -ea silentlycontinue
$xml.save("c:\test\inventory-out.xml")

Write-Host "...Inventory Complete."

The saved XML file can be opened and viewed in Internet Explorer or any other application that knows
how to read XML files. Here’s the full, final script:

XMLInventory.ps1

function GetStatus([string]$computer) {
 gwmi win32_operatingsystem -computer $computer `
 -ea silentlycontinue
 Write-Output $?
}

Write-Host "Beginning inventory..."

load XML
[xml]$xml = gc c:\test\inventory.xml

for ($i=0; $i -lt $xml.computers.computer.count; $i++) {

 # get computername
 $name = $xml.computers.computer[$i].getattribute("Name")

Working with XML Documents

437

 # create status node and get status
 $statusnode = $xml.CreateNode("element","Status","")
 $status = GetStatus $name
 if (! $status) {
 $statusnode.set_innertext("Unreachable")
 } else {
 $statusnode.set_innertext("Complete")

 # get OS info
 $os = gwmi win32_operatingsystem -computer $name

 # get local disks
 $disks = gwmi -computer $name -query `
 "select * from win32_logicaldisk where drivetype=3" `

 # create os node, disks node
 $osnode = $xml.CreateNode("element","OS","")
 $disksnode = $xml.CreateNode("element","Disks","")

 # append OS attrs to node
 $osnode.setattribute("BuildNumber",$os.buildnumber)
 $osnode.setattribute("ServicePack", `
 $os.servicepackmajorversion)

 # append OS node to Computer node
 $xml.computers.computer[$i].appendchild($osnode) `
 | Out-Null

 # go through the logical disks
 foreach ($disk in $disks) {
 # create disk node
 $disknode = $xml.CreateNode("element","Disk","")

 #create deviceid and freespace attribs
 $disknode.setattribute("DeviceID",$disk.deviceid)
 $freespace = $disk.freespace / 1MB
 $freespace = [system.math]::round($freespace)
 $freespace = $freespace.tostring() + "MB"
 $disknode.setattribute(,"FreeSpace",$freespace)

 # append Disk node to Disks node
 $disksnode.appendchild($disknode) | Out-Null
 }

 # append disks node to Computer node
 $xml.computers.computer[$i].appendchild($disksnode) `
 | Out-Null
 }

 # append status node to Computer node
 $xml.computers.computer[$i].appendchild($statusnode) `
 | out-null

}

output XML
del "c:\test\inventory-out.xml" -ea silentlycontinue
$xml.save("c:\test\inventory-out.xml")

Write-Host "...Inventory Complete."

The PowerShell Extensible Type System

439

Chapter 35
The PowerShell Extensible Type System

As you’ve no doubt picked up by now, PowerShell is entirely object-oriented. The objects that
PowerShell works with are each of a particular type. That is, what we’ve loosely been calling a “string
object” or “Process object” is more correctly referred to as “an object of the String type,” or “an object of
the Process type.” Actually, even more specifically, we’d use the complete type name: System.String, or
System.Diagnostic.Process.

While all of these types come straight from the .NET Framework, PowerShell doesn’t expose us directly
to them in most cases. Instead, it adapts the Framework objects into something a bit more administra-
tor-friendly. For example, run:

PS C:\> Get-Process | Get-Member

You’ll notice that the end of the member listing includes several items called a “ScriptProperty.”
These properties don’t exist in the actual System.Diagnostic.Process type; rather, they’re added, or
adapted, onto the type by PowerShell. For example, the CPU ScriptProperty gives us an easier prop-
erty name—CPU—to work with than the underlying type does. In other cases, PowerShell will create
AliasProperties, perhaps substituting the property name “Count” for the less consistent “Length” that
some Framework types use.

Most of PowerShell’s additions, changes, and so forth are defined in Types.ps1xml, a file that’s installed
along with PowerShell, in the same folder as the PowerShell.exe console application. This XML-
formatted file doesn’t contain every type that PowerShell can use; rather, it contains those types that
PowerShell’s programmers wanted to extend, modify, or otherwise adapt for our ease of use.

Types.ps1xml is digitally signed using a Microsoft certificate; modifying the file would break the signa-

440

Windows PowerShell: TFM • 2nd Edition

ture and render the entire file unusable. Fortunately, however, PowerShell’s extensible type system permits
us to create our own type extension files, using the same format and capabilities as Types.ps1xml. We can
then import our files into PowerShell and take advantage of whatever capabilities we’ve built into our
extended types.

In this chapter, we’ll introduce you to several type extension features:

Creating an AliasProperty•

Creating a ScriptProperty•

Creating a NoteProperty•

Creating a ScriptMethod•

Defining a set of default properties—the properties used by the • Format-List cmdlet if you don’t
specify any properties

There are other capabilities in the type extension system, but most of them require a deeper understand-
ing of .NET Framework programming than we can cover in this book.

Type Trivia
If you browse around the Types.ps1xml file included with PowerShell, you’ll notice that many
types, especially WMI classes, have a “PSStatus” property set defined, and you might wonder
what this is for. During PowerShell’s development, this property set was originally part of a concept
to provide task-specific views—for example, a “status” view, a “capacity” view, and so forth, and
these “PSStatus” property sets were to define the properties that would comprise a “status” view.
Although the idea never made it further than defining these property sets for a few types, the con-
cept is still a good one. Perhaps it will make a comeback in a future version of PowerShell!

The Basic Type Extension File
The basic type extension file is simple—no more than three lines:

<?xml version="1.0" encoding="utf-8" ?>
<Types>
</Types>

All of your type extensions will be inserted between the <Types> and </Types> tags.

Don’t forget!
All editions of PrimalScript provide good support for XML editing, including tag color-coding, auto-
indentation, and so forth. Enterprise editions of PrimalScript also include a Visual XML Editor,
which provides a graphically-based XML editing experience that some users greatly prefer.

Creating Type Extensions
Within the <Types> and </Types> tags of your file, you’ll place <Type> sections—one for each type that
you’re extending. A simple <Type> section looks like this:

The PowerShell Extensible Type System

441

 <Type>
 <Name>type name</Name>
 <Members>
 </Members>
 </Type>

Within the <Name> and </Name> tags, you’ll place the entire .NET Framework type name of the type
you’re extending. The easiest way to find the type name is to retrieve one or more instances of the type
and pipe them to Get-Member:

PS C:\> get-item test | gm

 TypeName: System.IO.DirectoryInfo

The Get-Member output will clearly list the TypeName, as shown here—simply copy it into the
<Name> tag and you’re done. Your actual type extensions, which will cover in the next several sections,
will go within the <Members> and </Members> tags. That’s an important convention to take note of.

Remember!
Every type extension we show you in the next section is intended to be inserted within the
<Member> and </Member> tags, unless we explicitly state otherwise at the time.

Keep in mind that each new <Type> you define can have as many of the following extensions as you
need, in any combination.

AliasProperty
An AliasProperty simply assigns a new name to one of a type’s existing properties. For example, if you
find the built-in property name PerformanceOverOneHour to be too cumbersome, you could make an
AliasProperty named POOH, and PowerShell would let you use the new property name. The original
property name would be suppressed within PowerShell, not even showing up in Get-Member output.
Here’s how to do it:

 <AliasProperty>
 <Name>property</Name>
 <ReferencedMemberName>original</ReferencedMemberName>
 </AliasProperty>

You’d replace property with your new property name, and original with the original property name.

ScriptProperty
A ScriptProperty allows you to create a new property that contains PowerShell script code. This means
you’re essentially creating a dynamically-valued property! Here’s what one looks like:

 <ScriptProperty>
 <Name>property</Name>
 <GetScriptBlock>
 code
 </GetScriptBlock>
 </ScriptProperty>

442

Windows PowerShell: TFM • 2nd Edition

You’d replace property with your new property name, and code indicates where your PowerShell script
code would go. This code can use a special variable, $this, to refer to the current object instance. For
example, suppose you have an object that has a TotalSpace and a FreeSpace property—not unlike the
Win32_LogicalDisk class, perhaps. You decide you want to create a new PercentFree property, which
will contain the percentage of free space, something which would need to be calculated based on the
TotalSpace and FreeSpace values. Here’s how it might look:

 <ScriptProperty>
 <Name>PercentFree</Name>
 <GetScriptBlock>
 [system:math]::round($this.FreeSpace / $this.TotalSpace)
 </GetScriptBlock>
 </ScriptProperty>

Remember that this script code works exactly as if you were in the PowerShell console or writing a
script. Because we haven’t started the line with a cmdlet—we just launched straight into our math
expression—the Write-Output cmdlet is implied, meaning that output is being written to the suc-
cess pipeline. Anything that your script outputs to the success pipeline will become the value for your
ScriptProperty.

A ScriptProperty is a very valuable and powerful way to extend PowerShell’s capabilities, using script
code that’s simpler to write than full .NET Framework code.

By the way: Notice that the script code is contained within a <GetScriptBlock> tag pair? That’s impor-
tant: This script is run whenever someone tries to read the property value. That is, if we’re trying to
display PercentFree, the <GetScriptBlock> is called. It wouldn’t make sense to be able to put a value into
PercentFree; we can’t change the amount of free disk space just by sticking a new number into a prop-
erty (although we sure wish we could, sometimes)! In theory, you could create a ScriptProperty that was
writable—that is, which allowed changes to be made to the property. However, because you won’t usually
have a means of passing that property change through to the underlying .NET Framework type, there’s
not much use for such a capability.

NoteProperty
A NoteProperty is an odd duck: It’s essentially a property with a fixed, static value. Here’s an example:

 <NoteProperty>
 <Name>property</Name>
 <Value>value</Value>
 </NoteProperty>

You’d replace property with the name for your NoteProperty, and replace value with the static value that
you want the property to contain. PowerShell primarily uses specially named NoteProperties to contain
fixed meta-data values, such as the serialization depth of certain types of objects; we haven’t thought of a
good use for a NoteProperty in a type extension file, but if we do, we’ll make a point of blogging about it
at http://blog.sapien.com (search the blog for NoteProperty to see if we’ve come up with anything since
publishing this book).

ScriptMethod
A ScriptMethod is a bit like a ScriptProperty. In fact, in many instances there isn’t a great distinc-
tion between them. In programmer-speak, though, a property simply returns some value, such as our
ScriptProperty example, which returned a value that was calculated from two other existing properties.

The PowerShell Extensible Type System

443

In other words, our ScriptProperty didn’t do anything. A method, on the other hand, is expected to carry
out some action, although it may also return a value as the result of that. Here’s what a ScriptMethod
looks like:

 <ScriptMethod>
 <Name>property</Name>
 <Script>
 code
 </Script>
 </ScriptMethod>

You’d replace property with your new property name, and code indicates where your PowerShell script
code would go. That code can use a special variable, $this, to refer to the current object instance, just as
you did with a ScriptProperty. And, as with a ScriptProperty, anything output to the success pipeline
becomes a return value for your method.

Default Property Set
When you use Format-List to format a set of objects—or when PowerShell automatically chooses
Format-List according to its formatting rules—PowerShell will list all properties for the objects, unless
a type extension has been registered that defines a default property set. If a default property set is defined,
then only those properties will be included in the list, unless you explicitly use Format-List and specify
a different set of properties for inclusion. A default property set is easy to create:

 <MemberSet>
 <Name>PSStandardMembers</Name>
 <Members>
 <PropertySet>
 <Name>DefaultDisplayPropertySet</Name>
 <ReferencedProperties>
 <Name>property</Name>
 <Name>property</Name>
 <Name>property</Name>
 </ReferencedProperties>
 </PropertySet>
 </Members>
 </MemberSet>

You would, of course, replace our property placeholders with the property names you want. You can
include as many <Name> tag sets as desired within the <ReferencedProperties> section. Remember that
each property you specify must be an actual property of the type; you can’t just make up words! If you want
to see a list of available properties, pipe an instance of the type to Get-Member and review the output.

Importing Your Type Extensions
When you’ve finished your type extension file, you need to tell PowerShell to use it. To do so, you’ll
run the Update-TypeData cmdlet. You have the choice of having your extensions loaded in front of
PowerShell’s built-in extensions, or after the built-in ones; in case of a conflict, PowerShell uses the
first type extension definition it finds, so having your extensions loaded first will let them “win” over
PowerShell’s built-in extensions.

444

Windows PowerShell: TFM • 2nd Edition

To load your extensions before PowerShell’s, run • Update-TypeData
-prependPath filename.

To load your extensions after PowerShell’s, run • Update-TypeData
-appendPath filename.

In both instances, of course, provide the complete path and file of your .ps1xml type extension file. Your
changes take effect immediately and last until you close the shell; there is no cmdlet for unloading a
type data file. You also can’t reload a file once it’s been loaded into a PowerShell session. You have to
exit and restart PowerShell. To have your changes take effect each time you open a new shell, add the
Update-TypeData commands to your PowerShell profile.

A Practical Example
For an example, we’ve decided to extend the System.String type. We’re going to add an AliasProperty
that renames the String’s Length property to HowLong, and we’re going to add a ScriptMethod that
assumes the String contains a computer name or IP address and tells you if it can ping that address.
We’ll also add a ScriptProperty that returns a TRUE or FALSE, depending on whether or not the
String’s contents look like a Universal Naming Convention (UNC) path. These are perhaps not the most
practical examples, but they will let us show you the breadth of the type extension system using a com-
mon, easy-to-experiment-with type.

Because the type extensions themselves are relatively simple and are well-described in the preceding
sections, we’re just going to show you the entire type extension file all at once. We’ll import this using
Update-TypeData and its -prependPath parameter, and then walk you through a test.

StringTypeExtension.ps1xml

<?xml version="1.0" encoding="utf-8" ?>
<Types>
 <Type>
 <Name>System.String</Name>
 <Members>
 <AliasProperty>
 <Name>HowLong</Name>
 <ReferencedMemberName>Length</ReferencedMemberName>
 </AliasProperty>
 <ScriptProperty>
 <Name>IsUNC</Name>
 <GetScriptBlock>
 $this -match "^\\\\\w+\\\w+"
 </GetScriptBlock>
 </ScriptProperty>
 <ScriptMethod>
 <Script>
 $wmi = gwmi -query "select * from win32_pingstatus where address = '$this'"
 If ($wmi.statuscode -eq 0) { $true } else { $false }
 </Script>
 </ScriptMethod>
 </Members>
 </Type>
</Types>

For our ScriptProperty, we’re using a regular expression, and the regular expression -match operator.
Because the operator already returns a TRUE or FALSE value, we’re just letting that output become
the value of our ScriptProperty. Our ScriptMethod isn’t much more complicated: It uses the Win32_
PingStatus WMI class to ping whatever’s in the String (which we reference by using $this). If the

The PowerShell Extensible Type System

445

resulting StatusCode property is zero, we output the Boolean $true value; if not, we output $false.

Let’s see our new type extension in action:

PS C:\test> Update-TypeData -pre sample.ps1xml
PS C:\test> [string]$s = "localhost"
PS C:\test> $s.canping()
True
PS C:\test> $s = "\\Server\Share"
PS C:\test> $s.isunc
True
PS C:\test> $s.howlong
14
PS C:\test>

Perfect results!

Creating Custom Objects

447

Chapter 36
Creating Custom Objects

Why in the world would you need to create a custom object? Surely there are enough objects in the
world already, right? Even a function returns objects. But usually there are limitations. Consider this
example:

PingFunction.ps1

function Ping-Computer {
 PROCESS {
 $wmi = gwmi -query "SELECT StatusCode FROM Win32_PingStatus WHERE Address = '$_'"
 foreach ($result in $wmi) {
 if ($result.statuscode -eq 0) {
 Write-Output $_
 }
 }
 }
}

Get-Content c:\computers.txt | Ping-Computer

When we run this script, it’ll read computer names from a file named C:\Computers.txt, and pipe
those to the Ping-Computer function. That function has a Process script block (which we discussed
in the chapter “Script Blocks, Functions, and Filters”), which processes the names one at a time. For
each name, it attempts to ping it using the Win32_PingStatus WMI class. If the ping is successful (a
StatusCode of zero), the computer name is output back to the pipeline.

This is a useful function… but it’s of minimal usefulness. For example, the Win32_PingStatus class can

448

Windows PowerShell: TFM • 2nd Edition

return other information, such as the address that the destination computer used to reply, or the resolved
address, or the response time. Unfortunately, if we’re just returning simple values from our function, we
can’t return all of that data—we’re stuck with just returning the names of the computers we could ping.

And that’s why we might want to create a custom object. For example, suppose we make up an object
named PingResult. We’ll give it several properties:

Address – the address or computer name we attempted to ping•

ProtocolAddress – the address the destination used to reply•

ResponseTime – the time elapsed to handle the request•

Status – the English text that corresponds to the StatusCode•

StatusCode – a numeric code indicating whether or not the ping succeeded•

PowerShell allows us to create such an object, on the fly. We can reprogram our Ping-Computer func-
tion to output these PingResult objects, allowing us to output a richer type of information than merely a
list of successful computer names.

Custom Object Creation
Creating a new object is straightforward: Use the New-Object cmdlet, and ask it to create a new
generic object—that is, an object of the general Object type:

PS C:\> $obj = New-Object Object

From there, you can add members—properties, in this case—to the object. We’re going to work with a
special type of property called a NoteProperty, which is something PowerShell can add to almost any
type of object, and which can be used to store simple values like strings, numbers, and so forth. To add a
member to our object, we’ll pipe our object to Add-Member, telling Add-Member what type of mem-
ber to add, the name we want for the new member, and the value we want the member set to:

PS C:\> $obj | Add-Member NoteProperty MyProperty -value "Hello"

And that’s it. We can pipe $obj to Add-Member again and again to add as many properties as we need.

Using Custom Objects
So, let’s get back to our Ping-Computer example. Here’s a revised version of the function that utilizes
custom objects:

CustomObjectPing.ps1

function ping-computer {
 PROCESS {
 $wmi = gwmi -query "SELECT * FROM Win32_PingStatus WHERE Address = '$_'"
 foreach ($result in $wmi) {
 $pingresult = New-Object object
 $pingresult | Add-Member noteproperty ResponseTime -value $result.responsetime
 $pingresult | Add-Member noteproperty StatusCode -value $result.StatusCode
 $pingresult | Add-Member noteproperty ProtocolAddress -value $result.ProtocolAddress
 $pingresult | Add-Member noteproperty Address -value $result.Address
 switch ($result.statuscode) {

Creating Custom Objects

449

 0 { $status = "Success" }
 11001 { $status = "Buffer too small" }
 11002 { $status = "Dest net unreachable" }
 11003 { $status = "Dest host unreachable" }
 11004 { $status = "Dest protocol unreachable" }
 11005 { $status = "Dest port unreachable" }
 11006 { $status = "No resources" }
 11007 { $status = "Bad option" }
 11008 { $status = "Hardware err" }
 11009 { $status = "Packet too big" }
 11010 { $status = "Request timed out" }
 11011 { $status = "Bad request" }
 11012 { $status = "Bad route" }
 11013 { $status = "TTL expired transit" }
 11014 { $status = "TTL expired reass'y" }
 11015 { $status = "Paramater err" }
 11016 { $status = "Source quench" }
 11017 { $status = "Option too big" }
 11018 { $status = "Bad dest" }
 11032 { $status = "Negot IPSEC" }
 11050 { $status = "Failure" }
 default { $status = "No reply" }
 }
 $pingresult | Add-Member noteproperty Status -value $status
 Write-Output $pingresult
 }
 }
}

Get-Content c:\computers.txt | ping-computer | Format-Table

You can see that the last line of our script is getting our list of computer names from C:\Computers.txt,
piping them to the Ping-Computer function and piping the function’s output to Format-Table. Here’s
how the function works:

We’ve enclosed the entire function’s contents in a Process script block. That makes the function usable
from the pipeline. Remember that the Process block will be executed once for each input object passed
in from the pipeline. The $_ variable will contain the current pipeline object.

First, we execute the Win32_PingStatus query, passing $_ as the address to ping. Note that this query
executes locally; the remote computer is only contacted via ping, not via WMI. We examine the results
(usually only one result) that we get back by using a Foreach loop.

Within the loop, we create a new object, $pingresult, by using New-Object. We add several proper-
ties using Add-Member and populate those properties with properties from the WMI instance:
ResponseTime, StatusCode, ProtocolAddress, and Address. We then use a Switch construct to examine
the StatusCode property and populate the $status variable with a text version of the status code. Notice
that a Default condition in the Switch construct fills in the “no reply” status in the event that no reply
was received. The $status variable is used to populate the last property that we added to the object.
Finally, the finished $pingresult object is output to the pipeline using Write-Output. Here’s our script’s
output:

ResponseTime StatusCode ProtocolAddress Address Status
------------ ---------- --------------- ------- ------
 DON-LAPTOP No reply
0 0 ::1 LOCALHOST Success
0 0 fe80::e468:309... DON-PC Success
 SERVER2 No reply

450

Windows PowerShell: TFM • 2nd Edition

It’s worth noting that on Windows Vista, the Win32_PingResult class will work with IPv6 and not just
IPv4. You can see this in the ProtocolAddress property, where IPv6-style addresses are listed.

If we wanted to make this Ping-Computer function available in the global scope, we could dot-source it.
We’ll delete the last line of the script, just leaving the function, and then dot-source it:

PS C:\> . ./bigping

This defines the function in the global scope, rather than creating a new script scope for it. With the
function defined in the global scope, we can use it at the command line, just like a cmdlet:

PS C:\> $results = get-content c:\computers.txt | ping-computer
PS C:\> $results

ResponseTime :
StatusCode :
ProtocolAddress :
Address : DON-LAPTOP
Status : No reply

ResponseTime : 0
StatusCode : 0
ProtocolAddress : ::1
Address : LOCALHOST
Status : Success

ResponseTime : 0
StatusCode : 0
ProtocolAddress : fe80::e468:3091:f2fc:8deb
Address : DON-PC
Status : Success

ResponseTime :
StatusCode :
ProtocolAddress :
Address : SERVER2
Status : No reply

Our $results variable contains the results of the pipeline we executed. Since it’s a collection of our
“PingResult” objects, we can treat $results like any other collection. For example, to examine the second
object:

PS C:\> $results[1]

ResponseTime : 0
StatusCode : 0
ProtocolAddress : ::1
Address : LOCALHOST
Status : Success

Anytime you need a function to return rich results—that is, more than just a simple value—a custom
object is a good option. In this case, we’ve created a useful utility function that not only lets us know
what computers were pingable, but provides other useful information, as well. Because our function is
returning a real object, we can pass those objects down the pipeline. For example, here’s a command line
that uses our function and only outputs the names of the computers which were not pingable. Further,

Creating Custom Objects

451

we’re only displaying the Address property of unresponsive computers:

PS C:\> get-content c:\computers.txt | ping-computer | where { $_.Status -eq "No reply" }'
>>| select Address

Address

DON-LAPTOP
SERVER2

You can see how this sort of custom object lends itself well to filtering, sorting, and other functionality
provided by PowerShell’s other cmdlets.

A Practical Example
Note that the example we showed you earlier isn’t practical, but we thought you’d like to see another.
For this example, we’re going to create a custom function called Get-OSInfo. It’ll accept a computer
name—either a single string, or an array of strings—and for each one, it’ll retrieve that computer’s
Win32_OperatingSystem class and output a custom object containing the computer’s Windows build
number, service pack version, and computer name.

Here’s the script:

GetOSInfo.ps1

function Get-OSInfo {
 param([string[]]$addresses)

 function OutputInfo {
 param (
 [string]$computer,
 [string]$build,
 [string]$spver
)
 $output = New-Object psobject
 $output | Add-Member NoteProperty ComputerName -value $computer
 $output | Add-Member NoteProperty BuildNumber -value $build
 $output | Add-Member NoteProperty SPVersion -value $spver
 $output
 }

 trap {
 OutputInfo $address,"Unknown","Unknown"
 }

 foreach ($address in $addresses) {
 $os = gwmi win32_operatingsystem -computer $address -ea continue
 OutputInfo $address $os.buildnumber $os.servicepackmajorversion
 }

}

452

Windows PowerShell: TFM • 2nd Edition

Remember!
If you dot-source this or add it to your profile this function will be available from the command line
and can be used almost like a simple cmdlet.

To use this function:

Get-OSInfo @("don-pc","server2") | format-table

So, what’s going on? We start by declaring a function that accepts a string array (which, remember, can
consist of only one element, if we’re only interested in one computer). We declare a function named
OutputInfo, which actually outputs our custom object: It creates a new object, adds three NoteProperty
members, and then outputs the custom object to the success pipeline (using an implicit Write-Output).

We’ve defined an error handler in case WMI is unable to reach one of the computers we specified. If
that happens, the trap handler calls OutputInfo, passing along “Unknown” values for the build number
and service pack version number. The trap handler calls “continue,” allowing the script to continue after
the error.

Next is the main body of the script: A simple Foreach loop that contacts WMI and retrieves the
Win32_OperatingSystem class. Notice the -EA, or -errorAction, parameter, which specifies that excep-
tions be raised (so we can trap them). If no errors occurred, then the OutputInfo function is called with
the retrieved WMI information.

The beauty of building our own custom object is that we don’t have to worry about formatting the out-
put. Since our output values are in object properties, any of PowerShell’s Format cmdlets can handle
formatting for us:

Get-OSInfo @("don-pc","server2") | format-list

If we’d simply output string values, we would have needed to format them ourselves, which is much less
efficient (anything that makes us do extra work is “inefficient” as far as we’re concerned).

Object Serialization

453

Chapter 37
Object Serialization

Occasionally, there’s a need for objects to be represented in a more easily portable format, such as XML.
Serialization is the process of taking an object and converting it into an XML representation. The
reverse, deserialization, converts the XML back into an object—although the object is often less func-
tional than it was prior to serialization, often including only property values and omitting methods since
it is no longer “connected” to the real-world software that originally generated it. In other words, if you
serialize a Windows service into an XML file, you can carry that to another computer and deserialize
it back into an object. But that object won’t be able to start and stop the original service; it’ll simply be
a way of examining the service’s properties as they were at the time it was serialized. Serialized objects,
then, are essentially a “snapshot” of an object at a specific point in time.

PowerShell primarily uses the Export-CliXML cmdlet to serialize objects and save the resulting XML
in a text file. For example, run this command:

PS C:\> gwmi win32_operatingsystem | export-clixml c:\test\win32os.xml

It results in the following XML representation (which we’ve truncated to save space):

<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="RefId-0">
 <TN RefId="RefId-0">
 <T>
 System.Management.ManagementObject#root\cimv2\Win32_OperatingSystem
 </T>
 <T>
 System.Management.ManagementObject
 </T>

454

Windows PowerShell: TFM • 2nd Edition

 <T>
 System.Management.ManagementBaseObject
 </T>
 <T>
 System.ComponentModel.Component
 </T>
 <T>
 System.MarshalByRefObject
 </T>
 <T>
 System.Object
 </T>
 </TN>
 <Props>
 <S N="RegisteredUser">
 Don Jones
 </S>
 <S N="SerialNumber">
 89580-378-1205931-71241
 </S>
 <U16 N="ServicePackMajorVersion">
 0
 </U16>
 <S N="SystemDirectory">
 C:\Windows\system32
 </S>
 <S N="SystemDrive">
 C:
 </S>
 <Nil N="TotalSwapSpaceSize"/>
 <U64 N="TotalVirtualMemorySize">
 5963004
 </U64>
 <U64 N="TotalVisibleMemorySize">
 2882304
 </U64>
 <S N="Version">
 6.0.6000
 </S>
 <S N="WindowsDirectory">
 C:\Windows
 </S>
 </Props>
 </Obj>
</Objs>

The Import-CliXML cmdlet does the opposite, returning the XML to a static object inside the shell:

PS C:\> $os = import-clixml c:\test\win32os.xml
PS C:\> $os.servicepackmajorversion
0
PS C:\> $os.name
Microsoftr Windows VistaT Ultimate |C:\Windows|\Device\Harddisk0\Partition1
PS C:\>

PowerShell has a set of default rules used to serialize objects. However, you can customize the serializa-
tion by providing serialization directives in a type extension file (we first discussed these files in “The
PowerShell Extensible Type System”).

Object Serialization

455

Why Export Objects to XML?
Exporting, or serializing, objects to XML allows them to be persisted, or saved, as a static snapshot. One
practical reason to do so is to share those objects with other PowerShell users. For example, you might
want to export your command-line history to an XML file so that you can share it with another user—
who could then import it to re-create your command-line history.

Another less obvious reason might be to get a snapshot of objects when you’re not physically around.
For example, suppose you have a long-running process that starts on one of your servers at 1:00am every
morning. You know it should finish by 5:00am. You could write a very short PowerShell script, like this:

Get-Process | Export-CliXML c:\1am.xml

And you could schedule it to run at 1:15am, when the long-running process should be running. Later, at
5:30am, you could run a second script:

Get-Process | Export-CliXML c:\5am.xml

When you arrive for work, you could grab both of these files and re-import them, effectively recon-
structing the objects as they were when the XML file was created. This would let you examine the objects
from that point in time, even though you weren’t physically present then. For example, to compare the
two sets of objects:

PS C:\> $1 = import-clixml c:\1am.xml
PS C:\> $5 = import-clixml c:\5am.xml
PS C:\> compare-object $1 $5

Using this example, $1 contains all of the objects that were running at 1am. You can pipe $1 to any
other cmdlet capable of working with objects, allowing you to sort, group, filter, or format the process
objects in any way. This ability to easily persist objects—a result of PowerShell’s serialization capabili-
ties—has myriad uses.

Creating Serialization Directives
Serialization directives are entered into the type extension file within the <MemberSet> tag. In other
words, you’re starting with the following basic template for a type:

 <Type>
 <Name>type name</Name>
 <Members>
 <MemberSet>
 <Name>PSStandardMembers</Name>
 <Members>
 ...serialization directives go here...
 </Members>
 </MemberSet>
 </Members>
 </Type>

Review the “The PowerShell Extensible Type System” chapter if you need a refresher on type extensions.
Remember, when you provide this PSStandardMembers member set, you’re overriding PowerShell’s
default serialization rules. That means only the method you specify will be used to serialize the class type
you’ve specified.

456

Windows PowerShell: TFM • 2nd Edition

For the following examples, we’ll be using the output of our Ping-Computer cmdlet. This is available
in the SAPIEN Extensions for Windows PowerShell (PshX-SAPIEN) snap-in, which is available for
download at www.PrimalScript.com/freetools. This cmdlet outputs objects of the type SapienPshX.
PingResult. For each of our examples, we’ll serialize using the following command:

ping-computer "localhost" | export-clixml c:\test\export.xml

For your reference, PowerShell’s default serialization behavior results in the following:

<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="RefId-0">
 <TN RefId="RefId-0">
 <T>
 sapienPshX.PingResult
 </T>
 <T>
 System.Object
 </T>
 </TN>
 <Props>
 <S N="ComputerName">
 localhost
 </S>
 <I32 N="StatusCode">
 0
 </I32>
 <I32 N="ResponseTime">
 0
 </I32>
 <S N="ProtocolAddress">
 ::1
 </S>
 </Props>
 </Obj>
</Objs>

As you can see, this default output displays the object’s type (in <T> tags), the type it inherits from (the
second <T> tag set), and then the object’s properties (<S> is a string, <I32> is an integer, and so forth).
Had we generated a collection of these objects, one <Obj> tag section would have been generated for
each.

Serializing as a String
This technique allows you to serialize the object as a string:

<NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>String</Value>
</NoteProperty>

Here’s a complete example:

<Types>
 <Type>
 <Name>sapienPshX.PingResult</Name>
 <Members>

Object Serialization

457

 <MemberSet>
 <Name>PSStandardMembers</Name>
 <Members>
 <NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>String</Value>
 </NoteProperty>
 </Members>
 </MemberSet>
 </Members>
 </Type>
</Types>

And here’s the result when we export Ping-Computer localhost | Export-CliXML c:\test\export.xml:

<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <S>
 sapienPshX.PingResult
 </S>
</Objs>

What this SerializationMethod is doing is telling PowerShell to call the object’s built-in ToString()
method. In the .NET Framework, pretty much all classes inherit (eventually) from System.Object
(although most classes have several ancestors between them and the top-level SystemObject class).
System.Object provides a simple ToString() method, which simply outputs the class’ type name; many
objects override this simple method and provide their own, more robust ToString(). However, as you
can see here, our sapienPshX.PingResult class simply utilizes System.Object’s simpler method, so our
export result simply contains the type name as a string.

Specifying the String Serialization method is primarily useful when the type you’re working with pro-
vides a useful and robust ToString() method of its own.

Specifying a String Source
Our next SerializationMethod is similar to the previous one. We’re still going to specify a String output,
but this time we’re going to add a source other than the object’s ToString() method to get that string.
Specifically, we’re going to use a PowerShell script block, and its output will be used as the source for
our final serialized XML. Here’s a simple example:

<NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>String</Value>
</NoteProperty>
<ScriptProperty>
 <Name>StringSerializationSource</Name>
 <GetScriptBlock>PowerShell Script Code Here</GetScriptBlock>
</ScriptProperty>

Here’s a more complete example, where we’re using a script to output only two of the object’s four prop-
erties, along with a timestamp as a third property:

 <Type>
 <Name>sapienPshX.PingResult</Name>
 <Members>
 <MemberSet>
 <Name>PSStandardMembers</Name>

458

Windows PowerShell: TFM • 2nd Edition

 <Members>
 <NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>String</Value>
 </NoteProperty>
 <ScriptProperty>
 <Name>StringSerializationSource</Name>
 <GetScriptBlock>
 $newobj = new-object PSObject
 $timestamp = Get-Date
 $newobj | add-member NoteProperty Timestamp -value $timestamp
 $newobj | add-member NoteProperty Computer -value $this.ComputerName
 $newobj | add-member NoteProperty StatusCode -value $this.StatusCode
 $newobj
 </GetScriptBlock>
 </ScriptProperty>
 </Members>
 </MemberSet>
 </Members>
 </Type>
</Types>

However, what we’re doing is creating a new, blank object called $newobj (we covered the creation of
custom objects in “Creating Custom Objects”). We’re adding three properties—Timestamp, Computer,
and StatusCode—and setting them to specific values. The special $this variable represents the original
PingResult object, and we’re accessing its ComputerName and StatusCode properties. Finally, we output
$newobj, and that’s what PowerShell uses to generate the string in our serialized XML:

<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <S>
 @{Timestamp=5/1/2007 10:15:12 AM; Computer=localhost; StatusCode=0}
 </S>
</Objs>

Remember, the three properties of our $newobj object aren’t broken down, because we’ve specified that
the final serialization be a single string.

You can use property types other than a ScriptProperty as the StringSerializationSource. In this next
example, we’ll use a NoteProperty, which is basically just a static text string:

<Types>
 <Type>
 <Name>sapienPshX.PingResult</Name>
 <Members>
 <MemberSet>
 <Name>PSStandardMembers</Name>
 <Members>
 <NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>String</Value>
 </NoteProperty>
 <NoteProperty>
 <Name>StringSerializationSource</Name>
 <Value>Static Text</Value>
 </NoteProperty>
 </Members>
 </MemberSet>
 </Members>
 </Type>
</Types>

Object Serialization

459

The result is the following:

<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <S>
 Static Text
 </S>
</Objs>

Not terribly useful, since every object of the specified type will always be serialized with this exact
output, but it demonstrates that the StringSerializationSource can be something other than a
ScriptProperty.

Controlling Serialization Depth
When you’re working with hierarchical objects—such as file system folders, where one folder can con-
tain additional folders, which can contain additional folders, and so forth—you may want to control the
depth to which PowerShell serializes that hierarchy. If you don’t, then serializing a top-level object, such
as the root folder of a drive, will automatically serialize the entire object hierarchy—in other words, the
entire drive, which can be time-consuming and produce unexpectedly large results.

Adding a depth-control serialization directive does not require you to specify any properties to be serial-
ized; PowerShell will still follow its default rules, but it will do so only for the specified depth within the
object’s hierarchy. In other words, this serialization directive can stand alone. Here it is:

<NoteProperty>
 <Name>SerializationDepth</Name>
 <Value>2</Value>
</NoteProperty>

Serializing Only Specific Properties
Perhaps the most useful SerializationMethod is to export just specific properties of the object. Using
this method, you can ensure that only the useful properties of an object are exported, meaning deserial-
ized objects will contain only useful data. You may also wish to omit properties that won’t have meaning
later on, such as a constantly changing value like CPU utilization. The basic format is as follows:

<NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>SpecificProperties</Value>
</NoteProperty>
<PropertySet>
 <Name>PropertySerializationSet</Name>
 <ReferencedProperties>
 <Name>property</Name>
 </ReferencedProperties>
</PropertySet>

You can include as many referenced properties as you want. Again, all of the properties you reference
must already exist for the class you’re working with; you’d use this technique mainly to “hide” properties
of the class that you don’t want to be serialized. Here’s a full example:

<Types>
 <Type>

460

Windows PowerShell: TFM • 2nd Edition

 <Name>sapienPshX.PingResult</Name>
 <Members>
 <MemberSet>
 <Name>PSStandardMembers</Name>
 <Members>
 <NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>SpecificProperties</Value>
 </NoteProperty>
 <PropertySet>
 <Name>PropertySerializationSet</Name>
 <ReferencedProperties>
 <Name>ComputerName</Name>
 <Name>StatusCode</Name>
 </ReferencedProperties>
 </PropertySet>
 </Members>
 </MemberSet>
 </Members>
 </Type>
</Types>

And here’s the XML it creates:

<Objs Version="1.1" xmlns="http://schemas.microsoft.com/powershell/2004/04">
 <Obj RefId="RefId-0">
 <TN RefId="RefId-0">
 <T>
 sapienPshX.PingResult
 </T>
 <T>
 System.Object
 </T>
 </TN>
 <Props>
 <S N="ComputerName">
 localhost
 </S>
 <I32 N="StatusCode">
 0
 </I32>
 </Props>
 </Obj>
</Objs>

Notice that this output is identical to what PowerShell would create using its default rules, except that
only two of our object’s four properties are being serialized.

Controlling the Inheritance of Serialization Directives
We mentioned earlier in this chapter that nearly all classes inherit from System.Object, which is the
top-level and most generic class available in the .NET Framework. Our serialized object XML, as in
the example we just showed you, reflects this inheritance by listing not only our type, but the type from
which it inherits:

 <TN RefId="RefId-0">
 <T>
 sapienPshX.PingResult
 </T>

Object Serialization

461

 <T>
 System.Object
 </T>
 </TN>

More complex objects have a more complex hierarchy in their serialized XML. For example, here’s a
service, obtained with Get-Service:

 <TN RefId="RefId-0">
 <T>
 System.ServiceProcess.ServiceController
 </T>
 <T>
 System.ComponentModel.Component
 </T>
 <T>
 System.MarshalByRefObject
 </T>
 <T>
 System.Object
 </T>
 </TN>

When defining a serialization method, class inheritance comes into play. For example, in our prior
example (selecting specific properties), we showed you the sapienPshX.PingResult class, and we selected
two of its four properties. The properties we selected will normally be serialized for that class and for any
classes that derive from it. Suppose we have a second class, named sapienPshX.BetterPingResult, which
inherits from sapienPshX.PingResult. Without any serialization directives, only the ComputerName
and StatusCode properties would be serialized for that inherited type, because it inherits from a type
that has a specific serialization directive registered.

Create a type extension like this:

<Types>
 <Type>
 <Name>sapienPshX.PingResult</Name>
 <Members>
 <MemberSet>
 <Name>PSStandardMembers</Name>
 <Members>
 <NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>SpecificProperties</Value>
 </NoteProperty>
 <PropertySet>
 <Name>PropertySerializationSet</Name>
 <ReferencedProperties>
 <Name>ComputerName</Name>
 <Name>StatusCode</Name>
 </ReferencedProperties>
 </PropertySet>
 </Members>
 </MemberSet>
 </Members>
 </Type>
 <Type>
 <Name>sapienPshX.BetterPingResult</Name>
 <Members>
 <MemberSet>

462

Windows PowerShell: TFM • 2nd Edition

 <Name>PSStandardMembers</Name>
 <Members>
 <NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>SpecificProperties</Value>
 </NoteProperty>
 <PropertySet>
 <Name>PropertySerializationSet</Name>
 <ReferencedProperties>
 <Name>ResponseTime</Name>
 </ReferencedProperties>
 </PropertySet>
 </Members>
 </MemberSet>
 </Members>
 </Type>
</Types>

Now, our sapienPshX.BetterPingResult type will serialize with three properties: ComputerName and
StatusCode (because its parent type, sapienPshX.PingResult, serializes with those properties), and
ResponseTime, a property we’ve specifically selected for the type. You can, however, block this inheritance
behavior in serialization directives. Here’s the same example type extension file with a minor change,
which we’ll boldface:

<Types>
 <Type>
 <Name>sapienPshX.PingResult</Name>
 <Members>
 <MemberSet>
 <Name>PSStandardMembers</Name>
 <Members>
 <NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>SpecificProperties</Value>
 </NoteProperty>
 <PropertySet>
 <Name>PropertySerializationSet</Name>
 <ReferencedProperties>
 <Name>ComputerName</Name>
 <Name>StatusCode</Name>
 </ReferencedProperties>
 </PropertySet>
 </Members>
 </MemberSet>
 </Members>
 </Type>
 <Type>
 <Name>sapienPshX.BetterPingResult</Name>
 <Members>
 <MemberSet>
 <Name>PSStandardMembers</Name>
 <Members>
 <NoteProperty>
 <Name>SerializationMethod</Name>
 <Value>SpecificProperties</Value>
 </NoteProperty>
 <NoteProperty>
 <Name>InheritPropertySerializationSet</Name>
 <Value>false</Value>
 </NoteProperty>
 <PropertySet>

Object Serialization

463

 <Name>PropertySerializationSet</Name>
 <ReferencedProperties>
 <Name>ResponseTime</Name>
 </ReferencedProperties>
 </PropertySet>
 </Members>
 </MemberSet>
 </Members>
 </Type>
</Types>

Now, objects of the sapienPshX.BetterPingResult type will only serialize with a ReponseTime prop-
erty, because we’ve turned off the serialization directive inheritance. Any types that happen to inherit
from sapienPshX.BetterPingResult will still inherit its serialization directives, unless they also have
InheritPropertySerializationSet set to FALSE.

Serialization: Now and Tomorrow
What’s the purpose, then, of serialization, and why should you care about it? Today, serialization is a way
of saving objects into a simplified, easily transportable format. For example, you might export a bunch of
objects from one computer, move the XML file to another computer, and then import the objects from
XML to work with them again. Saving objects is another good use of serialization: For example, by
piping Get-History to Export-CliXML, you can save your command history in an XML file. You can
then use Import-CliXML to import that file, pipe it to Add-History, and “reload” your command his-
tory. This is useful when giving demonstrations, or when conducting various repetitive tasks.

In the future, serialization will play an important role in remote management. A future version of
Windows PowerShell will allow you to connect to remote copies of the shell, having them execute com-
mands locally on the computer where they’re installed. Those remote shells will then serialize the results
of your commands, transmit the results—as a stream of XML text via an HTTP-like connection—back
to you, where your shell will reconstruct the objects so that you can work with them. Being able to
customize how objects are serialized will provide important capabilities at that time, in addition to the
useful things you can do right now.

Creating Custom Formats

465

Chapter 38
Creating Custom Formats

Windows PowerShell uses XML-based files to define how various types of objects should be formatted.
If you open the PowerShell installation folder, you’ll see a number of files ending in “.format.ps1xml”;
these files control the built-in formatting behavior that PowerShell ships with. You can create your own
formats, as well.

Examining the Formatting Format
One of the easiest ways to see how these XML files work is to examine an existing type’s formatting.
For example, running Get-EventLog System | Format-List produces output like the following (which
we’ve seriously truncated to save space):

PS C:\> get-eventlog system | format-list

Index : 1888
EntryType : Information
EventID : 1103
Message : Your computer was successfully assigned an address from the network,
 and it can now connect to other computers.
Category : (0)
CategoryNumber : 0
ReplacementStrings : {}
Source : Dhcp
TimeGenerated : 4/18/2007 9:06:18 PM
TimeWritten : 4/18/2007 9:06:18 PM
UserName :

466

Windows PowerShell: TFM • 2nd Edition

How does PowerShell know to select these particular properties and display them in this particular
fashion? Well, if we pipe Get-EventLog to Get-Member, we’ll see what type of data the cmdlet is
returning:

PS C:\Users\Don> get-eventlog system | get-member

 TypeName: System.Diagnostics.EventLogEntry

We can then open the DotNetTypes.format.ps1xml file (located in PowerShell’s installation folder,
which is in the Windows system folder—System32 or System64) and locate the formatting for that
type. It starts off with a <View> tag, which contains the entire definition for how we want to view, or
see, items of this particular type. The <Name> of the view is what you’ll use with the -view parameter
of a formatting cmdlet to manually select the view. Notice that <TypeName> is contained within a
<ViewSelectedBy> tag: The <ViewSelectedBy> tag contains a list of things that will trigger PowerShell
to use this view; any use of the System.Diagnostics.EventLogEntry type will trigger this view.

Next is the <ListControl> section, which actually defines the look of the view. Our list has one
<ListEntry>, which consists of several <ListItems>. For each <ListItem>, the XML defines the prop-
erty that will be shown: Index, EntryType, and so forth. These are the object properties that PowerShell
selects when building the table we saw earlier. You’ll notice that these properties are the columns that
PowerShell displayed when we ran Get-EventLog. They weren’t all displayed, though, because our
PowerShell window wasn’t wide enough. PowerShell displayed only as many columns as would fit, dis-
playing columns in the exact order listed here in this XML.

<View>
 <Name>System.Diagnostics.EventLogEntry</Name>
 <ViewSelectedBy>
 <TypeName>System.Diagnostics.EventLogEntry</TypeName>
 </ViewSelectedBy>

 <ListControl>
 <ListEntries>
 <ListEntry>
 <ListItems>
 <ListItem>
 <PropertyName>Index</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>EntryType</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>EventID</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>Message</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>Category</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>CategoryNumber</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>ReplacementStrings</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>Source</PropertyName>
 </ListItem>

Creating Custom Formats

467

 <ListItem>
 <PropertyName>TimeGenerated</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>TimeWritten</PropertyName>
 </ListItem>
 <ListItem>
 <PropertyName>UserName</PropertyName>
 </ListItem>

 </ListItems>
 </ListEntry>
 </ListEntries>
 </ListControl>
 </View>

This is a pretty simplistic example, but it does serve to illustrate the basics of how and why PowerShell’s
built-in formatting works. If you scroll to the top of the file, you’ll notice that all the <View> tags
are contained within a top-level <ViewDefinitions> tag, which is itself contained in the uppermost
<Configuration> tag. That’s more or less the whole of the formatting file.

Tip
These files are easier to work with in a dedicated XML editor rather than in Notepad. SAPIEN
PrimalScript recognizes and color-codes XML files for easier editing, and the Enterprise edition of
PrimalScript includes a Visual XML Editor, which can make XML editing and creation even easier.

By the Way…
If you just run Get-EventLog System without specifying Format-List, PowerShell displays the
output in a table format. That’s because the first view registered for the EventLogEntry type is a
table-style format; when we specified a list format, PowerShell had to dig deeper to find a format for
EventLogEntry objects that used a ListControl. Fortunately, there was one—otherwise, PowerShell
would have constructed a list on its own, possibly using less relevant properties.

Constructing Your Own Format
A format file thus begins with a <Configuration> tag. Inside that is a <ViewDefinitions> tag, or node.
Within that, you’ll add a <View> node for each object you want to format. Within the <View> node,
you’ll define an arbitrary <Name> for your view, and you’ll build a <ViewSelectedBy> node that tells
PowerShell when to use your view. Optionally, the <View> node can also contain a <GroupBy> node,
which specifies how PowerShell should group objects. For example, a folder listing is grouped by its par-
ent. Thus far, then, a format file looks something like this:

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MyView</Name>
 <ViewSelectedBy><TypeName></TypeName></ViewSelectedBy>
 <GroupBy></GroupBy>
 </View>

468

Windows PowerShell: TFM • 2nd Edition

 </ViewDefinitions>
</Configuration>

Actually, there’s one meta tag that must appear as the first line in the actual file:

<?xml version="1.0" encoding="utf-8" ?>

This simply defines the file as XML. For the remainder of this chapter, we’ll assume that any format files
you’re creating already have this line and just focus on the body of the file. Your filename must end in
the .ps1xml extension. We recommend you give the file a meaningful name. You’ll need to copy the file
to any computer where you intend to use the custom formats. Later in the chapter, we’ll show you how
to load the files into PowerShell.

Tip
The <Name> of your view allows you to specify it when you use the Format-Custom cmdlet. This
cmdlet has a -view parameter, which accepts the name of the view you want to use to format your
output. This allows a view to be selected manually, even if it doesn’t match the data type of the
objects you’re trying to format.

Let’s cover how that <GroupBy>node works. Typically, you’ll populate it with two sub-nodes,
<PropertyName> and <Label>:

<GroupBy>
 <PropertyName>Myproperty</PropertyName>
 <Label>My Prop</Label>
</GroupBy>

Now, when this view is selected, a new header with the label “My Prop”will be generated each time a
new value is encountered for Myproperty. Grouping isn’t used a lot, though, so let’s get back to our basic,
in-progress format:

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MyView</Name>
 <ViewSelectedBy><TypeName></TypeName></ViewSelectedBy>
 <GroupBy></GroupBy>
 </View>
 </ViewDefinitions>
</Configuration>

From here, you have to decide if you want to make a list, wide, table, or custom view. We’ll cover each of
these individually, in increasing order of complexity, but we’ll start with the above basic template as our
starting point for each. For all of our examples, we’ll be using the System.Diagnostics.Process class, cre-
ating a custom view for Process objects.

Wide Views
A wide view is probably the easiest to create, primarily because wide views use only a single object prop-
erty—they’re just not that complex. Here’s a complete view:

Creating Custom Formats

469

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MyView</Name>
 <ViewSelectedBy><TypeName>System.Diagnostics.Process</TypeName></ViewSelectedBy>
 <WideControl>
 <WideEntries>
 <WideEntry>
 <WideItem>
 <PropertyName>Name</PropertyName>
 </WideItem>
 </WideEntry>
 </WideEntries>
 </WideControl>
 </View>
 </ViewDefinitions>
</Configuration>

Notice that we’ve filled in the <ViewSelectedBy> section with a .NET Framework type name to which
this view will apply. We’ve added a <WideControl> section, which includes a single <WideEntries> sec-
tion. Within that, you’re permitted one <WideEntry> section, which may contain a single <WideItem>
tag. That tag includes the property name you want included in the view—just one property. This may
seem like overkill to just display one property, but it’s the same basic structure that the other types of
views use, so a lot of the excess is just to maintain the structural consistency that XML requires.

You can manually select this view by running:

PS C:\> get-process | format-wide -view MyView

There’s one alternative you can perform with a <WideItem>: Rather than containing a <PropertyName>
tag, it can instead contain a <ScriptBlock> tag. For example, suppose we wanted all our process names
displayed in lowercase:

 <WideItem>
 <ScriptBlock>$_.Name.ToUpper()</ScriptBlock>
 </WideItem>

We’ve used the special $_ variable, which represents the current object, to access the Name property.
Because the Name property is a string, it has a ToUpper() method. Thus, our wide view will display all
process names in all uppercase characters.

List Views
List views are only slightly more complicated than wide views, because list views also display properties
without a lot of extra formatting. Essentially, a list view is identical to a wide view, except that you can
have multiple items—that is, properties or script blocks. Here’s an example list view:

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MyView</Name>
 <ViewSelectedBy><TypeName>System.Diagnostics.Process</TypeName></ViewSelectedBy>
 <ListControl>
 <ListEntries>
 <ListEntry>
 <ListItems>

470

Windows PowerShell: TFM • 2nd Edition

 <ListItem>
 <Label>Name</Label>
 <PropertyName>Name</PropertyName>
 </ListItem>
 <ListItem>
 <Label>Process ID</Label>
 <PropertyName>ID</PropertyName>
 </ListItem>
 <ListItem>
 <Label>CPU Used</Label>
 <PropertyName>CPU</PropertyName>
 </ListItem>
 </ListItems>
 </ListEntry>
 </ListEntries>
 </ListControl>
 </View>
 </ViewDefinitions>
</Configuration>

Also notice that each <ListItem> can have an additional tag: <Label>. The <Label> is the text displayed
next to the actual property value. <PropertyName>, as in a wide view, is the property to display. As with
a wide view, you can also substitute a <ScriptBlock> for a <PropertyName>; when you do so, you still
provide a <Label> that is used to label whatever the script block outputs.

You can manually select this view by running:

PS C:\> get-process | format-list -view MyView

Caution!
We’re just using these views as examples; generally speaking, you wouldn’t include two views with
the same name in the same format file. It’s actually not a problem to have two views with the same
name, provided they’re different layouts (e.g., wide and list), because PowerShell can distinguish
them by the layout type. However, if you have two views that use the same layout and have the
same name, you’ll get unexpected results when trying to use that formatting file.

Table Views
Table views are incrementally more complex than a list view. Like a list view, you can define multiple
properties to display (one per column). However, you must define the table’s header—the first row,
which displays labels for each column—in a separate section. Here’s the first part of our example:

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MyView</Name>
 <ViewSelectedBy><TypeName>System.Diagnostics.Process</TypeName></ViewSelectedBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>Name</Label>
 <Width>20</Width>
 <Alignment>Left</Alignment>
 </TableColumnHeader>

Creating Custom Formats

471

 <TableColumnHeader>
 <Label>Process ID</Label>
 <Width>10</Width>
 <Alignment>Center</Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>CPU(s)</Label>
 <Width>4</Width>
 <Alignment>Right</Alignment>
 </TableColumnHeader>
 </TableHeaders>
 </TableControl>
 </View>
 </ViewDefinitions>
</Configuration>

As you can see, all we’ve done here is define the <TableControl> and add the <TableHeaders> sec-
tion. Within it, we have three <TableColumnHeader> sections, one for each column defined. For each
column, we define a text <Label>, the desired <Width> of the column, and the <Alignment> of the col-
umn, which may be Left, Center, or Right. You need to keep track of the order in which you define the
columns: If you define too many to fit on a user’s screen, PowerShell will only display as many columns
as it can in the order they’re provided in this view. Also, your table row entries, which define the data
shown in the table’s rows, must occur in the same order as the table header, or the output won’t make
any sense.

We’ll continue by adding the table row information:

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MyView</Name>
 <ViewSelectedBy><TypeName>System.Diagnostics.Process</TypeName></ViewSelectedBy>
 <TableControl>
 <TableHeaders>
 <TableColumnHeader>
 <Label>Name</Label>
 <Width>20</Width>
 <Alignment>Left</Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>Process ID</Label>
 <Width>10</Width>
 <Alignment>Center</Alignment>
 </TableColumnHeader>
 <TableColumnHeader>
 <Label>CPU(s)</Label>
 <Width>4</Width>
 <Alignment>Right</Alignment>
 </TableColumnHeader>
 </TableHeaders>
 <TableRowEntries>
 <TableRowEntry>
 <TableColumnItems>
 <TableColumnItem>
 <PropertyName>Name</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>ID</PropertyName>
 </TableColumnItem>
 <TableColumnItem>
 <PropertyName>CPU</PropertyName>

472

Windows PowerShell: TFM • 2nd Edition

 </TableColumnItem>
 </TableColumnItems>
 </TableRowEntry>
 </TableRowEntries>
 </TableControl>
 </View>
 </ViewDefinitions>
</Configuration>

We’ve added the <TableRowEntries> element, which includes a single <TableRowEntry> node. Within
that is a single <TableColumnItems> element, containing one <TableColumnItem> for each col-
umn defined in the header. The <TableColumnItem> elements contain either a <PropertyName> or a
<ScriptBlock> tag, which work exactly as they did in the wide and list views.

Remember!
Our example isn’t including a <GroupBy> section, but it could—refer to our earlier discussion on
the <GroupBy> element for information.

You can manually select this view by running:

PS C:\> get-process | format-table -view MyView

Custom Views
Custom views are a completely different beast, and they’re much more complicated. They’re made more
complicated than necessary, really, by the fact that (as of this writing) the PowerShell SDK documenta-
tion doesn’t address them, and PowerShell doesn’t really ship with any examples. We’ll do our best to
de-mystify them for you here. They start off simply enough:

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MyView</Name>
 <ViewSelectedBy><TypeName>System.Diagnostics.Process</TypeName></ViewSelectedBy>
 <CustomControl>
 <CustomEntries>
 </CustomEntries>
 </CustomControl>
 </View>
 </ViewDefinitions>
</Configuration>

This is enough like the pattern of the other three view types that you can probably figure out what
comes next: Within the <CustomEntries> section, we’ll create <CustomEntry> elements that define our
view. Within the <CustomEntry> nodes will be <CustomItem> elements that actually determine what
gets displays. You’re right: That’s what’ll happen. It’s what goes inside those <CustomItem> sections that
becomes more complicated.

Here’s a simple custom format. Really, this isn’t any more complicated than a wide view, because this
custom format is simply displaying the name of the Process objects. You’ll notice that it takes more
XML to get this result: For example, the <CustomItem> has an <ExpressionBinding> sub-element that
contains the familiar <PropertyName> tag. As with the other views we’ve covered, that <PropertyName>
could also have been a <Scriptblock> tag.

Creating Custom Formats

473

<Configuration>
 <ViewDefinitions>
 <View>
 <Name>MyView</Name>
 <ViewSelectedBy>
 <TypeName>System.Diagnostics.Process</TypeName>
 </ViewSelectedBy>
 <CustomControl>
 <CustomEntries>
 <CustomEntry>
 <CustomItem>
 <ExpressionBinding>
 <PropertyName>Name</PropertyName>
 </ExpressionBinding>
 </CustomItem>
 </CustomEntry>
 </CustomEntries>
 </CustomControl>
 </View>
 </ViewDefinitions>
</Configuration>

Here’s a slightly more complicated version: We’ve changed the <CustomItem> to include a <Frame>,
with a <LeftIndent> of 4. This will “draw” an invisible “box” around our results, and indent the entire
box by four characters. Within the <Frame> is another <CustomItem>, this time with our <Scriptblock>
and a <NewLine /> tag. The <NewLine /> tag places a blank space after each object that’s output in our
view. To save space, we’re only including the <CustomControl> portion of the XML—nothing else has
changed.

 <CustomControl>
 <CustomEntries>
 <CustomEntry>
 <CustomItem>
 <Frame>
 <LeftIndent>4</LeftIndent>
 <CustomItem>
 <ExpressionBinding>
 <Scriptblock>$_.Name.ToUpper()</Scriptblock>
 </ExpressionBinding>
 <NewLine />
 </CustomItem>
 </Frame>
 </CustomItem>
 </CustomEntry>
 </CustomEntries>
 </CustomControl>

Here’s a further evolution. This time, we’ve added a <Text> tag to the custom item, creating a “Process:”
label. We’ve also added an <ItemSelectionCondition> to the <ExpressionBinding>. Only processes with
a Handles property greater than 50 will be selected to have their name displayed.

 <CustomControl>
 <CustomEntries>
 <CustomEntry>
 <CustomItem>
 <Frame>
 <LeftIndent>4</LeftIndent>
 <CustomItem>
 <Text>Process: </Text>

474

Windows PowerShell: TFM • 2nd Edition

 <ExpressionBinding>
 <ItemSelectionCondition>
 <Scriptblock>$_.Handles -gt 50</Scriptblock>
 </ItemSelectionCondition>
 <Scriptblock>$_.Name.ToUpper()</Scriptblock>
 </ExpressionBinding>
 </CustomItem>
 </Frame>
 </CustomItem>
 </CustomEntry>
 </CustomEntries>
 </CustomControl>

Here’s what a portion of the output looks like:

Process: ACPRFMGRSVC
Process: ACSVC
Process: ACTRAY
Process: ACWLICON
Process: AUDIODG
Process: AWAYSCH
Process: BTTRAY
Process: CSRSS
Process: CSRSS
Process: CSSAUTH
Process: DLLHOST
Process: DLLHOST
Process: DWM
Process: EXPLORER
Process: EZEJMNAP
Process: HKCMD
Process:
Process:

You’ll notice that processes that don’t meet the criteria aren’t displayed, although the Process: label is still
displayed, because that label is defined apart from the <ItemSelectionCondition>. So, the label is dis-
played, regardless, using this view.

Our next step is to remove the <ItemSelectionCondition>, and to add some additional <Text> elements
and a new <ExpressionBinding>. Now, we’re displaying each process’ ID in parentheses, next to the pro-
cess name:

 <CustomControl>
 <CustomEntries>
 <CustomEntry>
 <CustomItem>
 <Frame>
 <LeftIndent>4</LeftIndent>
 <CustomItem>
 <Text>Process: </Text>
 <ExpressionBinding>
 <Scriptblock>$_.Name.ToUpper()</Scriptblock>
 </ExpressionBinding>
 <Text> (ID: </Text>
 <ExpressionBinding>
 <PropertyName>ID</PropertyName>
 </ExpressionBinding>
 <Text>)</Text>
 </CustomItem>
 </Frame>

Creating Custom Formats

475

 </CustomItem>
 </CustomEntry>
 </CustomEntries>
 </CustomControl>

Here’s a snippet of the output:

Process: ACPRFMGRSVC (ID: 1412)
Process: ACSVC (ID: 2436)
Process: ACTRAY (ID: 1488)
Process: ACWLICON (ID: 2696)
Process: AUDIODG (ID: 1236)
Process: AWAYSCH (ID: 4052)
Process: BTTRAY (ID: 680)

Combined with the <NewLine /> tag we used earlier, you can begin to see how fairly complicated for-
matting is possible. One last iteration:

 <CustomControl>
 <CustomEntries>
 <CustomEntry>
 <CustomItem>
 <Frame>
 <LeftIndent>4</LeftIndent>
 <CustomItem>
 <Text>Process: </Text>
 <ExpressionBinding>
 <Scriptblock>$_.Name.ToUpper()</Scriptblock>
 </ExpressionBinding>
 <Text> (ID: </Text>
 <ExpressionBinding>
 <PropertyName>ID</PropertyName>
 </ExpressionBinding>
 <Text>)</Text>
 </CustomItem>
 </Frame>
 <Frame>
 <CustomItem>
 <NewLine />
 <ExpressionBinding>
 <Scriptblock>"Handles: " + $_.Handles `
 + " / CPU(s): " + $_.CPU</Scriptblock>
 </ExpressionBinding>
 <NewLine />
 </CustomItem>
 </Frame>
 </CustomItem>
 </CustomEntry>
 </CustomEntries>
 </CustomControl>

This time, we’ve added an all-new <Frame> to contain new information. It starts with a <NewLine />,
and then displays a text message including the number of handles and the CPU seconds measurement
for the process. It concludes with another <NewLine />. Examine this, and then a sample of its output:

Process: ACPRFMGRSVC (ID: 1412)
Handles: 135 / CPU(s): 0.1404009

Process: ACSVC (ID: 2436)

476

Windows PowerShell: TFM • 2nd Edition

Handles: 257 / CPU(s): 0.624004

Process: ACTRAY (ID: 1488)
Handles: 85 / CPU(s): 0.1092007

Process: ACWLICON (ID: 2696)
Handles: 82 / CPU(s): 0.1404009

Custom views are certainly complex, and, trust us, we’ve barely scratched the surface of what they can
do. However, this should get you started on creating your own custom formats. Why bother? One reason
we can think of is to create output that’s more suitable for management or auditing reports.

By the way, we generated all of this output after importing our format file via Update-FormatData (of
course), and then running:

PS C:\> get-process | format-custom -view myview

Where are custom views practically useful? We’ve mentioned elsewhere that all of PowerShell’s built-in
help is displayed and formatted using custom views; anytime you’re dealing with especially complex data
that needs to be laid out in a particular way—not necessarily a list or a table—then a custom view might
make sense. Typically, however, administrators are usually working with several objects—such as pro-
cesses, services, event logs, and so forth—and any time you’ve got a collection of objects, a list or a table
is usually easier to make and presents the information in a way that’s easier to use.

Importing Your Format
When you’re ready with a working format, move the .ps1xml file to its permanent location. Personally,
we like keeping these files in our personal documents folder (“My Documents” on Windows XP, or
“Documents” on Windows Vista), so that our files “follow” us if we’re using a roaming profile. We don’t
recommend storing your files in PowerShell’s installation folder, since there’s always a possibility that
your files will be overwritten by some future update.

Before you can start using your new views, you have to import them into the shell. You’ll first need to
decide if you want your new formats to come before or after PowerShell’s built-in formats. Remember,
when PowerShell isn’t given a specific view by name, it goes looking for one that matches the object type
it’s working with. The first matching view it comes across is the one it uses, so if your views are loaded
first, then they’ll become the defaults for your data types. If your views are loaded last, then they’ll be
available on demand, but they won’t become the default views (unless PowerShell defines no other views
for the object types you’ve selected).

To load your files before PowerShell’s, run • Update-FormatData
-prependPath filepath.

To load your files after PowerShell’s, run • Update-FormatData
-appendPath filepath.

Running Update-FormatData registers the view or views you’ve defined in the specified file and makes
those views available to PowerShell’s Format cmdlets.

Creating Custom Formats

477

Oops…
If you made a mistake in your format XML, PowerShell will display any errors when it tries to load
the file. After fixing any problems, you’ll need to close and re-open PowerShell before you can try
to re-load your format file.

Unless you add these cmdlets to your profile, you’ll need to run them each time you open a new
PowerShell session; PowerShell does not persist this information in any other way. Also, keep in mind
that .format.ps1xml files can be digitally signed just like .ps1 files; if your shell’s ExecutionPolicy
requires a signature for scripts, then you’ll need to sign your format files, also.

Warning
As you read this chapter, you might be tempted to simply modify the format files that shipped with
PowerShell. Don’t. These files are digitally signed by Microsoft. If you modify them you will break
the signature, and unless you’re Microsoft, you won’t have any way to resign them. Also, when a
new version of the file ships from Microsoft, your changes will be lost.

Formatting Rules
PowerShell’s formatting rules are a bit complicated, so it’s worth reviewing them. When PowerShell
needs to format objects, it follows these rules and uses the first rule that matches. Also note that these
decisions are all made by examining only the first object in the pipeline—all objects are formatting,
according to the decision driven by the first object.

If you haven’t specified a table, list, wide, or custom format (by using one of the Format cmdlets), •
then PowerShell will look to see if a view has been registered for the data type of the pipeline
object. If at least one view has been registered, PowerShell will use the first one it finds—selecting
table, list, wide, or custom, based on whatever the view uses.

If you used a Format cmdlet to specify a list, table, wide, or custom format, but didn’t specify a •
particular view by name, PowerShell will grab the first registered view for the object’s type that
matches the layout you specified. If no registered view exists, PowerShell will “fake it” and do the
best job it can to construct the appropriately formatted output for you, using the “default” proper-
ties defined for the object (“default” properties are defined in PowerShell’s Types.ps1xml file).

If you specified a list, table, wide, or custom format, • and specified a particular view (by using the
-view parameter of the Format cmdlet), PowerShell will look for that view. However, it’ll only be
able to use it if the view uses the same layout—table, wide, custom, or list. If the view you specify
doesn’t match the layout you specified, you’ll receive an error.

If there is no registered view for the type of object in the pipeline, and you didn’t specify any for-•
matting, PowerShell will use a table if the object has fewer than five properties. Otherwise, it’ll use
a list. PowerShell won’t automatically select a wide or custom format under these circumstances.
If PowerShell decides to use a list, it will—by default—only display properties that are marked as
“default properties” for that object type in PowerShell’s Types.ps1xml file. If that object type isn’t
defined in Types.ps1xml, or if no properties are marked as “defaults,” then PowerShell will display
all of the properties in a list.

The PowerShell Ecosystem: Third-Party Extensions

479

Chapter 39
The PowerShell Ecosystem: Third-Party Extensions

Perhaps one of the most important aspects of PowerShell is the fact that it has quickly developed a
rich and active following of independent users and companies who support and extend it. In other
words, PowerShell doesn’t exist entirely on its own: It is part of a diverse and growing ecosystem, which
includes many companies, individual enthusiasts, and more. Why is a rich ecosystem important? Well,
one concern with PowerShell—or any new technology—is whether or not it will become adopted
widely enough for people like you to invest time in. Of course, if enough people think that, then it’s
a catch-22: Nobody invests the time, so nobody feels it’s worth investing the time. With PowerShell,
however, you don’t have to worry about that: Lots of people have invested serious time and money
already. It goes beyond Microsoft, too, although the support for PowerShell within Microsoft’s various
product teams is significant and expanding. Outside of Microsoft, many third-party manufacturers and
independent programmers are extending PowerShell’s functionality by providing sets of cmdlets, tools
and utilities, and much more.

In this chapter, we’ll examine some of the more complete offerings—that is, commercial and free exten-
sions that are mature and immediately usable. By the time you read this, it’s almost certain that all of
these will have released new versions, so our goal here isn’t to completely document these, but rather to
give you an idea of what’s out there, and what these various tools and components can do for you in your
daily work.

Note that, with the exception of the software manufactured by SAPIEN Technologies, neither of the
authors of this book have any affiliation or association with the software we’re discussing in this chapter.
We’re not endorsing or recommending any of it, and no manufacturer paid us any kind of compensation
to include this software in the book. We simply wanted to give you a springboard for further research
and help you realize what a diverse and flexible tool you’ve found in PowerShell. Hopefully, by getting
a glimpse at what others are enabling PowerShell to do, you’ll be able to find the perfect thing to solve

480

Windows PowerShell: TFM • 2nd Edition

whatever unique administrative problems you find yourself faced with.

PowerGagdets
PowerGadgets, LLC (www.PowerGadgets.com) has made an extremely cool, very useful snap-in for
Windows PowerShell. PowerGagdets takes input data—say, performance data from the WMI perfor-
mance counter classes—and turns that data into charts, gauges, and maps. For example:

PS C:\> gwmi win32_perfrawdata_perfos_memory | out-gauge -value availablembytes -floating

This uses WMI to query the “Available Memory” performance information from the local computer
and display a “free memory” gauge. Of course, since Gwmi supports remote connectivity, you could just
as easily pull the available memory—or CPU information or anything else—from another computer,
as well. The graphical gauges and charts can be free-floating, displayed as desktop icons, or they can be
docked in the Windows Vista SideBar. They can also auto-update themselves on an interval you specify,
making them an easy way to create customized, task-specific dashboards.

A graphical Wizard allows you to create new gadgets outside of PowerShell, if desired—for example,
you can use a database on your network, or a Web service, as the data source for a new gadget. Several
gadgets can be combined into a group, which helps to prevent on-screen clutter (trust us, it’s easy to get
carried away with these things). You can even automatically e-mail an image of a gadget, if desired—
that’ll show the boss who doesn’t believe your servers are hitting 90% CPU capacity!

PowerGadgets Creator lets you author complex gadgets in a graphical environment, and then save them
as .PGF files, which you can distribute to other administrators—they simply need the PowerGadgets
Client (which is less expensive) installed in order to use these files. For example, you might create a
“map” gadget that shows the status (up or down) of your organization’s servers, and then distribute that
to other technicians on your network for use in their personal “dashboard.” Gadgets that retrieve their
data from a source other than PowerShell have no dependency on PowerShell; they can be viewed with-
out having PowerShell installed. Gadgets can even be digitally signed, helping you to keep them safe
and secure.

PrimalScript
SAPIEN PrimalScript (www.PrimalScript.com) is a visual development environment geared specifically
toward scripting, and with specific support for Windows PowerShell (it was in fact the first commercial
tool to support PowerShell). It offers a number of features that help make PowerShell scripting easier:

Syntax color-coding, making your scripts easier to read and making it easier to catch typos.•

Live syntax checking, which is somewhat like live spell-checking in Microsoft Word.•

Code hinting, including pop-up syntax reminders for PowerShell cmdlets.•

Integrated help, allowing you to place your cursor over PowerShell cmdlets, press F1, and get the •
cmdlet syntax in a pane right within the editor.

Code completion, including pop-up menus for PowerShell cmdlets and other language elements.•

The ability to package PowerShell scripts into standalone executable (.Exe) files that run under •
alternate credentials.

Source control integration, providing enterprise-level change control and rollback capabilities.•

The ability to run PowerShell scripts right within the editing environment, with script output •

The PowerShell Ecosystem: Third-Party Extensions

481

appearing in a dedicated “output” pane.

Integrated security, including the ability to modify the local ExecutionPolicy, and to automatically •
apply a digital signature to PowerShell scripts each time they’re saved (making it easier to use the
safer AllSigned ExecutionPolicy).

The ability to undo changes made to a file even after weeks or months of not working with the •
file—the “undo stream” is saved along with the file itself, not stored in memory.

Built-in Snippets, which are short, pre-written chunks of commonly-used code that you can drag •
into your scripts, or add with a hotkey. You can save your own commonly used segments of code as
custom Snippets and use them alongside the built-in ones.

The list of features goes on and on—PrimalScript as of last count included well over 200 distinct fea-
tures; many of these are not necessarily PowerShell-specific, but still contribute to a more efficient
scripting experience. A 45-day free trial is available from the product’s Web site, and it can be purchased
from various software resellers and from www.ScriptingOutpost.com.

PowerShell Community Extensions
Go to http://www.codeplex.com/powershellcx and you’ll find an open-source, community-driven
treasure trove of PowerShell extensions: The PowerShell Community Extensions. As this book was
being written, v1.1 was the current version, and it sports almost 60 new cmdlets, dozens of functions
and filters, a collection of useful scripts, and more. Many of these cmdlets provide access to things that
Windows can do, but which PowerShell itself doesn’t support: reparse points, name resolution, pinging,
symbolic links, ZIP and TAR file creation, terminal sessions, hard links, clipboard management, data
conversion, and more. In fact, looking at the list, it’s hard to imagine how any hardworking adminis-
trator could live without these dozens of useful tools. It even includes a PSDrive provider for Active
Directory, allowing to you connect your domain as a “disk drive” and browse it using PowerShell’s famil-
iar commands like Cd and Dir. And, best of all, these extensions are absolutely free.

Let’s take a quick look at the Active Directory provider, which many of you will find appealing. When
you install the PowerShell Community Extensions, a new PSDrive is created called COMPANY that is
“mapped” to the root of your Active Directory domain. All you need to do is change drives and you can
navigate your domain as if it were a file system:

PS COMPANY:\> dir

 LastWriteTime Type Name
 ------------- ---- ----
 7/28/2006 10:11 PM builtinDomain Builtin
 7/28/2006 10:11 PM container Computers
 7/31/2007 11:28 AM organizationalUnit Desktops
 7/28/2006 10:11 PM organizationalUnit Domain Controllers
 7/24/2007 12:36 PM organizationalUnit Employees
 7/28/2006 10:11 PM container ForeignSecurityPrincipals
 7/28/2006 10:11 PM infrastructureUpdate Infrastructure
 7/28/2006 10:11 PM lostAndFound LostAndFound
 7/28/2006 10:11 PM msDS-QuotaContainer NTDS Quotas
 7/28/2006 10:11 PM container Program Data
 7/28/2006 10:11 PM container System
 7/28/2006 10:11 PM container Users

PS COMPANY:\> cd employees
PS COMPANY:\employees> dir

 LastWriteTime Type Name

482

Windows PowerShell: TFM • 2nd Edition

 ------------- ---- ----
 7/30/2007 11:10 AM user Don Jones
 7/24/2007 10:11 PM user Jeff Hicks
 7/24/2007 3:44 PM organizationalUnit QA
 7/30/2007 9:33 AM organizationalUnit Research
 7/24/2007 9:52 PM organizationalUnit Sales

PS COMPANY:\employees>

You can create a new organizational unit almost as easily as creating a new folder:

PS COMPANY:\employees> new-item Finance -itemtype organizationalunit

Creating a new user takes a few steps:

PS COMPANY:\employees> $amy=get-adobject -distinguishedname (new-item "Amy Admin" '
>>-itemtype user).distinguishedName
>>
PS COMPANY:\employees> $amy.sAMAccountname="aadmin"
PS COMPANY:\employees> $amy.sn="Admin"
PS COMPANY:\employees> $amy.givenname="Amy"
PS COMPANY:\employees> $amy.displayname="Amy Admin"
PS COMPANY:\employees> $amy.Description="Company help desk admin"
PS COMPANY:\employees> $amy.userprincipalname=aadmin@company.local
PS COMPANY:\employees> $amy.UserAccountControl=544 #enable account
PS COMPANY:\employees> $amy.title="Help Desk Supervisor"
PS COMPANY:\employees> $amy.SetPassword("P@ssw0rd")
PS COMPANY:\employees> $amy.SetInfo()

The Get-ADObject cmdlet that is part of the community extensions is abstracting the underlying
.NET Framework classes in much the same way as using the [ADSI] type adapter. But because it is
a cmdlet, it is a little easier to use. In our example, we are using the -distinguishedname property to
instruct the cmdlet what object to get. In this case, it is the distinguishedname of a new user object
we create using New-Item. The expression creates a new user object for Amy Admin and returns a
PowerShell object, $amy, that we can work with.

If you pipe $amy to Get-Member() you’ll see some properties but not all. However, as long as you know
the name of the user property, you can set it as we do here. You can also call the SetPassword() method,
and don’t forget to call Set-Info() to write your changes to Active Directory. As you can see, this is a lot
of work. We recommend you check out the Quest AD cmdlets that we talk about below. You can use
them in conjunction with the AD provider.

SAPIEN Extensions for Windows PowerShell
This is a free snap-in available at www.PrimalScript.com/freetools. This is the one piece of software
that we, the authors of this book, are directly associated with, since we actually created these extensions.
They’re under constant revision and enhancement, so be sure you’re periodically checking back for the
latest version. Currently, the Extensions provide more than a dozen cmdlets that are useful in logon
scripts (checking for local group membership, retrieving the user name and domain name, and so forth),
retrieving local management information like available memory, connecting to databases and execut-
ing queries, pinging computers, and even speaking aloud (that’s right—you can have PowerShell talk to
you). We also included a couple of cmdlets that mimic the MsgBox and InputBox functionality from
VBScript, in case you’re used to working with VBScript and miss those simple graphical prompts.

The PowerShell Ecosystem: Third-Party Extensions

483

SAPIEN’s PowerShell Help
PowerShell’s built-in help facility provides detailed information not only on cmdlets, but on a number
of more general topics. While these are all easily accessible from within the shell using the Help func-
tion, sometimes you want to be able to read help information while you’re piecing together a complex
command-line instruction. In those cases, having to run Help can be distracting. At www.PrimalScript.
com/freetools, you’ll find a PowerShell Help utility. This tool extracts all of the help information from
PowerShell, and displays it in a graphical window. This allows you to browse the help information along-
side the console window, so that you can see examples while you’re piecing together complex instructions.

CodePlex
CodePlex (www.codeplex.com) is Microsoft’s answer to SourceForge: It’s an open-source project
hosting site that charges projects no fees. We have a project named PowerQuest hosted there (www.
codeplex.com/powerquest), which is a text-based adventure game that takes place within the PowerShell
console. The PowerShell Community Extensions also live on CodePlex. However, if you type
“PowerShell” into CodePlex’s search engine, you’ll come up with more than a dozen PowerShell-related
projects, including:

Extensions that support Windows Installer•

PowerShell Remoting•

A SharePoint PSDrive provider, allowing SharePoint servers to be connected as “drives” within •
PowerShell

 An implementation of JungleDisk, which uses Amazon’s S3 storage services•

A NewsGator provider•

It’s worth stopping by CodePlex every now and again to see what’s new—there’s an active and growing
community of programmers extending PowerShell’s capabilities every day.

Quest PowerGUI
Even though PowerShell is a management shell, there are still plenty of administrators who feel more at
home with a graphical interface. The PowerGui tool acts as a graphical front end to PowerShell.

484

Windows PowerShell: TFM • 2nd Edition

Starting PowerGUI

The console organizes likely tasks in a tree pane. When you select an item, you get a graphical output of
an underlying PowerShell expression. Here, you can see the where we’ve retrieved a list of System event
logs filtered to return the last 100 errors:

PowerGui UI Mode

When you click the PowerShellCode tab, you can see the actual PowerShell code that is executed:

The PowerShell Ecosystem: Third-Party Extensions

485

PowerGui PowerShell Code mode

This lets you manage systems with PowerShell in a graphical format yet still learn how to do it from the
command line.

The PowerGUI can be extended by including other snap-ins and user-developed extensions. You can use
PowerGUI as a front end to Exchange 2007 and System Center 2007. You can download the applica-
tion and learn more at www.powergui.org.

Quest Cmdlets for Active Directory Management
Even though the current version of PowerShell has limited functionality related to Active Directory,
Quest Software has stepped in and developed a set of free cmdlets you can use to manage Active
Directory. These cmdlets are bundled as part of their ActiveRoles Management Shell for Active
Directory, which you can download from www.powergui.org.

The list of included cmdlets is deceivingly short and more are added with each new release:

Add-QADGroupMember•

Add-QADPasswordSettingsObjectAppliesTo•

Connect-QADService•

Convert-QADAttributeValue•

Disconnect-QADService•

Get-QADComputer•

Get-QADGroup•

Get-QADGroupMember•

Get-QADObject•

Get-QADPasswordSettingsObject•

486

Windows PowerShell: TFM • 2nd Edition

Get-QADPSSnapinSettings•

Get-QADUser•

New-QADGroup•

New-QADObject•

New-QADPasswordSettingsObject•

New-QADUser•

Remove-QADGroupMember•

Remove-QADObject•

Remove-QADPasswordSettingsObjectAppliesTo•

Set-QADObject•

Set-QADPSSnapinSettings•

Set-QADUser•

However, don’t let the quantity deceive you. These cmdlets let you create and work with Active
Directory objects like users, groups, and computers. Creating a new user can be as simple as this:

PS C:\> new-qaduser -parentcontainer "OU=Employees,DC=company,DC=local" `
>> -name "Charles Dickens" -samaccount "cdickens" -userpassword "P@ssw0rd" `
>>-userprincipalname "Cdickens@company.local" -displayname "Charles Dickens"
>>

Name Type DN
---- ---- --
Charles Dickens user CN=Charles Dickens,OU=Employees,DC=company,DC=local

PS C:\>

But because these are cmdlets, they can also take advantage of the pipeline. Suppose we have a CSV file
of new user accounts to be created:

PS C:\> cat newusers.csv
First Name,Last Name,Title,Department,Telephone
Anne,Tern,Sales Intern,Sales,555-1234
Ben,Jay,Finance Intern,Finance,555-1235
Charlie,Robin,Research Lab Asst.,Research,555-1236
David,Cardinal,Research Lab Asst.,Research,555-1237
Ed,Nightingale,QA Technician,QA,555-1238
Fiona,Thrush,Outside Sales Rep,Sales,555-1239

We can take the contents of this file and run them through New-QADUser:

$file='C:\newusers.csv'
PS C:\> Import-Csv $file | %{new-qadUser -parentcontainer `
>> ('OU=' + $_.Department + ',OU=Employees,DC=company,dc=local')`
>> -name ($_.'First Name' +' ' + $_.'Last Name') `
>> -samAccountName (($_.'First Name').Substring(0,1) + $_.'Last name') `
>> -firstname $_.'First Name' -lastname $_.'Last Name' `
>> -title $_.title -department $_.department -company "Company.com" `
>> -phonenumber $_.Telephone -userpassword "P@ssw0rd" `

The PowerShell Ecosystem: Third-Party Extensions

487

>> -userprincipalname (($_.'First Name').Substring(0,1) + $_.'Last name' `
>> + "@company.com") -displayname ($_.'First Name' + ' ' + $_.'Last Name') `
>> -objectattributes @{"userAccountControl"=544} `
>> | set-qaduser -objectattributes @{"pwdlastset"=0}
>> }
>>

Name Type DN
---- ---- --
Anne Tern user CN=Anne Tern,OU=Sales,OU=Employees,DC=compan
Ben Jay user CN=Ben Jay,OU=Finance,OU=Employees,DC=compan
Charlie Robin user CN=Charlie Robin,OU=Research,OU=Employees,DC
David Cardinal user CN=David Cardinal,OU=Research,OU=Employees,D
Ed Nightingale user CN=Ed Nightingale,OU=QA,OU=Employees,DC=comp
Fiona Thrush user CN=Fiona Thrush,OU=Sales,OU=Employees,DC=com

PS C:\>

In a matter of seconds we’ve created fully populated user accounts. The output of the Import-Csv cmd-
let is piped to the ForEach cmdlet, which is represented by the % alias. We’ll use the values from the
different columns in the CSV file to provide property values for the New-QADUser cmdlet. Remember
that $_ will represent the current user record from the CSV file. The first record has these values:

First Name : Anne
Last Name : Tern
Title : Sales Intern
Department : Sales
Telephone : 555-1234

The parent container is built from the department property of the first record. In our test domain, each
department has a child OU under the Employees organizational unit. The user’s account name is a com-
bination of the First Name and Last Name fields from the CSV file:

-name ($_.'First Name' +' ' + $_.'Last Name')

Next, we create the sAMAccountname by taking the first character of the first name and concatenating
it with the last name:

samAccountName (($_.'First Name').Substring(0,1) + $_.'Last name')

The user principal name is constructed in much the same way:

-userprincipalname (($_.'First Name').Substring(0,1) + $_.'Last name' '
>> + "@company.com")

The remaining properties are either hard coded, like “Company”, or associated with the corresponding
CSV field:

>> -title $_.title -department $_.department -company "Company.com" `

In order to enable the accounts, we set the “UserAccountControl” property to 544:

-objectattributes @{"userAccountControl"=544}

488

Windows PowerShell: TFM • 2nd Edition

After each account is created, we pipe the result to the Set-QADUser cmdlet to change the
“PwdlastSet” property, which forces the user to change their password at next logon:

set-qaduser -objectattributes @{"pwdlastset"=0}

This allows us to set the same password for each user but then force them to change it immediately.

The Quest cmdlets also make it easy to modify existing accounts, add users to groups, and much more.
Using these cmdlets, which technically are still in beta, in conjunction with the DirectoryServices
PSDrive provider from the PowerShell Community Extensions, will make managing Active Directory a
snap.

Full Armor
Full Armor’s WorkFlow Studio presents a graphical front end to Windows PowerShell and the
WorkFlow Foundation in the .NET Framework 3.0. This tool let’s you drag and drop graphical objects
that represent PowerShell cmdlets and scripts and link them together in a workflow. As you drag each
element, you can modify its parameters and customize the process.

Full Armor WorkFlow Studio

Once you have a workflow process that meets your needs, you can save it and run it at any time, even as
a scheduled task. You can learn more about this product from www.fullarmor.com.

SDM Software
SDM Software focuses on Group Policy management solutions. They have released two free cmd-

The PowerShell Ecosystem: Third-Party Extensions

489

lets for working with Group Policy from within PowerShell. The cmdlets require the Group Policy
Management Console to be installed first.

The first cmdlet, Get-SDMgpo, will retrieve information about your group policy objects:

PS C:\> get-sdmgpo "corp desktop"

DisplayName : Corp Desktop
Path : cn={7F283C5A-2C6B-4F9F-96A2-9959BD3F7EC6},cn=policies,cn=system,DC=com
pany,DC=local
ID : {7F283C5A-2C6B-4F9F-96A2-9959BD3F7EC6}
DomainName : company.local
CreationTime : 8/8/2007 1:15:02 PM
ModificationTime : 8/8/2007 1:22:18 PM
UserDSVersionNumber : 14
ComputerDSVersionNumber : 1
UserSysvolVersionNumber : 14
ComputerSysvolVersionNumber : 1

You can also use a wildcard character and return information about all group policy objects:

PS C:\> get-sdmgpo *

Because the cmdlet is using the Group Policy Management Console, you can also do things with your
policy objects, such as back them up or generate a report:

PS C:\> foreach ($gpo in $gpos) {$gpo.Backup("E:\GPOBackups\","Weekly Backup")}

You can create a blank Group Policy Object with New-SDMgpo:

PS C:\> new-sdmgpo "Sales Users"

DisplayName : Sales Users
Path : cn={E045D7E3-D128-4BBC-9642-7E7344F177A2},cn=policies,cn=system…
ID : {E045D7E3-D128-4BBC-9642-7E7344F177A2}
DomainName : company.local
CreationTime : 8/8/2007 2:28:54 PM
ModificationTime : 8/8/2007 2:28:56 PM
UserDSVersionNumber : 0
ComputerDSVersionNumber : 0
UserSysvolVersionNumber : 0
ComputerSysvolVersionNumber : 0

You can’t specify policy settings but you can take steps such as disabling the policies computer node. In
fact, we can put the two cmdlets together:

PS C:\> foreach ($gpo in (new-sdmgpo "Finance Users")) {
>> (get-sdmgpo $gpo.displayname).SetComputerEnabled($False)
>> }
>>

Here we’ve created a new Group Policy Object called “Finance Users” using New-SDMgpo. Using
ForEach we iterate the results of the expression and pass the policy’s displayname to Get-SDMgpo

490

Windows PowerShell: TFM • 2nd Edition

where we invoke the SetComputerEnabled() method.

And if that weren’t enough, SDM Software has also released a PowerShell based tool called the
GPExpert Scripting Toolkit. You can use PowerShell to modify individual GPO settings.

Here we connect to the XP Firewall GPO using the Get-Sdmgpobject cmdlet from the GPExpert
Scripting Toolkit:

PS C:\> $gpo=get-sdmgpobject -gponame "gpo://company.local/xp firewall"'
>> -openbyname $true
>>
PS C:\> $gpo

GPName : gpo://company.local/xp firewall
UserName :
Password :
AuthEnum : None
OpenByName : True
CentralStore :
Containers : {Computer Configuration, User Configuration}
GPCComputerVersion : 8
GPCUserVersion : 2
GPTComputerVersion : 8
GPTUserVersion : 2
Name : XP Firewall
Guid : CE36149F-6862-4A6C-9BDB-73BA70BF41FD
DisableComputerConfiguration : False
DisableUserConfiguration : True
Type : AD
ADRoot : System.DirectoryServices.DirectoryEntry
FSPath : \\Alpha-DC.company.local\SYSVOL\company.local\Policies\{CE36149
PolFileManager : GPOSDK.Providers._Common.PolFileManager
AdmManager : GPOSDK.Providers._Common.AdmManager

You can also use this tool to manage local group policy settings:

$gpo = Get-SDMgpobject -gpoName "gpo://ComputerName/Local/"

$cnt = $gpo.GetObject("Computer Configuration/Administrative Templates/System/Logon");
$settname = "Do not process the run once list"

$stng = $cnt.Settings.ItemByName($settname);

"'Listing properties of the setting" + $settname

$proplist = $stng.GetPropertyNames();
$set_vname = "";
foreach ($propname in $proplist) {
 $propname + ' = ' + $stng.Get($propname);

}

Let’s connect to the domain firewall setting container. This is a single line command:

PS C:\> $cnt=$gpo.GetObject("Computer Configuration/Administrative Templates/Network/Network
 Connections/Windows Firewall/Domain Profile")

We want to modify one of the Allow ICMP Exception settings:

The PowerShell Ecosystem: Third-Party Extensions

491

PS C:\> $setting=$cnt.settings.itembyname("Windows Firewall: Allow ICMP exceptions")

We can see that the current “Allow redirect” setting is turned off:

PS C:\> $setting.Get("Allow redirect")
0

So, we’ll turn it on and save the change:

PS C:\> $setting.Put("Allow redirect",1)
PS C:\> $setting.save()

With this tool, you create a GPO and define all of its settings all with a PowerShell script. There is
much more to this tool that we think you’ll find intriguing. You can download software and read more
at http://www.gpoguy.com/powershell.htm.

/n Software
Even though the .NET Framework is quite extensive when it comes to networking, PowerShell has
very few native networking cmdlets. Fortunately, /n Software has released NetCmdlets. This group of
cmdlets can be used to work with SNMP, send SMTP mail, run FTP or TFTP sessions, as well as get
low-level packet information.

For example, you can use their Get-Dns cmdlet to retrieve DNS information about a specified
computer:

PS C:\> get-dns exch07.company.local A

ADDRESS : 192.168.10.25
Type : A
Fields : {ADDRESS}
Values : {192.168.10.25}
Domain : exch07.company.local
TTL : 1200
RecordSource : Answer

492

Windows PowerShell: TFM • 2nd Edition

Another cmdlet you might find useful is Get-Packet, which allows you to capture packets from a par-
ticular adapter. It is not as full-featured as a packet capture program like Wireshark, but it does allow
you to do something like this:

PS C:\> $cap=get-packet -time 60
PS C:\> $cap | where {$_.protocol -eq "TCP"} | format-table
>> Source,SourcePort,Destination,DestinationPort -autosize
>>

Source SourcePort Destination DestinationPort
------ ---------- ----------- ---------------
192.168.127.200 3333 72.14.219.104 80
192.168.127.200 3333 72.14.219.104 80
72.14.219.104 80 192.168.127.200 3333
192.168.127.200 3333 72.14.219.104 80
72.14.219.104 80 192.168.127.200 3333
72.14.219.104 80 192.168.127.200 3333
72.14.219.104 80 192.168.127.200 3333
72.14.219.104 80 192.168.127.200 3333
192.168.127.200 3333 72.14.219.104 80
192.168.127.200 3333 72.14.219.104 80
72.14.219.104 80 192.168.127.200 3333
72.14.219.104 80 192.168.127.200 3333
192.168.127.200 3333 72.14.219.104 80
72.14.219.104 80 192.168.127.200 3333

Above, we’ve captured 60 seconds worth of network traffic and then selected the source and destination.
The company also is working on a PowerShell remoting solution, which is currently in beta. Read more
about these cmdlets and download a trial at http://www.nsoftware.com/
powershell/default.aspx.

The .NET Framework for Windows Administrators

493

Chapter 40
The .NET Framework for Windows Administrators

With all these talk of .NET and PowerShell, it’s easy to think that you need to know about the
Framework in order to use PowerShell effectively. Some of the more ambitious PowerShell users will
blog at length about loading up .NET assemblies and doing crazy stuff with them. Well, the news—
good or bad, however you want to view it—is that you can be very effective in PowerShell without
touching the .NET Framework directly. Sure, everything in PowerShell is .NET under the hood, but
PowerShell’s primary purpose is to adapt the Framework into something more administrator-friendly.
That said, the Framework has a lot of powerful capabilities lurking under the hood, and if you don’t
mind the complexity, PowerShell will let you access all that power. So, that’s what this chapter is all
about: understanding the framework enough to be able to utilize it from within PowerShell.

What is the Framework?
The Microsoft .NET Framework is essentially a huge collection of prepackaged functionality provided to
programmers by Microsoft, to make the programmers’ work easier. For example, the .NET Framework
knows how to send e-mail, how to resolve computer names to IP addresses, and how to ping a remote
computer; if you’re writing an application in the Framework, then, you just instruct it to do those things,
rather than writing them yourself. By building all this great functionality into the common Framework,
Microsoft allows developers to be more productive: All the developers have to do (more or less) is piece
together the various pieces of the Framework to accomplish whatever task the developers are trying to
accomplish.

For example, if we sat you down with a copy of C++ and asked you to write a program that would stop
a Windows service, would you know where to begin? We certainly wouldn’t. Because that’s such a com-
monly needed task, however, Microsoft built that functionality into the Framework, in the form of the

494

Windows PowerShell: TFM • 2nd Edition

System.ServiceProcess.ServiceController class. See, the Framework consists almost entirely of these
various classes, and they’re organized into a fairly consistent naming convention—called a namespace—to
help make them a bit easier to remember. For example, nearly anything having to do with the Windows
system falls under the System namespace, including System.IO for input/output tasks (like writing
files), System.XML for working with XML documents, System.Web for working with Web-related
stuff, and so forth. A .NET Framework class serves pretty much the same purpose as a WMI class: The
class describes how some piece of software functions. Think of a class as a definition for something; a
definition for a service, for example, specifies that the service have a name, the ability to start, stop, and
pause, and so forth. When you’re actually talking about a specific service, then you’re talking about an
instance of that class. The instance has all the properties and methods that are defined in the class, and
those properties and methods allow you to manipulate that instance—stopping it, starting it, reconfigur-
ing it, and so forth.

So, at its heart, the Framework is an enormous collection of classes, which is referred to as a class
library. And we do mean enormous: Visit the documentation at http://msdn2.microsoft.com/en-us/
library/ms644560.aspx and you’ll see exactly how enormous. But, by organizing classes into the various
namespaces, the class library is somewhat easier to browse and learn about.

PowerShell’s Framework Adaptation
Normally, PowerShell doesn’t force you to work directly with the Framework’s classes. Instead,
PowerShell gives you task-oriented cmdlets, which simplify the underlying Framework classes and, in
some cases, make them more consistent. For example, some Framework classes use a Length property to
indicate their size, while others use Count; PowerShell “adapts” these so that they consistently appear to
use the Count property when accessed from within PowerShell.

WMI is a really good example of the hard work PowerShell does to adapt Framework classes into
something more administrator-friendly. For example, try running this:

PS C:\> gwmi win32_operatingsystem | gm

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_OperatingSystem

We’ve retrieved a WMI instance and piped it to Get-Member (Gm). We see that the TypeName—
that is, the Framework class name—is System.Management.ManagementObject. Okay, that means
PowerShell asked the Framework to go get this particular WMI instance, and what came back was this
object type. Let’s look it up in the documentation (it’s at http://msdn2.microsoft.com/en-us/library/
system.management.managementobject.aspx). If we look at the members—that is, the properties,
methods, and so forth—of this class, we see that there aren’t that many properties and methods. There
certainly aren’t as many properties as PowerShell lists:

Name MemberType Definition
---- ---------- ----------
Reboot Method System.Management.ManagementBas...
SetDateTime Method System.Management.ManagementBas...
Shutdown Method System.Management.ManagementBas...
Win32Shutdown Method System.Management.ManagementBas...
Win32ShutdownTracker Method System.Management.ManagementBas...
BootDevice Property System.String BootDevice {get;s...
BuildNumber Property System.String BuildNumber {get;...
BuildType Property System.String BuildType {get;set;}
Caption Property System.String Caption {get;set;}
CodeSet Property System.String CodeSet {get;set;}

The .NET Framework for Windows Administrators

495

CountryCode Property System.String CountryCode {get;...
CreationClassName Property System.String CreationClassName...
CSCreationClassName Property System.String CSCreationClassNa...
CSDVersion Property System.String CSDVersion {get;s...
CSName Property System.String CSName {get;set;}
CurrentTimeZone Property System.Int16 CurrentTimeZone {g...
DataExecutionPrevention_32BitApplications Property System.Boolean DataExecutionPre...
DataExecutionPrevention_Available Property System.Boolean DataExecutionPre...

And that’s just a partial list! No, the Framework object is much more generic. If we were actu-
ally using the Framework directly, we wouldn’t have all of these properties; instead, we’d use the
ManagementObject class’ Get() method to retrieve the property we wanted. For example, object.
Get(“BuildNumber”) would get the BuildNumber property. But in PowerShell, we don’t have to do that,
because PowerShell has adapted the object for us. The clue is in the TypeName shown by Get-Member:

 TypeName: System.Management.ManagementObject#root\cimv2\Win32_OperatingSystem

PowerShell’s tell us that it’s adapted this object to directly represent the root\cimv2\Win32_
OperatingSystem WMI class. What PowerShell has done is gone in and retrieved all of the WMI class
properties, and constructed a customized object with all the properties that the WMI class has. That
way, what we get in PowerShell “looks” like we think a Win32_OperatingSystem WMI class should
look like. PowerShell also adapts the WMI class’ methods, such as Reboot() and Shutdown(), so we can
call them directly. The Framework would have us call the InvokeMethod() method, which is more cum-
bersome. By and large, then, PowerShell’s adaptation makes it easier to work with Framework objects.

Adaptation Details
Sometimes, however, you need to work directly with the actual Framework object. Sometimes this
is because PowerShell isn’t adapting some function or feature that you want to use; often times, it’s
because—as in the case of WMI—PowerShell’s adaptation is actually creating an entirely different
object from the one the Framework returned. Therefore, PowerShell provides four different “views” of an
object:

The adapter view, which is called PSADAPTED•

The actual, raw object, which is called PSBASE•

Just the elements that PowerShell has added to the object, called PSEXTENDED•

The adapter object itself, called PSOBJECT•

As we covered in the “Working with XML Documents” chapter, PowerShell does a ton of working
adapting an XML document to look like an object hierarchy; XML looks nothing like that in the raw
Framework world. For example, you can create and view a simple XML document object as follows:

PS C:\> $x = [xml]"<root><tag /></root>"

To see what PowerShell has done with that, just pipe $x to Get-Member. PowerShell will claim you’ve
got a System.Xml.XmlDocument type of object, which is true enough (the Get-Member output is
lengthy, so we’re not including it here—try it for yourself). However, if you look at the various other
objects, you’ll see something different. For example, try this:

PS C:\> $x.psbase

496

Windows PowerShell: TFM • 2nd Edition

NodeType : Document
ParentNode :
DocumentType :
Implementation : System.Xml.XmlImplementation
Name : #document
LocalName : #document
DocumentElement : root
OwnerDocument :
Schemas : System.Xml.Schema.XmlSchemaSet
XmlResolver :
NameTable : System.Xml.NameTable
PreserveWhitespace : False
IsReadOnly : False
InnerXml : <root><tag /></root>
SchemaInfo : System.Xml.Schema.XmlSchemaInfo
BaseURI :
Value :
ChildNodes : {root}
PreviousSibling :
NextSibling :
Attributes :
FirstChild : root
LastChild : root
HasChildNodes : True
NamespaceURI :
Prefix :
InnerText :
OuterXml : <root><tag /></root>

Looking at $x.psadapted, however, reveals the adapted object, in which the XML’s document structure is
converted into an object hierarchy:

PS C:\> $x.psadapted

root

root

The adapted object is what you work with normally, so just typing $x is the same as typing
$x.psadapted. The point is that the PSBASE version—the raw object—provides very different proper-
ties and methods. So, what are the differences? Well, for example, $x alone won’t allow us to access the
native XML DocumentElement property:

PS C:\> $x.documentelement
PS C:\>

PowerShell simply returns nothing, because the adapted view of $x doesn’t have a DocumentElement.
We can access that via the PSBASE, however:

PS C:\> $x.psbase.documentelement

tag

PS C:\>

The .NET Framework for Windows Administrators

497

Thus, PSBASE is a means of accessing the raw, un-adapted Framework class. Most PowerShell objects
are adapted to some degree or another; for example, let’s look at the various views for a process object
obtained using Get-Process:

PS C:\> $p = get-process
PS C:\> $p.psbase

Length : 70
LongLength : 70
Rank : 1
SyncRoot : {acrotray, Ati2evxx, Ati2evxx, audiodg...}
IsReadOnly : False
IsFixedSize : True
IsSynchronized : False

PS C:\> $p.psextended

 Count

 70

PS C:\> $p.psobject

Members : {Count, Length, LongLength, Rank...}
Properties : {Count, Length, LongLength, Rank...}
Methods : {Get, Set, Address, get_Length...}
ImmediateBaseObject : {acrotray, Ati2evxx, Ati2evxx, audiodg...}
BaseObject : {acrotray, Ati2evxx, Ati2evxx, audiodg...}
TypeNames : {System.Object[], System.Array, System.Object}

PS C:\> $p.psadapted

Length : 70
LongLength : 70
Rank : 1
SyncRoot : {acrotray, Ati2evxx, Ati2evxx, audiodg...}
IsReadOnly : False
IsFixedSize : True
IsSynchronized : False

You can see that the extensions—PSEXTENDED—is actually a count, since what Get-Process returns
is a collection. Normally, $p wouldn’t have a Count property; the extensions—part of PowerShell’s
adaptation, in other words—provides this property. The PSBASE shows that the normal property name
is Length. However, PowerShell adds the Count property to maintain consistency with other portions
of the Framework, which use Count rather than Length. In other words, the PowerShell team decided
to standardize on Count, and added it to those objects that were already using Length.

498

Windows PowerShell: TFM • 2nd Edition

It’s a Bypass!
If PSBASE still isn’t making sense to you, then think about it this way: Normally, PowerShell tries
to simplify Framework classes for you, and what you see in PowerShell is that “simplified” version.
PSBASE allows you to bypass the simplification, when desired, and work directly with the “under
the hood” Framework class.

Using Framework Objects Directly
Of course, you can use PSBASE to work directly with any Framework objects that PowerShell is
retrieving for you. But what about other Framework objects, ones that PowerShell isn’t already adapting
and loading for you? PowerShell does have the ability to load Framework assemblies (DLLs) and utilize
the classes they contain. Perhaps the best example we have of this is loading up the Framework’s speech
synthesizer (available in version 3.0 and later of the Framework).

Loading Assemblies into PowerShell
Framework classes are contained in assemblies, which are stored in files on your hard drive, primarily
as DLL files in the %windir%\Microsoft.NET\Framework\version\ folder. We want to work with the
System.Speech.Sythesis.SpeechSythesizer class, which is conveniently documented at http://msdn2.
microsoft.com/en-us/library/
system.speech.synthesis.speechsynthesizer.aspx; even more conveniently, the documentation tells us
right at the top of the page that this is in the System.Speech.dll file. Here’s how to load the assembly:

PS C:\> [system.reflection.assembly]::LoadWithPartialName("System.Speech")

Simple enough. Now the classes within that assembly are available to us.

Using a Framework Class
When you load up a class for the first time, you’re executing a special method of the class called its
constructor. Sometimes, classes have multiple constructors that accept different input arguments;
some classes will have a constructor that doesn’t require any arguments at all. According to the
SpeechSythesizer documentation, the only available constructor for this class doesn’t have any argu-
ments at all. So, creating a new instance of the class is as easy as this:

PS C:\> $speech = new-object system.speech.synthesis.speechsynthesizer

We put the new instance into a variable, $speech, which will give us access to its properties and
methods:

PS C:\> $speech.speak("This PowerShell stuff rocks!")

Remember, piping $speech to Get-Member will reveal its properties and methods; some of these may
seem complicated because for objects like this PowerShell isn’t doing any adaptation—you’re getting the
raw object from the Framework.

On our system, the default voice is a female voice. If we wanted to switch to a male voice, we’d—
well, we’d look in the online documentation, is what we’d do. The page listing the members of the
SpeechSynthesis class is at http://msdn2.microsoft.com/

The .NET Framework for Windows Administrators

499

en-us/library/system.speech.synthesis.speechsynthesizer_members.aspx, and we see a property named
Voice. Clicking on that property to learn more, we see that it’s a read-only property. That means we can’t
change it, so it’s not what we’re looking for. Back to the members page.

There’s a method called SelectVoice()—that looks promising. The docs say that it takes one argument,
which is the name of the voice to select. No clues on what might be valid values here, though, so it’s
off to our favorite search engine to try to find an example. We punch in speechsynthesizer selectvoice
method and hope for the best; we’re quickly sent to http://www.codeproject.com/useritems/
Vista_Speech_Recognition.asp?msg=1977267, which offers a full tutorial on the topic.

Why the Runaround?
Why are we sharing this exploration process with you? Because this book isn’t going to be a com-
plete reference—or even an incomplete reference—to the .NET Framework. Our goal is to show
you how we find this information, so that you can duplicate our self-education techniques and learn
to educate yourself about other useful Framework classes.

It turns out after reading the fairly lengthy tutorial that we could do this faster with the
SelectVoiceByHints() method, which allows us to pass a gender and age, and lets the Framework figure
out what “voice” fits that. There’s no clue as to how we specify a gender, so we decide to just guess. We
run this in PowerShell:

PS C:\> $speech.selectvoicebyhints("male",35)
Cannot convert argument "1", with value: "35", for "SelectVoiceByHints" to type "System.S
peech.Synthesis.VoiceAge": "Cannot convert value "35" to type "System.Speech.Synthesis.Vo
iceAge" due to invalid enumeration values. Specify one of the following enumeration value
s and try again. The possible enumeration values are "NotSet, Child, Teen, Adult, Senior"
."
At line:1 char:27
+ $speech.selectvoicebyhints(<<<< "male",35)

Well, it bombed, but it gave us a great clue! Now we try this:

PS C:\> $speech.selectvoicebyhints("male","senior")
PS C:\> $speech.speak("How's this, young man?")

And it works great. So, you’ve seen how to actually find the assembly that a class lives in, load that
assembly, create a new instance of a class, and then utilize the class—along with an Internet tour of how
to find out how to use a class.

Fun (and Useful) Tricks With the .NET Framework
You can do a number of useful things with the Framework. In the next few chapters, for example,
we’ll show you how to use it to access databases, build your own graphical user interfaces from within
PowerShell, utilize Web services, and much more. Right now, however, we offer a few short, incredibly
useful techniques.

Sending E-Mail
Sending e-mail from within PowerShell is easy, thanks to the Framework’s built-in System.Net.Mail
classes. And there’s a bonus: Because these functions live in the base System.dll assembly, you don’t
need to load any additional assemblies into PowerShell! The starting point is the System.Net.Mail.

500

Windows PowerShell: TFM • 2nd Edition

MailMessage class, which is a shortcut class used to create quick, ad-hoc e-mail messages. Once you
create a new instance of the class, you simply set a few properties (such as the body of the message, who
it’s going to, and so forth), and you’re done. Here’s where you start:

PS C:\> $mail = new-object system.net.mail.mailmessage

Now, we need to create the sending and recipient e-mail addresses. Note that these are actually entirely
new classes of the MailAddress type, so we’ll create them and assign them to variables:

PS C:\> $from = new-object system.net.mail.mailaddress("don@sapien.com")
PS C:\> $to = new-object system.net.mail.mailaddress("jhicks@sapien.com")

Next, we’ll assign the $from address to the From property of the message. Note that the To property
of the message is actually a collection, because we can add multiple recipients. To add one, we’ll use
the collection’s Add() method, passing in the address we want to add. We can do this as many times as
needed to add all the recipients. Finally, we’ll set the Subject and Body properties, which are simple text
strings. Note that you can add attachments, set Bcc and Cc recipients, and so forth; look up the System.
Net.Mail.MailMessage class in Microsoft’s MSDN Library (http://msdn.microsoft.com/library) for
details.

PS C:\> $mail.from = $from
PS C:\> $mail.to.add($to)
PS C:\> $mail.subject = "Test message"
PS C:\> $mail.body = "Hi, Jeffery!"

Last, we create one more new object, this time of the System.Net.Mail.SmtpClient class. Creating the
class requires us to pass along the name of our SMTP mail server; we then use the SmptClient’s Send()
method, passing in our mail message object, to actually send the message:

PS C:\> $client = new-object system.net.mail.smtpclient("mailserver")
PS C:\> $client.send($mail)

And that’s it. Of course, your mail server’s security comes into play, as well: For example, if your SMTP
server requires authentication, than this technique won’t work as-is. Instead, you’ll also have to set the
Credentials property of the SmtpClient object. It can also use a custom SMTP port, be forced to use
SSL, and so forth; consult its documentation in MSDN Library for details on these options.

Resolving Names by Using DNS
Here’s something fun to do with the System.Net.Dns class. This is an interesting class; if you look in the
documentation at http://msdn.microsoft.com/library, this class is listed as static, with a comment that
says, “The members of a static class are accessed directly without an instance of the class.” That means
you don’t need to create an instance of the class by using New-Object; instead, you can use the class
directly:

PS C:\> [system.net.dns]::gethostaddresses("msn.com")

IPAddressToString : 207.68.172.246
Address : 4138484943
AddressFamily : InterNetwork
ScopeId :

The .NET Framework for Windows Administrators

501

IsIPv6Multicast : False
IsIPv6LinkLocal : False
IsIPv6SiteLocal : False

This example illustrates the value of reading the documentation—without it, you could spend all day
trying to run New-Object System.Net.Dns and just keep getting error messages. The documentation
also reveals the other tasks this class can help accomplish, such as getting a host name by passing its IP
address (reverse lookup), getting the DNS host name of the local computer, and so forth.

Accessing Remote Event Logs
The System.Diagnostics.EventLog class provides access to event logs, including those on remote
computers:

PS C:\> $log = new-object System.Diagnostics.EventLog Application,Server2

The $log variable now represents the Application log of Server2. You can then use the log’s Clear()
method, for example, to clear it:

PS C:\> $log.Clear()

The log also provides WriteEntry() and WriteEvent() methods which can be useful, as well as methods
like ModifyOverflowPolicy(), which can reconfigure the log itself.

Making a Notification Icon
The Framework has the ability to place a notification icon in the task bar notification area. Using it, you
can display balloon tip-style notifications. You start by loading the System.Windows.Forms assembly
into the shell:

PS C:\> [reflection.assembly]::loadwithpartialname("System.Windows.Forms")

Because we need an icon for this, we also need to load the System.Drawing assembly:

PS C:\> [reflection.assembly]::loadwithpartialname("System.Drawing")

Next, we create a new icon and load a standard Windows .ICO file:

PS C:\> $icon = new-object system.drawing.icon("c:\myscriptsicon.ico")

Now, we create a new NotifyIcon and set its icon to be the icon we just created. We also set its Visible
property to $True so that it displays:

PS C:\> $notify = new-object system.windows.forms.notifyicon
PS C:\> $notify.icon = $icon
PS C:\> $notify.visible = $true

502

Windows PowerShell: TFM • 2nd Edition

Now we can display a balloon tip:

PS C:\> $notify.showballoontip(10,"Title","Message",[system.windows.forms.tooltipicon]::
warning)

The last bit determines the icon shown in the balloon tip; you can select Error, Info, None, or Warning.
The first number is the number of seconds that the balloon remains visible.

Reading and Writing Information in Databases

503

Chapter 41
Reading and Writing Information in Databases

Let’s get one thing clear from the outset: This chapter isn’t about managing database systems like
Microsoft SQL Server or Oracle, and it isn’t about designing and creating databases. Right now, none of
those database management systems provide PowerShell-specific capabilities for administration—that
is, they don’t provide cmdlets. Microsoft SQL Server does provide a set of .NET Framework classes
called SQL Management Objects (SMO) to accomplish administrative tasks, but using them is more
complicated than we can do justice to in a single chapter—it’s a book of its own, and it’s pretty difficult,
compared to how easy it’ll be once SQL Server provides a set of cmdlets for administration. Instead, our
goal is to help you utilize existing databases—whether those are SQL Server, Microsoft Access, Excel
spreadsheets, MySQL tables, or nearly any other type of database you may have—in your PowerShell
scripts. We’ll do so through the use of a few special .NET Framework classes.

Connecting to a Database
The first thing you’ll need is a database connection string. The Framework treats SQL Server and
other databases somewhat differently, so we’ll start with a non-SQL Server connection. Go to www.
ConnectionStrings.com and locate the type of database you want to connect to. We’ll use an Access
2007 database; if multiple connection strings are shown, look for one that says “OLE DB” or “OLEDB.”
For example, the Access 2007 connection string is shown as follows:

Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\myFolder\myAccess2007file.accdb;Persist Security
Info=False;

We, of course, need to modify that somewhat to meet our specific needs, primarily by specifying the cor-
rect path to the database file:

504

Windows PowerShell: TFM • 2nd Edition

Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\users\don\documents\sample.accdb;Persist Security
Info=False;

Finally, we’ll paste that into PowerShell, assigning the string to a variable for easier use:

PS C:\> $connstr = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source=C:\users\don\documents\s
ample.accdb;Persist Security Info=False;"

Next, we need to import the assembly that contains the Framework’s database functionality: System.
Data:

PS C:\> [system.reflection.assembly]::LoadWithPartialName("System.Data")

And we’ll create a new OleDbConnection object. This is the object you use to connect to non-SQL
Server databases (SQL Server uses a SqlConnection object—it has a different name, but you use it
exactly as shown here). After creating the new object, we’ll set its ConnectionString property to be our
connection string, and then we’ll open the connection.

PS C:\> $conn = new-object system.data.oledb.oledbconnection
PS C:\> $conn.ConnectionString = $connstr
PS C:\> $conn.open()

That’s it - our connection is open and the database is ready for use.

Building a Command
Next, we need to tell the database to do something. The instruction language used, no matter what type
of database we’re actually connected to, is the Structured Query Language, or SQL. This book isn’t
intended as a learning guide for SQL; suffice to say that SQL has four main operations:

SELECT, which queries rows from the database•

INSERT, which adds rows to the database•

DELETE, which removes rows from the database•

UPDATE, which changes existing rows in the database•

We’re going to start with a SELECT query. We begin by putting the query itself into a variable:

PS C:\> $query = "SELECT * FROM Test ORDER BY ColumnA"

Next, we create a new Command object (specifically, an OleDbCommand; SQL Server uses a
SqlCommand that works the same way). We’ll set it to use our existing, open Connection, and give it
our query text:

PS C:\> $cmd = new-object system.data.oledb.oledbcommand
PS C:\> $cmd.Connection = $conn
PS C:\> $cmd.CommandText = $query

Reading and Writing Information in Databases

505

Executing the Command and Working with the Results
Because our query is expected to return rows of data, we need to store those rows someplace. We’ll use
a variable; what comes back from the Command will be a DataReader object, containing the rows our
query returned, and that object will be placed into our variable:

PS C:\> $reader = $cmd.ExecuteReader()

As an aside, if our query wasn’t expected to return any rows—if it were an INSERT, UPDATE, or
DELETE query, for example—we’d use a slightly different method:

PS C:\> $cmd.ExecuteNonQuery()

Notice that we don’t save the results into a variable this time, because there are no results expected back.
However, in our example, we do have the $reader variable, which contains our query results. The first
thing we need to do is position the DataReader’s internal “pointer” to the first row of data:

PS C:\> $reader.read()
True

The return value of TRUE, which could also have been saved in a variable, tells us that there’s at least
one row beyond this one when we’re ready for it. Right now, we’re on the first row of data and ready to
access its columns. We have some choices in how we do this: If we know what order the columns are in
the database, we can access the columns’ values using their ordinal position:

PS C:\> $reader.GetValue(0)
Value1
PS C:\> $reader.GetValue(1)
Value2

If we only know the columns’ names, and not their position, it’s a bit trickier:

PS C:\> $reader.GetValue($reader.GetOrdinal("ColumnA"))
Value1

Here, we’ve used the GetOrdinal() function to get the ordinal, and passed that to GetValue(), which
only accepts ordinals. When we’re done working with those rows and want to go on to the next one, we
execute Read() again:

PS C:\> $reader.read()
True
PS C:\> $reader.read()
True
PS C:\> $reader.read()
False

When Read() finally returns FALSE, it means we’ve moved past the available data. Now, any attempt to
access the columns will result in an error. Of course, in a script you’d be more likely to place this into a
loop of some kind:

506

Windows PowerShell: TFM • 2nd Edition

While ($reader.read()) {
 $reader.getvalue(0)
}

Remember: To change data, there’s no “SetValue” method; instead, you issue a new query using
UPDATE. Keep in mind, however, that so long as a DataReader is open on a connection, that con-
nection can’t be used for anything else—so you may have to create a second connection in order to
make database changes. In order to free up the connection being used by the DataReader, close the
DataReader:

PS C:\> $reader.close()

You should also close the overall database connection when you’re finished using it:

PS C:\> $conn.close()

The SQL Server Difference
SQL Server works almost the same way, but has special Framework objects:

For connections, use System.Data.Sql.SqlConnection•

For commands, use System.Data.Sql.SqlCommand•

Executing a command returns a System.Data.Sql.SqlDataReader•

Apart from these differences in object names, the objects work identically to their OleDb counterparts.
The only other major difference is that the connection string expected by the SqlConnection object is
somewhat different. www.ConnectionStrings.com lists them, under the heading “SQL Native Client.”
For example:

Driver={SQL Native Client};Server=myServerAddress;Database=myDataBase;Uid=myUsername;Pwd=myPasswo
rd;

A number of variations exist depending on what kind of security connection SQL Server is configured
to use, and so forth; the Connection Strings Web site lists them all and provides examples.

A Practical Example
Here’s a real-world example: We’ll populate a database with computer names and write a script that
reads those names, retrieves the computers’ service pack version numbers, and places those numbers into
the database.

SPInventoryToAccess.ps1

Assumes database is Inventory.accdb
Assumes table name is SPInventory
Assumes column names are ComputerName and SPVersion
and that both columns are text (not numeric) values

function GetSP($computer) {
 $wmi = gwmi win32_operatingsystem -computer $computer
 foreach ($item in $wmi) {

Reading and Writing Information in Databases

507

 $item.servicepackmajorversion
 }
}

function SetSP($computer,$spack) {
 $connstr = "Provider=Microsoft.ACE.OLEDB.12.0;" + `
 "Data Source=C:\users\user\documents\inventory.accdb" + `
 ";Persist Security Info=False;"

 # Open Connection
 $conn = new-object system.data.oledb.oledbconnection
 $conn.ConnectionString = $connstr
 $conn.open()

 # Create query
 $query = "UPDATE SPInventory SET SPVer = '$spack' " + `
 "WHERE ComputerName = '$computer'"

 # Execute query
 $cmd = New-Object system.Data.OleDb.OleDbCommand
 $cmd.connection = $conn
 $cmd.commandtext = $query
 $cmd.executenonquery()

 $conn.close()

}

[system.reflection.assembly]::LoadWithPartialName("System.Data")

Connection String
$connstr = "Provider=Microsoft.ACE.OLEDB.12.0;" + `
 "Data Source=C:\users\user\documents\inventory.accdb" + `
 ";Persist Security Info=False;"

Open Connection
$conn = new-object system.data.oledb.oledbconnection
$conn.ConnectionString = $connstr
$conn.open()

Create query
$query = "SELECT ComputerName, SPVersion FROM SPInventory"

Get Records
$cmd = New-Object system.Data.OleDb.OleDbCommand
$cmd.connection = $conn
$cmd.commandtext = $query
$reader = $cmd.executereader()

Read rows
While ($reader.read()) {
 $computer = $reader.getvalue(0)
 $spack = GetSP $computer
 SetSP $computer $spack
}

Close everything
$reader.close()
$conn.close()

Note that our script makes some assumptions about the location and structure of the database, so
we’ve documented those assumptions in the script’s initial comments. We’ve created separate functions
to retrieve the service pack version and to write the service pack to the database; this simply helps to

508

Windows PowerShell: TFM • 2nd Edition

encapsulate those particular tasks. Also notice that the SetSP function creates an all-new connection to
the database. Some notes on what we did there:

By using the same variable names as the main script, this function is creating • new variables in its
own private scope. See our discussion on scope in the chapter “Scripting Overview.”

The function can’t use the main script’s connection, because that connection is being used by the •
DataReader. So long as the DataReader is open, that connection is locked to it and can’t be used to
issue other queries.

Opening and closing a connection over and over again isn’t necessarily resource-efficient, but it •
keeps the function self-contained. An alternative would have been to open a second connection in
the main body of the script, and to pass that connection as a third input argument to SetSP. That
way, the function could stay open throughout the script and be re-used by the function. We’d just
have to remember to close the second connection before the script finished.

Here’s a complete walkthrough of the script, one section at a time. First up is our GetSP function, which
simply uses WMI to query a specified computer. It outputs that computer’s ServicePackMajorVersion
property:

function GetSP($computer) {
 $wmi = gwmi win32_operatingsystem -computer $computer
 foreach ($item in $wmi) {
 $item.servicepackmajorversion
 }
}

Next is the SetSP function. We begin by defining our connection string:

function SetSP($computer,$spack) {
 $connstr = "Provider=Microsoft.ACE.OLEDB.12.0;" + `
 "Data Source=C:\users\user\documents\inventory.accdb" + `
 ";Persist Security Info=False;"

Then we open the connection:

 # Open Connection
 $conn = new-object system.data.oledb.oledbconnection
 $conn.ConnectionString = $connstr
 $conn.open()

And we create a new SQL UPDATE query. Notice our use of the input arguments, $spack and $com-
puter, to provide values to the SQL query:

 # Create query
 $query = "UPDATE SPInventory SET SPVer = '$spack' " + `
 "WHERE ComputerName = '$computer'"

Finally, we create a new command, execute it, and close the connection:

 # Execute query
 $cmd = New-Object system.Data.OleDb.OleDbCommand
 $cmd.connection = $conn
 $cmd.commandtext = $query
 $cmd.executenonquery()

Reading and Writing Information in Databases

509

 $conn.close()

}

Here’s the first line of the script that executes—remember, the functions are just defined at this point; we
haven’t actually called them yet. The first line of the script loads the System.Data assembly:

 [system.reflection.assembly]::LoadWithPartialName("System.Data")

Note that this won’t create an error if the assembly is already loaded, so it’s safe to execute even if the
assembly might have already been loaded by something else. Next we define and open our connection to
the database—the one that the main body of the script will use:

Connection String
$connstr = "Provider=Microsoft.ACE.OLEDB.12.0;" + `
 "Data Source=C:\users\user\documents\inventory.accdb" + `
 ";Persist Security Info=False;"
Open Connection
$conn = new-object system.data.oledb.oledbconnection
$conn.ConnectionString = $connstr
$conn.open()

We create a SQL SELECT query:

Create query
$query = "SELECT ComputerName, SPVersion FROM SPInventory"

And then we execute that query, saving the resulting DataReader object into $reader:

Get Records
$cmd = New-Object system.Data.OleDb.OleDbCommand
$cmd.connection = $conn
$cmd.commandtext = $query
$reader = $cmd.executereader()

We use a loop to move through the returned rows one at a time, retrieving the first column as the com-
puter name. This is passed to GetSP to get the service pack version, and both the computer name and
service pack version are passed to SetSP to update the information in the database:

Read rows
While ($reader.read()) {
 $computer = $reader.getvalue(0)
 $spack = GetSP $computer
 SetSP $computer $spack
}

510

Windows PowerShell: TFM • 2nd Edition

Finally, when we’re all done, we close everything:

Close everything
$reader.close()
$conn.close()

As you can see, working with databases is reasonably straightforward, and they provide a good deal of
extra functionality for your scripts.

Working with Windows Forms

511

Chapter 42
Working with Windows Forms

Windows Forms, or WinForms, are a segment of the .NET Framework that allows developers to cre-
ate graphical applications. The idea is that all the common graphical user interface controls—buttons,
checkboxes, and so forth—are contained with the Framework itself, so that all you have to do is tell
the Framework where to put them, what size to make them, and other details. The Framework actually
takes care of drawing them and managing them on the screen. Well, because PowerShell is built on the
Framework, it can access all of WinForms, meaning you can use PowerShell to construct graphical user
interfaces.

Caveats, Restrictions, and Can’t-Dos
Before we get carried away, however, you should know that building a GUI in PowerShell isn’t necessar-
ily easy. For one, there’s no Visual Studio-like GUI that lets you drag UI elements around; instead, you’ll
be manually positioning these elements on a pixel-by-pixel basis. For another, PowerShell can’t interact
with all of the various controls that WinForms supports. That’s because PowerShell has some restric-
tions on the type of events it can easily hook up to—which means now we need to discuss what events
actually are.

Introducing Events
You’ve already learned that objects, generically speaking, have properties and methods. Properties
describe what an object is and does, while methods tell an object to do something. Objects also support
events, which are things that can happen to an object. For example, when you move your mouse around
the screen in Windows, little “MouseMove” events are happening to everything you pass your mouse
over. Most objects don’t react to this particular event; others—like the window minimize and maximize

512

Windows PowerShell: TFM • 2nd Edition

controls in Windows Vista—may react by highlighting themselves or some other action.

When an event occurs, we say that the event is raised. You can write code, called an event handler, which
is executed when the event is raised. Event handlers are what allow you to do something when an event
happens. For example, when a user clicks a button, the “Click” event is raised, and your “Click” event
handler, if you’ve written one, is executed. This is broadly referred to as event-driven programming, since
your code only executes in response to events that are raised. This is a different model than the procedural
programming normally done in PowerShell, where a script simply contains a set of instructions that are
followed in sequential order—the script doesn’t wait around for things to happen, it just executes one
line at a time.

The number of and type of events supported by a given control, such as a button or checkbox, is deter-
mined by Microsoft, and these are hard coded into the Framework. So, if a particular control doesn’t
support a “MouseMove” event, then you won’t be able to “detect” that event happening to the control,
and you won’t be able to write code that responds to that event.

When an event does occur to a control, the Framework sends your event handler some input arguments.
These arguments allow your event handler to determine, for example, what control the event occurred to.
Sometimes, the arguments might also contain state information, such as whether a Shift or Ctrl key was
held down at the time the event occurs. The exact arguments passed into your delegate differ depending
on the control and the event. For example, some simple controls, like buttons, pass a minimal number of
arguments for their “Click” event; other, more complex controls might pass additional arguments for a
“Click” event. The exact arguments passed by a particular control’s event are collectively referred to as the
event’s signature. In a bit, we’ll look at how you can access these arguments, but first let’s start building a
graphical user interface.

PowerShell and Events
PowerShell allows you to “connect” your code to an event, but only if the event uses a particular signa-
ture. We’ll get into this in more detail later in the chapter—it’ll make more sense after we’ve shown you
some of this working. The good news is that, as an administrator, you probably only want to create fairly
simple graphical user interfaces, and PowerShell won’t have any problems with those. So, let’s get started.

But First…You Need to Read the Docs
Throughout this chapter, we’re going to be referring to the .NET Framework documentation. You can
find it online, for free, at http://msdn.microsoft.com/library. Because browsing through the documenta-
tion’s table of contents is extremely time-consuming, we’re primarily going to be relying on the search
function within MSDN Library to look up specific classes by their type name. We urge you to follow
along. We’re not going to be republishing the information in the documentation, since what’s online is
already free and up-to-date, and if you’re going to be working with WinForms, you’re going to need to
know how to use the documentation—so you might as well start getting used to it now!

Creating a Form
When you look at a window, or a dialog box, or pretty much anything similar in Windows, you’re look-
ing at a form. A blank form doesn’t contain anything you can interact with directly, except perhaps
minimize, maximize, and close buttons in the form’s title bar. Rather, a form is a blank canvas on which
other controls are placed. In fact, a form is often referred to generically as a container control, meaning it
is a control that can contain other controls.

To create a new form, we first need to load the Framework assembly that contains the WinForms
classes. Then, we’ll instantiate a new form, set some of its properties for size, appearance, and position,

Working with Windows Forms

513

and then display the form.

By the Way…
We’ll be doing the majority of our work in a script, rather than from the command line. Everything
we’re showing you can be typed directly into the command line, but it’s very time-consuming to
keep retyping it over and over as you make tweaks. This is an instance where a PowerShell script
is really the best way to do things.

load WinForms
[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") | Out-Null

create form
$form = New-Object Windows.Forms.Form
$form.text = "PowerShell Menu"
$form.top = 10
$form.left = 10
$form.height = 250
$form.width = 200
$form.visible = $true

Of course, if you run this script, you’ll see a window quickly appear and disappear. That’s because the
$form variable is created within the scope of this script; when the script ends, the scope goes away—
and so $form is discarded and the window it represents disappears. Were you to dot-source this script,
or simply type it into the command line directly, the window would stay visible. We can also make one
minor change to the last line of our script:

$form.visible = $true
$form.showdialog()

This will remove our explicitly setting the form’s Visible property, and instead call the form’s
ShowDialog() method, which makes the window modal. In other words, no other code will execute
until the window is closed. Use the window’s close button (in its title bar) to close it, and PowerShell
displays “Cancel,” which is the value returned by ShowDialog() when a form is closed in this fashion.
Here’s the form so far:

514

Windows PowerShell: TFM • 2nd Edition

Adding Controls
Okay, now we’ve got a window—what are we going to do with it? We could probably start by adding
some controls. We’re going to focus on the simpler controls provided by the Framework. Here are their
Framework class names, along with the URL of the control’s member list (listing its properties, meth-
ods, and events):

Label: System.Windows.Forms.Label •
http://msdn2.microsoft.com/en-us/library/
system.windows.forms.label_members.aspx

Button: System.Windows.Forms.Button •
http://msdn2.microsoft.com/en-us/library/
system.windows.forms.button_members.aspx

Checkbox: System.Windows.Forms.CheckBox •
http://msdn2.microsoft.com/en-us/library/
system.windows.forms.checkbox_members.aspx

Radio button (or option button): System.Windows.Forms.RadioButton •
http://msdn2.microsoft.com/en-us/library/
system.windows.forms.radiobutton_members.aspx

Text box: System.Windows.Forms.TextBox •
http://msdn2.microsoft.com/en-us/library/
system.windows.forms.textbox_members.aspx

Combo box (drop-down list box): System.Windows.Forms.ComboBox •
http://msdn2.microsoft.com/en-us/library/
system.windows.forms.combobox_members.aspx

List box: System.Windows.Forms.ListBox •
http://msdn2.microsoft.com/en-us/library/
system.windows.forms.listbox_members.aspx

To create a new control, all you need to know is its class name:

$button = new-object System.Windows.Forms.Button

To customize the control’s appearance, simply modify one or more of its properties (which are listed
on the members page we referenced above). Note that each control will have a Top and Left property,
which are measured from the top left corner of the parent control. So, a Button with a Top of 10 and a
Left of 10 will appear 10 pixels down and to the right within whatever form it is eventually placed in.
To actually add the control to the form, use the form’s Controls collection, which has an Add() method,
as shown here:

create button
$button = New-Object Windows.Forms.Button
$button.text = "Close"
$button.height = 20
$button.width = 150
$button.top = 2
$button.left = 25
$form.controls.add($button)

Of course, make sure you move any call to the form’s ShowDialog() method to the end of this code!

Working with Windows Forms

515

Right now, were you to run the form, clicking the button wouldn’t do anything. That’s because we
haven’t created an event handler yet, nor have we “attached” the event handler to the button’s Click
event. Here’s our form with the button added:

You’ll notice that we have some tweaking to do with that button’s position, but hopefully you get the
idea behind adding a simple control to a form.

Creating Event Handlers
Event handlers are simply PowerShell script blocks, which execute in response to a given event. For
simple events—that is, those using the simple signature we examined earlier—you can use a simple
syntax to attach the script block to the desired event. As a general practice, we usually attach all of our
event handlers before we add the control to the form, so the following is a revised example of our script
(to save space, we’re omitting the code that build the actual form—we’re assuming you still have that in
there):

create button
$button = New-Object Windows.Forms.Button
$button.text = "Close"
$button.height = 20
$button.width = 150
$button.top = 2
$button.left = 25

create event handler for button
$event = {
 $form.close()
}

attach event handler
$button.Add_Click($event)

attach controls to form
$form.controls.add($button)

$form.showdialog()

The $event variable contains our script block—and notice that this is not contained within quotation
marks! In the event handler code, we’re simply calling the Close() method of our form object. We attach
our event handler to the Click event of the button by calling the special Add-Click() “method.” You can
refer to any event in this fashion: Add_ followed by the event name. We then attach the button to the
form and show the form as a dialog box.

516

Windows PowerShell: TFM • 2nd Edition

So, the basic steps of working with WinForms are:

Create the form and set its properties.•

Create one or more controls and set their properties.•

Create event handlers and attach them to controls.•

Add the controls to the form.•

Display the form.•

The tricky part, if there is one, is knowing what control properties and events are useful, and tweaking
property settings—like control positions and sizes—to achieve the appearance you’re after.

Useful Control Events and Properties
Again, we’re going to focus on a few basic controls, along with the form itself. For each of these, we’ll
call out specific properties and events that we’ve found to be the most useful, but keep in mind that
these are a very small subset of the controls’ total capabilities; you’ll need to review the Framework doc-
umentation (we gave you URLs earlier) for the complete details. Note that some properties, methods,
and events might certainly qualify as “interesting,” but are very complex to use with a Visual Studio-like
graphical designer (and, even if you have Visual Studio, it won’t do you any good in PowerShell). For
example, creating a set of drop-down menus for a form is pretty complex, and involves several different
controls; creating this in PowerShell code is beyond the scope of what we’re able to cover here.

Also, all controls have a Top, Left, Height, and Width property; we won’t be adding those to any of the
lists that follow, but you’ll need to set them in order to achieve the appearance you’re after. All controls
also have a Name property, which you can set to create a name for the control; this isn’t always terribly
useful inside PowerShell, though, where you’ll primarily refer to a control by the variable that “contains”
the control. However, we’ll show you some examples later where the Name property can be useful.

Forms
A Form represents a window, either one that’s resizable, or a fixed-size dialog box. Interesting properties
include:

ControlBox – Either $True or $False; controls whether or not the form has a “control box” in the •
upper-left corner of its title bar.

Controls – A collection containing all the controls contained on the form. Use this collection’s •
Add() method to add new controls to the form.

DialogResult – You set this property before closing a form that was displayed using the •
ShowDialog() method; this property determines the “result” returned by ShowDialog() – can be
one of:

[System.Windows.Forms.DialogResult]::Aborto

[System.Windows.Forms.DialogResult]::Cancelo

[System.Windows.Forms.DialogResult]::Ignoreo

[System.Windows.Forms.DialogResult]::Noo

[System.Windows.Forms.DialogResult]::Noneo

[System.Windows.Forms.DialogResult]::OKo

Working with Windows Forms

517

[System.Windows.Forms.DialogResult]::Retryo

[System.Windows.Forms.DialogResult]::Yeso

FormBorderStyle – Controls the border style of the form. Set this to one of the following:•

[System.Windows.Forms.FormBorderStyle]::Fixed3Do

[System.Windows.Forms.FormBorderStyle]::FixedDialogo

[System.Windows.Forms.FormBorderStyle]::FixedSingleo

[System.Windows.Forms.FormBorderStyle]::FixedToolWindowo

[System.Windows.Forms.FormBorderStyle]::Noneo

[System.Windows.Forms.FormBorderStyle]::Sizableo

[System.Windows.Forms.FormBorderStyle]::SizableToolWindowo

MaximizeBox, MinimizeBox – Controls whether or not the form has maximize or minimize but-•
tons; set to $True or $False.

Text – The text shown in the form’s title bar.•

TopMost – Set to $True or $False to control whether this form appears “on top” of all other •
windows.

Interesting methods include:

Activate() – Gives the form the • focus, making it the active window.

BringToFront() – Brings the form to the front of Windows’ • z-order, making it (at least temporar-
ily) the topmost window, but not necessarily making it the active window.

Close() – Closes the form.•

Hide() – Hides the form.•

ShowDialog() – Shows the form • modally, meaning the remainder of the application (that is, your
script) stops running until the form is closed.

Show() – shows the form • non-modally, which means your application (your script) continues
running.

Forms also have events that you can create event handlers for:

Click – Raised when the form is clicked.•

Closing and Closed – Raised when the form is asked to close and when it finally closes.•

Resize – Raised when the form is resized.•

Labels
A label is simply a non-editable text area. You could use this to provide a label for a text box, for exam-
ple. The only property you’ll concern yourself with on a label is its Text property, which controls what
the label contains. Labels don’t have any frequently-used methods or events.

Buttons
A Button is a clickable command button, which is placed on a form or within another container. One

518

Windows PowerShell: TFM • 2nd Edition

interesting property is Text, which is the text that appears on the face of a button.

Buttons don’t really have any methods that you’ll frequently use. The main method you’ll worry about is
Click. The Click method is raised when the button is clicked.

Text Boxes
Text boxes provide a place for users to type textual input. Apart from their size and position controls,
they have a few useful properties:

Enabled – Set to $False to disable the text box (grey it out); the default, $True, allows the text box •
to function normally.

MaxLength – the maximum number of characters that can be typed into the text box.•

MultiLine – Set this to $True to make the text box a multi-line control with built-in word •
wrapping.

PasswordChar – set this to a single character, such as *, to force the text box to only display this •
character for whatever is typed.

ReadOnly – set this to $True to allow a text box to display text (e.g., you can change the Text •
property), but to prohibit editing of that text by the user.

Text – provides access to the text that has been typed inside the text box. You can set this property •
to pre-fill the text box, if desired.

We’ve never found ourselves using any of a text box’s methods on a regular basis, although there are a
couple of events you’ll want to know about:

Click – Raised when the text box is clicked.•

Enter – Raised when the cursor enters the text box.•

Leave – Raised when the cursor leaves the text box.•

TextChanged – Raised when the text inside the text box changes—even by so much as a single •
character. You have to be careful with this event; if your event handler changes the text, then
another TextChanged event will be raised, which could easily create an endless loop.

Check Boxes
Check boxes are used to indicate “yes/no” choices. The primary properties you’ll worry about are:

Checked – $True or $False depending whether or not the check box is checked•

Text – The text that appears alongside the check box•

Check boxes don’t really have any frequently used methods, but they do have a useful event:

CheckChanged – Raised when the check box is checked or unchecked•

Radio Buttons
Radio buttons are used to present a short (usually three or fewer items) series of choices, from which the
user selects a single choice. Important properties are:

Checked – $True or $False depending on whether or not this radio button is selected•

Working with Windows Forms

519

Text – The text that appears alongside the radio button•

Only a single radio button in a set can be selected at a single time. All radio buttons included on a form
are considered part of a set; if you want to have two sets of radio buttons, then at least one of those sets
needs to be enclosed in another container-style control, such as a System.Windows.Forms.GroupBox
control. Radio buttons don’t have any especially important methods, but they do each have one impor-
tant event:

CheckChanged – Raised when the radio button is selected or de-selected. Note that this event will •
usually raise twice: Once for the radio button that was just selected, and then once for the radio
button which was subsequently de-selected.

List Boxes
List boxes contain a list of text choices, from which the user may select one or more. Because multi-
select list boxes are somewhat more complicated, we’re mainly only covering a list box that’s configured
to allow a single item to be selected. Important properties are:

Items – Retrieves a collection of the items within the list box•

SelectedIndex – The zero-based index number of the currently-selected list item; contains -1 if no •
item is selected

SelectedIndices – A collection of zero-based index numbers for selected items (if multiple-item •
selection is allowed)

SelectedItem – the currently-selected item•

SelectedItems – a collection of selected items (if multiple-item selection is allowed)•

SelectionMode – the means by which items are selected; can be one of the following:•

[System.Windows.Forms.SelectionMode]::MultiExtended – multiple items can be o
selected using Shift, Ctrl, and the arrow keys

[System.Windows.Forms.SelectionMode]::MultiSimple – multiple items can be o
selected by holding down the Ctrl key

[System.Windows.Forms.SelectionMode]::None – no items can be selectedo

[System.Windows.Forms.SelectionMode]::One – one item can be selected (this is the o
default)

Text – The text of the currently-selected item•

There is a useful method you should know about:

FindString() – Finds the first item in the list that matches the specified string (useful for finding •
the index number of an item when all you know is the item text)

And, of course, an event or two:

SelectedIndexChanged – Raised when the selection changes•

TextChanged – Raised when the Text property is changed•

The tricky part with a list box is, of course, getting items into it: You have to use the Items collection,
which has an Add() method:

$listbox.items.add("New Item")

520

Windows PowerShell: TFM • 2nd Edition

Each time you add an index, it is added to the end of the list. However, the method also outputs the new
index number. If you don’t simply want that number displayed as script output, either capture it in a
variable or pipe it to Out-Null:

$listbox.items.add("New Item") | Out-Null

Combo Boxes
A combo box can take one of two main forms. A true combo box allows you to select items from a drop-
down list, and to type your own value, which isn’t on the list. A more limited form, the drop-down list,
only permits you to select an item from the list. Useful properties are:

DropDownStyle – Determines the style of the combo box, and can be:•

[System.Windows.Forms.ComboBoxStyle]::DropDown – for a true combo boxo

[System.Windows.Forms.ComboBoxStyle]::DropDownList – for a drop-down listo

[System.Windows.Forms.ComboBoxStyle]::Simple – for a combo box where the o
drop-down portion is always visible

Items – the items in the list – this works the same as the Items property for a combo o
box, which we’ve already discussed

SelectedIndex, SelectedItem – both refer to the selected list item, either by index or by o
the item text

Text – the text in the combo box•

There aren’t any major methods to call to your attention, but there are some events:

SelectedIndexChanged – Raised when the selected list item is changed•

TextChanged – Raised when the text is changed (see our comments about this method in the Text •
box for some cautions)

Items are added to the drop-down list in the same way that they are added to a regular list box.

Displaying Forms
You have to use the ShowDialog() method so that everything stays on one thread—this means
your form will “block” the shell. You get a DialogResult property of the form object populated; code
WITHIN the form can set this property to return a result to the shell or calling script or whatever. If
you just use Show(), then the form spins on a new thread, and PowerShell can’t stay “connected” to the
form’s events—so it’s effectively useless.

A Practical Example
We wanted to build a quick little graphical utility that would allow a technician to quickly retrieve key
operating system information from a remote computer. The trick is, we didn’t want the technician to
have to know the computer names: Instead, we’d read those in from a text file (we’re hard coding the
filename, since we don’t want technicians to have to provide it, but you could prompt for that, if desired),
allowing us to give each technician just the computer names they need to work with. So, here’s our first
go-round—we’ll show you the entire script first, and then break down each piece.

Working with Windows Forms

521

WinForms1.ps1

function CheckOS($computer) {
 $wmi = gwmi win32_operatingsystem -computer $computer

 # create output form
 $form = New-Object System.Windows.Forms.Form
 $form.text = "OS Info for $computer"
 $form.top = 10
 $form.left = 10
 $form.height = 200
 $form.width = 250
 $form.formborderstyle = [system.Windows.Forms.FormBorderStyle]::FixedDialog

 # create text box
 $textbox = New-Object system.Windows.Forms.TextBox
 $textbox.top = 2
 $textbox.left = 2
 $textbox.width = 246
 $textbox.height = 196
 $textbox.readonly = $true
 $textbox.multiline = $true
 $textbox.text = "Build: " + $wmi.buildnumber + " / Service Pack: " + `
 $wmi.servicepackmajorversion + " / OS: " + $wmi.caption

 # add control to form
 $form.controls.add($textbox)

 # show form
 $form.showdialog() | Out-Null
}

load WinForms
[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") | Out-Null

create form
$form = New-Object System.Windows.Forms.Form
$form.text = "Check OS Info"
$form.top = 10
$form.left = 10
$form.height = 280
$form.width = 200
$form.formborderstyle = [system.Windows.Forms.FormBorderStyle]::FixedDialog

create label
$label = New-Object system.Windows.Forms.Label
$label.text = "Select computer to query:"
$label.top = 2
$label.left = 10
$label.width = 180

create button
$button = New-Object Windows.Forms.Button
$button.text = "Select"
$button.height = 20
$button.width = 180
$button.top = 230
$button.left = 10

create event handler for button
$event = {
 $form.dialogresult = [system.Windows.Forms.DialogResult]::OK
 $form.close()

522

Windows PowerShell: TFM • 2nd Edition

}

attach event handler
$button.Add_Click($event)

create list box
$listbox = New-Object Windows.Forms.ListBox
$listbox.height = 200
$listbox.width = 180
$listbox.top = 20
$listbox.left = 10

populate list box
$names = gc c:\computers.txt
foreach ($name in $names) {
 $listbox.items.add($name) | out-null
}

attach controls to form
$form.controls.add($button)
$form.controls.add($listbox)
$form.controls.add($label)

show form
if ($form.showdialog() -ne "Cancel") {
 if ($listbox.selectedindex -ne -1) {
 CheckOS $listbox.selecteditem
 }
}

The first thing our code does is define a function—that’s not actually executing until later, though, so
we’ll skip it. The first executable code in our script is loading up the Windows.Forms assembly:

load WinForms
[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") | Out-Null

Next, we create a new form. We apply several attributes to it, including a dialog box-style border.

create form
$form = New-Object System.Windows.Forms.Form
$form.text = "Check OS Info"
$form.top = 10
$form.left = 10
$form.height = 280
$form.width = 200
$form.formborderstyle = [system.Windows.Forms.FormBorderStyle]::FixedDialog

Then we create a label, so that the user has some idea of what this little utility is going to do:

create label
$label = New-Object system.Windows.Forms.Label
$label.text = "Select computer to query:"
$label.top = 2
$label.left = 10
$label.width = 180

Next up is a button:

Working with Windows Forms

523

create button
$button = New-Object Windows.Forms.Button
$button.text = "Select"
$button.height = 20
$button.width = 180
$button.top = 230
$button.left = 10

And then the button’s event handler. Notice that all this is doing is setting a DialogResult for the form
and then closing the form:

create event handler for button
$event = {
 $form.dialogresult = [system.Windows.Forms.DialogResult]::OK
 $form.close()
}

Now we add the event handler to the button’s Click event:

attach event handler
$button.Add_Click($event)

Next, we create a list box and populate it by reading computer names from a text file:

create list box
$listbox = New-Object Windows.Forms.ListBox
$listbox.height = 200
$listbox.width = 180
$listbox.top = 20
$listbox.left = 10

populate list box
$names = gc c:\computers.txt
foreach ($name in $names) {
 $listbox.items.add($name) | out-null
}

Now we’re ready to add our three controls to the form:

attach controls to form
$form.controls.add($button)
$form.controls.add($listbox)
$form.controls.add($label)

And now we show the form. Notice that we’re calling the ShowDialog() method as part of an If block.
We’re checking to see if the ShowDialog() result is “Cancel” or not; if it isn’t, we check to see if an item
is selected in the list box. If one is, we’ll call the function we defined at the beginning of the script, pass-
ing the selected list box item as the function’s input argument.

show form
if ($form.showdialog() -ne "Cancel") {
 if ($listbox.selectedindex -ne -1) {
 CheckOS $listbox.selecteditem
 }
}

524

Windows PowerShell: TFM • 2nd Edition

Here’s what the form looks like:

The function retrieves information from WMI—specifically, the Win32_OperatingSystem class. It then
creates a new form, adds a text box, and fills that text box with the information we’ve selected. Finally, it
shows the form as a dialog box.

function CheckOS($computer) {
 $wmi = gwmi win32_operatingsystem -computer $computer

 # create output form
 $form = New-Object System.Windows.Forms.Form
 $form.text = "OS Info for $computer"
 $form.top = 10
 $form.left = 10
 $form.height = 200
 $form.width = 250
 $form.formborderstyle = [system.Windows.Forms.FormBorderStyle]::FixedDialog

 # create text box
 $textbox = New-Object system.Windows.Forms.TextBox
 $textbox.top = 2
 $textbox.left = 2
 $textbox.width = 246
 $textbox.height = 196
 $textbox.readonly = $true
 $textbox.multiline = $true
 $textbox.text = "Build: " + $wmi.buildnumber + " / Service Pack: " + `
 $wmi.servicepackmajorversion + " / OS: " + $wmi.caption

 # add control to form
 $form.controls.add($textbox)

 # show form
 $form.showdialog() | Out-Null
}

Here’s the dialog displayed by the function:

Working with Windows Forms

525

The only thing we don’t like about this utility is that it has to be run each time you want to query a
computer. Instead, we’d like it to re-display the first form, so that another computer can be selected. It
should continue doing that until we close the form by clicking its “Close” button (in the title bar).

The way we’re choosing to do that is to move the CheckOS function inside the button’s Click handler.
Here’s the revised script, where you’ll notice the relocated CheckOS function. Also within the Click
handler is the call to CheckOS, which checks to make sure a computer name was selected before
continuing:

WinForms2.ps1

load WinForms
[Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") | Out-Null

create form
$form = New-Object System.Windows.Forms.Form
$form.text = "Check OS Info"
$form.top = 10
$form.left = 10
$form.height = 280
$form.width = 200
$form.formborderstyle = [system.Windows.Forms.FormBorderStyle]::FixedDialog

create label
$label = New-Object system.Windows.Forms.Label
$label.text = "Select computer to query:"
$label.top = 2
$label.left = 10
$label.width = 180

create button
$button = New-Object Windows.Forms.Button
$button.text = "Select"
$button.height = 20
$button.width = 180
$button.top = 230
$button.left = 10

create event handler for button
$event = {
 function CheckOS($computer) {
 $wmi = gwmi win32_operatingsystem -computer $computer

 # create output form
 $form = New-Object System.Windows.Forms.Form
 $form.text = "OS Info for $computer"

526

Windows PowerShell: TFM • 2nd Edition

 $form.top = 10
 $form.left = 10
 $form.height = 200
 $form.width = 250
 $form.formborderstyle = [system.Windows.Forms.FormBorderStyle]::FixedDialog

 # create text box
 $textbox = New-Object system.Windows.Forms.TextBox
 $textbox.top = 2
 $textbox.left = 2
 $textbox.width = 246
 $textbox.height = 196
 $textbox.readonly = $true
 $textbox.multiline = $true
 $textbox.text = "Build: " + $wmi.buildnumber + " / Service Pack: " + `
 $wmi.servicepackmajorversion + " / OS: " + $wmi.caption

 # add control to form
 $form.controls.add($textbox)

 # show form
 $form.showdialog() | Out-Null
 }
 if ($listbox.selectedindex -ne -1) {
 CheckOS $listbox.selecteditem
 }
}

attach event handler
$button.Add_Click($event)

create list box
$listbox = New-Object Windows.Forms.ListBox
$listbox.height = 200
$listbox.width = 180
$listbox.top = 20
$listbox.left = 10

populate list box
$names = gc c:\computers.txt
foreach ($name in $names) {
 $listbox.items.add($name) | out-null
}

attach controls to form
$form.controls.add($button)
$form.controls.add($listbox)
$form.controls.add($label)

show form
$form.showdialog() | Out-Null

At the end, we’ve piped the output of ShowDialog() to Out-Null, because at that point, we don’t care
what the dialog’s result is—the only way the dialog can be closed is to click its “Close” button, which
means our script is finished.

Working with Event Arguments
In our examples thus far, we’ve ignored the fact that data is passed into each event handler. For the most
part, we haven’t needed any data; we just needed to know that the event occurred. That’s probably the
case for most events, actually, but the Framework does sometimes provide additional information that

Working with Windows Forms

527

you can work with inside your event handlers. In an event handler, you have two special variables that
you can work with: The variable $this represents the control that the event occurred to. For example, if
a button was clicked, $this would be that button. This allows you to assign the same event handler to
multiple controls’ events, since you can always use $this to figure out which control actually received the
event, and to work with that control directly.

The $_ variable represents the event arguments that were passed into the event. Sometimes, such as with
a button’s MouseClick event, the arguments are of a specific type—MouseEventArgs, for example.
Those types may have particular properties. For example, a MouseEventArgs argument has a Buttons
property, which allows you to determine what mouse button was used to click the control. Here’s an
example:

Switch ($_.Button) {
 System.Windows.Forms.MouseButtons.Right { "Right button"; Break }
 System.Windows.Forms.MouseButtons.Left { "Left button"; Break }
}

A complete discussion of every type of possible event handler signature, and every possible event argu-
ment construction, is beyond the scope of this book—that’s what the Framework documentation is for,
actually. For example, if we search for the System.Widows.Forms.Button class, and then click on its
MouseClick event, we see that the handler is listed as a MouseEventHandler. Clicking on that handler
reveals that it passes in the sender argument (which becomes $this in PowerShell), and e (which becomes
$_ in PowerShell), which is a MouseEventArgs. Clicking on MouseEventArgs displays information
about it; scrolling to the bottom provides a link to the MouseEventArgs Members, which displays all
the properties and so forth that $_ would contain in PowerShell.

Hold on to Your Hat…
One reason that PowerShell can work with all these varied event signatures is due to a feature
called contra variance in the Framework. Essentially, PowerShell can handle any event that passes
a sender argument (which becomes $this), and a second argument that is either of the type
EventArgs, or of a type that inherits from EventArgs.

For example, look up the System.Windows.Forms.TreeView control in the Framework documen-
tation, and click on the TreeNodeMouseClick event. That takes you to the documentation for
that particular event, where you’ll see that it wants a TreeNodeMouseClickEventHandler; click
that, and you’ll see that the second argument is a TreeNodeMouseClickEventArgs (we know,
these crazy names kill us). Click that second argument and, finally, you’ll see that it inherits from
MouseEventArgs. Click that and you’ll see that it inherits from EventArgs. Whew

So, because the second argument in the event is a descendent (albeit second-generation) of
EventArgs, PowerShell can “hook” an event handler to that event. Some events, however, may
have additional parameters, or may have a second parameter that does not inherit from EventArgs.
In those cases, PowerShell might not be able to “hook” your event handler to the event quite as
easily. It is possible to create an event handler capable of dealing with a different event signa-
ture, but it’s outside the scope of what we can cover here. And, if you’re sticking with the basic
WinForms controls and their common events, you won’t need to know how to do that.

528

Windows PowerShell: TFM • 2nd Edition

Using $_ and $this provide additional flexibility in your event handlers. Keep in mind that the overall
design philosophy of event-driven programming, which WinForms uses, is as follows:

Write enough code to get your interface looking like you want.•

Write event handlers that respond to user actions.•

In other words, all of your “juicy” code will be in your event handlers, as shown in our WinForms2.ps1
example. This can make your scripts a bit tough to read—and, frankly, a real pain to debug, sometimes—
but it’s the way things need to be done to properly leverage WinForms.

Working with the Web

529

Chapter 43
Working with the Web

One of PowerShell’s cooler features is its ability to tap into the .NET Frameworks strong Web con-
nectivity. We were originally going to call this chapter, “Working with Web Services,” because “Web
Services” is such a buzzword these days—but we realized that “Web Services” means a very specific
thing and involves protocols like the Simple Object Access Protocol (SOAP). While that’s all well and
good, it’s also pretty darn complicated, and it’s not really all PowerShell can do. PowerShell can pull
information from the Web in a lot of different ways, and we wanted to be able to touch on some of the
other ways that aren’t specifically “Web Services.” But first, let’s make sure we’re on the same page with
what happens when we use PowerShell to pull information from a Web server.

Retrieving Data from the Web
Basically, the entire point of the HTTP protocol that makes the Web work is that a client sends a
request for a given Web page to a server, and the server (we hope) responds by sending the text of that
Web page back to the client. Now, sometimes servers go through a lot of effort to produce that page. For
example, servers running a server-side language like ASP.NET, or PHP, or ASP often have to process a
lot of programming instructions, access databases, and so forth in order to dynamically “construct” the
page requested by a client. In the end, though, what’s transmitted to the client is just pure, simple text.

The type of text transmitted back is important, too. For example, most Web pages use a language
called HTML, which you’ve no doubt seen. When this text is received by a Web browser, it renders the
HTML, meaning it uses the HTML instructions to create the final page that you’re accustomed to see-
ing. Sometimes, though, a Web server will send something other than HTML. A blog, for example, is
in an XML format called RSS. Even a Web service uses HTTP, although the text it sends is in an XML
format called SOAP (usually; other formats exist for Web services, too).

530

Windows PowerShell: TFM • 2nd Edition

When you work with data from the Web in PowerShell, though, you’re going to be working with
that raw, under-the-hood text transmitted by a Web server. PowerShell doesn’t render HTML into
a pretty page, and it doesn’t format an RSS feed the way Internet Explorer or another Web browser
might. Instead, you’ll be working directly with the text exactly as it was transmitted by the Web server.
Sometimes, you might just save that information to a file, so that it can be opened by a “smarter” appli-
cation, like Internet Explorer; other times, especially when the text is in an XML format, you might use
PowerShell’s own capabilities to extract bits of data from what the Web server sent you.

A Simple Request
The .NET Framework’s System.Net.WebRequest class is used to make a Web request to a specific URL.
It looks like this:

$Request = [System.Net.WebRequest]::Create("http://www.sapien.com")

The request doesn’t do anything; it just sort of sits there on your computer. To transmit it, you ask the
Framework to retrieve the response to that request:

$response = $request.GetResponse()

And that’s it: The $response variable will contain your HTTP response. As a simple thing, you can
check the response’s StatusCode property to see if it’s “OK:”

$response.StatusCode

In fact, these three lines of code can combine to make a pretty useful little utility, which we’ll write as a
function:

Function Ping-WebServer($url) {
 $request = [System.Net.WebRequest]::Create($url)
 $response = $request.GetResponse()
 If ($response.StatusCode -eq "OK") {
 $True
 } else {
 $False
 }
}

Pass this function the URL of an intranet (or Internet, for that matter) Web server, and the function
will output $True of that server is reachable via HTTP, and if the server responds correctly. This is a nice
little utility that you could incorporate into a larger script that checks the status of various resources on
your network for you. The trick with it is that we didn’t care what the response was; we just cared that
there was a response.

Working with XML Data from the Web
But what if you do want to work with the information that the Web server sent back? In that case, we
might opt to work with a more full-featured object: The System.Net.WebClient. For example, Microsoft
publishes an RSS feed at http://www.microsoft.com/technet/security/bulletin/secrss.aspx, which lists
the latest Microsoft security bulletins. RSS is simply an XML format, and we know from our chapter,
“Working with XML Documents” that PowerShell knows how to work with XML. So, we’ll use the

Working with the Web

531

WebClient to retrieve that RSS feed, and then use PowerShell’s XML capabilities to create some for-
matted output from the feed’s contents.

We have to start by loading the Framework assembly that contains the WebClient class and then we’ll
ask it to download the entire RSS feed into an XML variable:

[System.Reflection.Assembly]::LoadWithPartialName("System.Web") | Out-Null
$webclient = new-object System.Net.WebClient
$url="http://www.microsoft.com/technet/security/bulletin/secrss.aspx"
[xml]$data = $webclient.downloadstring($url)

Now we need to examine the data. First, we’ll check to make sure we got some data, but checking to see
if $data is null or not:

if ($data -ne $Null) {

Now we’ll start creating out output, starting with the RSS channel title and the date it was last updated.

 Write-Host -backgroundcolor Yellow -foregroundcolor blue '
 $data.rss.channel.Title

 Write-Host "Last Updated" $data.rss.channel.LastBuildDate 'n

Next, we’ll write the title of the first item. Notice that we’re setting a variable, $i, equal to zero, and
using it to access the first rss.channel.item element.

 $i=0
 do {
 write-Host -foregroundcolor White `
 $data.rss.channel.item[$i].Title

Depending on the severity of the current item, we’ll set its description color to be red, yellow, or green.

 #color code description based on severity
 if ($data.rss.channel.item[$i].Description `
 -Like "*Rating:Critical*") {

 $color="Red"

 }

 elseif ($data.rss.channel.item[$i].Description `
 -Like "*Rating:Important*"){

 $color="Yellow"

 } else {

 $color="Green"

 }

Last, we’ll actually write the description, using the color we selected.

532

Windows PowerShell: TFM • 2nd Edition

 Write-Host -foregroundcolor $color '
 $data.rss.channel.item[$i].Description 'n

Now we increment $i by one and continue looping until we’ve reached the end of the RSS items.

 $i++
 } until ($i -gt ($data.rss.channel.item).count)
}

Finally, here’s what happens if our original $data request was null:

else {
 Write-Host -foregroundcolor Red "Could not get " $url
}

Here’s the entire script, with some additional comments to help you follow the flow:

Get SecurityRSS.ps1

#Get-SecurityRSS.ps1
#Query Microsoft's Basic Security Feed for latest bulletins
#Critical bulletins will be displayed in Red
#Important bulletins will be display in Yellow
#Everything else will be displayed in Green

[void] [System.Reflection.Assembly]::LoadWithPartialName("System.Web")
$webclient = new-object System.Net.WebClient
$url="http://www.microsoft.com/technet/security/bulletin/secrss.aspx"
Get the web page into a single string
$data =[xml]$webclient.downloadstring($url)

if ($data -ne $Null) {
 Write-Host -backgroundcolor Yellow -foregroundcolor blue `
 $data.rss.channel.Title
 Write-Host "Last Updated" $data.rss.channel.LastBuildDate `n
 $i=0
 do {
 write-Host -foregroundcolor White `
 $data.rss.channel.item[$i].Title
 #color code description based on severity
 if ($data.rss.channel.item[$i].Description `
 -Like "*Rating:Critical*") {
 $color="Red"
 }
 elseif ($data.rss.channel.item[$i].Description `
 -Like "*Rating:Important*"){
 $color="Yellow"
 }
 else {
 $color="Green"
 }
 Write-Host -foregroundcolor $color `
 $data.rss.channel.item[$i].Description `n
 $i++
 }
 until ($i -gt ($data.rss.channel.item).count)
 }
else {
 Write-Host -foregroundcolor Red "Could not get " $url

Working with the Web

533

}

This example showed you how to retrieve a Web page into a string. In our example, we converted that to
XML by declaring $data as an [XML] type, but you could use [string] instead if you were retrieving a
normal HTML page. Once you’ve got that HTML page, you can work with the contents however you
want to.

Using a Proxy Server for Web Connections
The examples we’ve shown thus far assume that you have an unimpeded connection to the Internet—
that is, you either don’t have a Web proxy server to deal with or the proxy server is capable of working
“invisibly.” If that’s not the case, then you’ll need to take a few additional steps. Note that these can be
tricky, and you’ll probably have to do some experimentation to find the exact combination that works
for you. Just be prepared for things to not work properly the first time, since every proxy configuration is
different!

In many cases, the System.Net.WebClient or System.NetWebRequest class will be able to read and
use the proxy settings configured in the Internet Options control panel application. Try ensuring that
those settings are properly configured first: Open the Control Panel, double-click Internet Options,
select the Connections tab, and then click LAN Settings (this may differ slightly on various versions
of Windows). If set to “automatic proxy configuration,” Windows relies primarily on the WPAD host
identified by your DHCP server.

Alternately, you can create a new System.Net.WebProxy class:

PS C:\> $proxy = new-object System.Net.WebProxy

Once you’ve done that, you can set the proxy server address:

PS C:\> $proxy.Address = "http://myproxy.mycompany.com"

You can specify that Windows pass along your logon credentials to the proxy:

PS C:\> $proxy.UseDefaultCredentials = $true

It is possible to provide alternate credentials to the proxy server, as well. However, the technique is a bit
complicated due to the way the Framework classes are designed. For more information, go to http://
msdn.microsoft.com/library, search for “System.Net.WebProxy,” and then read the information provided
for the Credentials property. You’ll need to create a new instance of the ICredentials interface and then
use its GetCredentials method. Credentials can be supplied on a per-URI basis, so this is something you
really have to think through carefully. Whenever possible, we find that configuring a proxy through the
Internet Options Control Panel application is far easier.

Once you’ve gotten your proxy configured the way you want it, you have to assign it to the WebClient or
WebRequest:

PS C:\> $webrequest.proxy = $proxy

Then you can successfully issue your request, which should now be directed to your proxy server.
However, we don’t want to understate the complexity of using the WebProxy class in environments with
unusual older proxy servers; we’ve been in some situations where we’ve simply never been able to get the

534

Windows PowerShell: TFM • 2nd Edition

WebProxy to connect properly. If you run into difficulty, please drop by the Discussion Forums on www.
ScriptingAnswers.com and ask for help; in a book like this we can’t deal with every individual situation
that may come up, but in the discussion forums, we definitely can.

Working with “Real” Web Services
PowerShell can natively work with “real” Web services—that is, those which communicate using a
Web services protocol like SOAP—but it needs some help from you to do so. The .NET Framework
requires a Web services description language (WSDL) proxy in order to handle communications between
the Framework and the remote Web service; unfortunately, PowerShell can’t build such a proxy itself.
Microsoft Visual Studio comes with a command-line utility called Wsdl.exe, which can build such a
proxy, but for the purposes of this book, we’re not assuming you have access to a licensed copy of Visual
Studio.

In his blog, PowerShell MVP Keith Hill shows how you’d do this, assuming you did have access
to Visual Studio’s Wsdl.exe utility. The full post is at http://keithhill.spaces.live.com/blog/
cns!5A8D2641E0963A97!512.entry, and it looks like this, with the first line using Wsdl.exe to compile
a WSDL proxy from a weather-forecasting Web service:

PS C:\> wsdl.exe http://www.webservicex.net/WeatherForecast.asmx?WSDL

Next, he uses the C# compiler to compile the proxy:

PS C:\> csc /t:library WeatherForecast.cs

Then he loads the compiled proxy assembly into PowerShell:

PS C:\> [Reflection.Assembly]::LoadFrom("$pwd\WeatherForecast.dll")

With the assembly loaded, he creates a new instance of the object representing the Web service:

PS C:\> $weatherService = new-object WeatherForecast

And finally calls the Web service’s GetWeatherByZipCode() method, storing the results in $forecast:

PS C:\> $forecast = $weatherService.GetWeatherByZipCode(80526)

Last, he displays the contents of $forecast:

PS C:\> $forecast

A further discussion—since it requires Visual Studio—is beyond the scope of this book, but we wanted
you to see that it’s possible and give you an idea of where to go if you want more information.

A Practical Example
This’ll be fun: Windows Live Search is capable of returning search results in RSS format, which we
learned how to read earlier in this chapter. Combining that with some of the knowledge from the chap-
ter “Creating Custom Objects,” we’ve written a function that will accept a query term, and then return a

Working with the Web

535

set of custom objects representing the search results. We added this function to our profile so that Get-
SearchResults is always available. Here’s the function:

LiveSearch.ps1

Function Get-SearchResults {
 param([string] $searchstring=$(throw "Please specify a search string."))

 $client = New-Object System.Net.WebClient

 [xml]$results = $client.DownloadString("http://search.live.com/results.aspx?q=" + `
 $searchstring + "&format=rss")
 $channel = $results.rss.channel

 foreach ($item in $channel.item) {
 $result = New-Object PSObject
 $result | Add-Member NoteProperty Title -value $item.title
 $result | Add-Member NoteProperty Link -value $item.link
 $result | Add-Member NoteProperty Description -value $item.description
 $result | Add-Member NoteProperty PubDate -value $item.pubdate
 $sb = {
 $ie = New-Object -com internetexplorer.application
 $ie.navigate($this.link)
 $ie.visible = $true
 }
 $result | Add-Member ScriptMethod Open -value $sb
 $result
 }
}

This is using the System.Net.WebClient class to retrieve a Live Search results page. Notice that we’re
passing the RSS format request in the URL itself; this is a feature of Live Search that we’re simply capi-
talizing on. We go through each search result and create a new custom object. That object has properties
for the Title, Link, Description, and PubDate, and a ScriptMethod named Open(). This ScriptMethod
is just a PowerShell script block, which we defined in $sb: It creates a new instance of Internet Explorer,
navigates to the page represented by the current search result (accessing the URL via $this.link), and
makes the browser visible. Finally, the function outputs the search result.

536

Windows PowerShell: TFM • 2nd Edition

Here’s how to use it:

PS C:\> $hits = get-searchresults "PrimalScript"
PS C:\> $hits

Title Link Description PubDate
----- ---- ----------- -------
SAPIEN Technologies, Inc. . http://primalscript.c SAPIEN Technologies: ... 02 Sep 07 08:4
PrimalScript 2007 http://www.scriptingo... PrimalScript 2007 01 Sep 07 17:3
Software http://www.scriptingo... Software ... Award-Wi... 01 Sep 07 21:3
SAPIEN Technologies - Make. http://www.sapien PrimalScript a script... 01 Sep 07 06:0
SAPIEN Technologies - Make. http://www.sapien.com... SAPIEN Technologies -... 01 Sep 07 01:1
DevGuru Review - PrimalScript http://www.devguru.co... Award-winning web dev... 31 Aug 07:39:0
pixelconsumption Â" Compil... http://blog.pixelcons... Adobe has made a grea... 07 Sep 07 06:5
Flash tutorials - Coding f... http://www.communitym... Flash, Dreamweaver, F... 07 Sep 07 10:4
Coding for Flash with Prim... http://www.communitym... CMX Learning Guides. ... 07 Sep 07 07:0
SAPIEN Press - scripting b... http://www.sapienpres... Get the Most from Pri... 18 Aug 07 02:1

PS C:\> $hits[0].title
SAPIEN Technologies, Inc. - VBScript Editor, PowerShell Editor, ASP ...
PS C:\> $hits[0].link
http://primalscript.com/
PS C:\> $hits[0].open()

As you can see, we’re able to access individual search results, such as $hits[0] to access properties like
Title and Link, or the method we created—Open()—to open the search result in a new Internet
Explorer window.

Creating PowerShell Cmdlets and Snap-Ins

537

Chapter 44
Creating PowerShell Cmdlets and Snap-Ins

This is definitely an advanced topic. Before you proceed, you should know that cmdlets can only be
written in .NET languages, such as Visual Basic (VB) or C# (pronounced, “C Sharp”). We’re not here
to teach you those things, and, in fact, we’re assuming that if you’re reading this chapter, you’re already
familiar with programming in those languages. Cmdlet development is also definitely beyond the scope
of “systems programming” or “administrative scripting,” which is what the rest of this book is about.
However, at the time we’re writing this, nobody else has really documented cmdlet development, so we
figured we’d give it a shot. Honestly, if you’re already pretty familiar with VB or C#, then writing a cmd-
let isn’t really that difficult.

We also need to point out that this short chapter is obviously not a complete work on cmdlet develop-
ment. We could (and others have) write a complete book about this subject; our goal here is just to give
you an overview of what cmdlet development looks like and give you a jumping-off point for further
exploration, if you find that this topic interests you.

Much of the sample code in this chapter is taken from SAPIEN Technologies’ extensions for
PowerShell, a free snap-in you can download from www.primalscript.com/freetools. That isn’t an open-
source project, so we won’t be sharing the source code for all of the cmdlets in that snap-in. However, if
you visit www.CodePlex.com, and search for “PowerShell,” you’ll find a number of other projects that
are open source, and you can check out their source code. Don wrote a game that runs as PowerShell
cmdlets, and you’ll find it on CodePlex at www.codeplex.com/powerquest.

Some Terminology and the Basic Process
Remember that cmdlets live in snap-ins, which are basically .NET DLL files. A snap-in can contain
more than one cmdlet, but you have to add the entire snap-in and all its cmdlets to PowerShell at the

538

Windows PowerShell: TFM • 2nd Edition

same time; you can’t pick and choose. So, creating a new cmdlet involves first creating a snap-in for the
cmdlet to live in; from there, you can start adding cmdlets to the snap-in.

When you’re finished programming a snap-in (and its cmdlets), you must compile it into a finished DLL.
That DLL must exist on any system that needs to use the snap-in and the cmdlets it contains. The DLL
must initially be registered so that PowerShell can detect its existence, and then it can be added to the
shell using the Add-PSSnapin cmdlet. If you later recompile a snap-in, you can just drop the new DLL
on top of the old one; there’s no need to re-register it. But you will need to restart PowerShell.

Getting Started: You Need an Environment
Don’t think for a moment that you’re going to get away with using Notepad to create cmdlets. Yes, it’s
physically possible, but only a madman would try. Instead, you’ll need a copy of Visual Studio 2005 or
later (or one of the free “Express” editions of Visual Studio, at least). Or, if you happen to have SAPIEN
PrimalScript Enterprise Edition, you’ll find that it does a bang-up job for cmdlet development as well as
PowerShell scripting. Because we do happen to have PrimalScript Enterprise, we’ll be using it and giv-
ing you directions to follow along (you can get a free trial of the software from www.primalscript.com/
downloadtrial if you want to follow along).

You’re also going to need the System.Management.Automation DLL, and you will not believe how
far out of their way Microsoft has gone to make this thing difficult to find. Start by going to www.
microsoft.com/download, and in the download search box (not the “all Microsoft.com” search box), type
“framework sdk” and click Go. You’re looking for the .NET Framework 3.0 SDK for your platform (x86
or x64); Microsoft seems to move this thing constantly and it can be quite infuriating to locate. Worse,
when you finally get it, you’re going to have to install pretty much all of it in order for the “Reference
Assemblies” to be installed. We haven’t figured out which little component of the SDK does this, so
we typically just install the whole SDK on a virtual machine, grab the Reference Assemblies from the
Program Files folder, and copy them over to the computer we’re actually working on. Fun, huh? Next
time you talk to someone at Microsoft, ask them why the heck they can’t ship this one little DLL with
PowerShell itself.

Don’t Get Excited
By the way, don’t get excited if you find System.Management.Automation.ni.dll. That won’t help
you; that’s a pre-compiled version that’s actually used by PowerShell, but you can’t use it to make
new cmdlets. Sorry.

Once you get this thing onto your system, it should be in \Program Files\Reference Assemblies\
Microsoft\WindowsPowerShell\v1.0. There are actually five total DLLs that you’ll need:

Microsoft.PowerShell.Commands.Management.dll•

Microsoft.PowerShell.Commands.Utility.dll•

Microsoft.PowerShell.ConsoleHost.dll•

Microsoft.PowerShell.Security.dll•

System.Management.Automation.dll.•

Creating a New Snap-In
To get started, go to PrimalScript’s File menu and select New > Project. Then, select either Visual Basic
Projects or C Sharp Projects, depending on which .NET language you plan to work in. In the Templates

Creating PowerShell Cmdlets and Snap-Ins

539

window, select Windows PowerShell Snapin. Give your snap-in a name (we’re using “TestToys”), specify
a location for it on your hard disk, and click OK.

When PrimalScript displays the workspace browser (usually on the right of the screen), double-click
PSSnapin.vb. This is the file that defines your snap-in. Really, all you need to do is modify the strings
returned by the various functions, such as the name, vendor name, description, and so forth. The
AssemblyInfo.vb files can be used to set the information that is displayed when someone right-clicks
the DLL file in Windows Explorer and selects Properties. This information includes the version num-
ber, title, description, copyright information, and so forth.

That’s it—you’ve made a snap-in! Of course, without a cmdlet in there, it won’t do much good.

This would be a good time, however, to add a reference to the System.Management.Automation.dll. In
PrimalScript, expand the References node in the Workspace browser, and you’ll probably see the refer-
ence already in there; right-click and remove it. We’re going to re-add it, just to make sure it has the
correct path for your system. Right-click References and select Add Reference; on the .NET tab, click
the Browse button and find System.Management.Automation.dll and double-click it. Now you should
have the proper reference in your project—why not save it at this time?

Creating a New Cmdlet
To begin adding a new cmdlet, right-click the project name (“TestToys,” in our case), and select Add
> Add New Item. From the list of categories, select Windows PowerShell Cmdlet, and then select
Windows PowerShell Cmdlet from the Templates window. Create a name for your cmdlet—we’re
going with PingComputerCmdlet—and click OK. To begin working with your new cmdlet, just dou-
ble-click its .VB file to open that file in the editor window.

Our goal is to create a cmdlet that accepts one or more String objects, which we expect to either be
computer names or IP addresses. We’ll define a -name parameter to accept this input, but we also want
to accept input from the pipeline. We want our cmdlet to attempt to ping each specified address, and,
if it’s successful, to output that same address. Essentially, we’re building a filter: Computer names go
in, but only the ones that we could successfully ping will come out. Those successful names can then be
piped to some other cmdlet, which attempts to connect to those computers.

Naming Your Cmdlet
The first thing you need to do is pick a name for your new cmdlet. You’ll notice that the cmdlet code
starts with something like this:

<Cmdlet(VerbsCommon.Get, "PingComputerCmdlet", SupportsShouldProcess:=True)> _

That’s definitely not correct. Rather than VerbsCommon.Get, we want to specify another verb: Ping.
The PowerShell SDK lists the allowable verbs. The documentation starts at http://msdn2.microsoft.
com/en-us/library/ms714674.aspx, but we’re specifically interested in those verbs, which are at http://
msdn2.microsoft.com/
en-us/library/ms714428.aspx. We see that the Ping verb is listed as a Diagnostic Verb, meaning it’ll be
VerbsDiagnostic.Ping. We’ll change the noun portion of our cmdlet name to Computer, resulting in the
following:

<Cmdlet(VerbsDiagnostic.Ping, "Computer", SupportsShouldProcess:=True)> _

540

Windows PowerShell: TFM • 2nd Edition

By the Way…
We’ve listed most of the PowerShell verbs, along with brief description of how they’re to be used, in
our chapter on Script Blocks, Functions, and Filters.

Because our cmdlet doesn’t do anything potentially dangerous, we’re not going to support the -confirm
or -whatif parameters. Therefore, we’re going to set the SupportsShouldProcess metavariable to FALSE:

<Cmdlet(VerbsDiagnostic.Ping, "Computer", SupportsShouldProcess:=False)> _

That leaves us with this as our entire cmdlet code:

<Cmdlet(VerbsDiagnostic.Ping, "Computer", SupportsShouldProcess:=False)> _
Public Class PingComputerCmdlet
 Inherits Cmdlet

 '<Parameter(Position:=0, Mandatory:=False)> _
 'Public Property Name() As String
 ' Get
 ' Return ""
 ' End Get
 ' Set(ByVal value As String)
 ' End Set
 'End Property

 Protected Overrides Sub ProcessRecord()
 Try
 Throw New NotImplementedException()
 Catch ex As Exception

 End Try
 End Sub

End Class

By the Way…
You may have noticed that we’re programming our cmdlet in VB. You’re welcome to use C#, if you
prefer; the online documentation we’ve referenced provides examples in C# (which is one reason
we decided to go with VB—just to be different).

Now we’re ready to start creating input parameters for our cmdlet.

Creating Cmdlet Parameters
The cmdlet template provided in PrimalScript has a block of comments that show how to declare a
PowerShell cmdlet parameter. We’re just going to uncomment that block and use it as-is. Because our
cmdlet can’t operate without some input, we’re setting our parameter, which we’ll leave named “Name,”
to be Mandatory.

 <Parameter(Position:=0, Mandatory:=True)> _

We’re also going to declare a variable, which will hold whatever data is passed in through this parameter.

Creating PowerShell Cmdlets and Snap-Ins

541

The variable declaration occurs outside the parameter’s Property block:

 Dim Address As string

Notice that we’ve defined this as a single string, not an array. Keep that in mind

That the Get block simply returns the current property value. We’re storing the current value in Address,
so when the Get block is called, we simply want to return whatever’s in Address:

 Get
 Return Address
 End Get

Similarly, when new data is passed into the parameter via the Set block, we want to put that data into
our Address variable so that we can work with it. Therefore, we’ll modify the Set block. The variable
“value” is provided for us as the variable that receives incoming data; we’ll just transfer that into our
Address variable for long-term storage.

 Set(ByVal value As String)
 Address = value
 End Set

So, our entire parameter declaration looks like this:

 Dim Address As String
 <Parameter(Position:=0, Mandatory:=True)> _
 Public Property Name() As String
 Get
 Return Address
 End Get
 Set(ByVal value As String)
 Address = value
 End Set
 End Property

Since this is the only parameter we need, we’re almost done with this part. If we did create additional
parameters, they’d all need a unique Property name, and they’d need a unique Position value. The
Mandatory value could be modified for each one as appropriate. Typically, parameters aren’t any more
complicated than this.

Input Validation in Parameters
You could, if you wanted to, perform some input validation in the Set block to make sure that any
incoming data is what you expect. For example, let’s say we created a parameter that was accepting date
input. To check and make sure we got a date, we could do something like this:

 <Parameter(Position:=0, Mandatory:=True)> _
 Public Property Today() As String
 Get
 Return TodayDate
 End Get
 Set(ByVal value As String)
 If isdate(value) Then
 TodayDate = value

542

Windows PowerShell: TFM • 2nd Edition

 Else
 Throw New Exception("Bad input")
 End If
 End Set
 End Property

Here, we’ve used an If/Then block to determine if the incoming data is a valid date or not. If it is, we
go ahead and put it into our storage variable, TodayDate. Otherwise, we have VB throw an exception,
which would be passed up to Windows PowerShell.

Pipeline Parameters
We did say that we wanted out -name parameter to accept input from the pipeline, so we need to mod-
ify it slightly by adding an additional attribute to its declaration:

 Dim Address As string

 <Parameter(Position:=0, Mandatory:=True, ValueFromPipeline:=True)> _
 Public Property Name() As String
 Get
 Return Address
 End Get
 Set(ByVal value As String)
 Address = value
 End Set
 End Property

By adding the ValueFromPipeline attribute, we’re telling PowerShell that complete input objects
can be fed to this parameter from the pipeline. That’s an important distinction: We want the com-
plete input object, which we’re expecting to be a String collection. Another option is to only have
the parameter accept a single property from the pipeline objects. To do that, you’d specify the
ValueFromPipelineByName attribute instead. If we did that, then the input objects would have to have
a Name property, which would match the name of our parameter. PowerShell would just feed the Name
properties of input objects to our parameter.

Overriding an Input Processing Method
Finally, we have to “override” one of the cmdlet’s default input processing methods. All cmdlets are built
from a template that’s essentially built into PowerShell; whenever PowerShell executes a cmdlet, it auto-
matically executes three distinct phases. Remember, these all happen for each cmdlet that is run. They
are:

BeginProcessing – This is called when the cmdlet is initially executed.•

ProcessRecord – This is called once for each input object that is passed to the cmdlet.•

EndProcessing – This is called after all input objects have been sent to the cmdlet for processing.•

The template that cmdlets are built on defines three methods that correspond to these “execution
phases.” The trick is that the template’s methods don’t do anything. So, if we do nothing else with our
cmdlet, all three methods will execute without error, but nothing will happen. In order to have our cmd-
let do useful work, we have to override at least one of these methods, substituting our own code for the
template’s empty methods.

If your cmdlet doesn’t accept pipeline input, then it should override the EndProcessing method. Our
cmdlet does accept pipeline input, so we must at least override the ProcessRecord method:

Creating PowerShell Cmdlets and Snap-Ins

543

 Protected Overrides Sub ProcessRecord()
 Try
 Throw New NotImplementedException()
 Catch ex As Exception

 End Try
 End Sub

Here’s how this works: If 10 objects are pipelined into our cmdlet, then the cmdlet’s ProcessRecord()
method will be executed 10 times. Each time, our input parameter -name will be set to a new pipeline
input object. In that fashion, we’ll be processing all 10 input objects, although our cmdlet only has to
worry about processing one of them at a time.

The default code PrimalScript gives us simply throws an exception indicating that the ProcessRecord
method hasn’t yet been implemented. We’ll remove that default code and substitute our own.

Coding the Cmdlet
One of the reasons we like working in VB rather than C# is because VB has a neat object called My,
which contains a lot of cool functionality. For example, My.Computer.Ping() is a method that pings a
computer by name or IP address, and returns a TRUE or FALSE value if the computer was reachable or
not. Since we already know that our Address variable will contain the address we want to ping, it’s pretty
easy to build the functional code of our cmdlet:

 If My.Computer.Network.Ping(Address) Then

 End If

Now all we need to do is create some output. That is, if the ping was successful, we want to output the
same address we received as input. PowerShell provides a built-in function called WriteObject() that
will do the trick:

 If My.Computer.Network.Ping(Address) Then
 WriteObject(Address)
 End If

That’s a pretty straightforward, yet useful, cmdlet.

Your finished .VB file should look something like this:

Imports System.Management.Automation

<Cmdlet(VerbsDiagnostic.Ping, "Computer", SupportsShouldProcess:=False)> _
Public Class PingComputerCmdlet
 Inherits Cmdlet

 Dim Address As String

 <Parameter(Position:=0, Mandatory:=True, ValueFromPipeline:=True)> _
 Public Property Name() As String
 Get
 Return Address
 End Get
 Set(ByVal value As String)
 Address=value
 End Set

544

Windows PowerShell: TFM • 2nd Edition

 End Property

 Protected Overrides Sub ProcessRecord()
 If My.Computer.Network.Ping(Address) Then
 WriteObject(Address)
 End If

 End Sub

End Class

Compiling the Snap-In
Now we’re ready to compile the cmdlet into a DLL. From PrimalScript, this is pretty easy: From the
Build menu, select Build Workspace. Note that PrimalScript requires you to have installed the .NET
Framework SDK in order for compilation to work; that’s because PrimalScript is simply calling on the
compilers provided with the Framework SDK. If you installed the Framework SDK in order to obtain
PowerShell’s reference assemblies, then you should be ready to go.

Registering the Snap-In
The .NET Framework (just the Framework run-time, not the whole SDK) includes an InstallUtil.exe
utility that registers assemblies like your new snap-in. To use it, open a new PowerShell window and
type this:

PS C:\> set-alias installutil $env:windir\Microsoft.NET\Framework\v2.0.50727\installutil

Note that this is a reference to the .NET Framework 2.0 folder; this is okay even if you’re using v3.0 of
the Framework, because v3.0 is really just a set of add-ons to 2.0. PowerShell itself is written and com-
piled in v2.0.

Next, run this:

PS C:\> installutil "path\file.dll"

You’ll provide the complete path and file to your snap-in DLL. Make sure your snap-in DLL is some-
place permanent; once you register it this way, PowerShell will always look for it in that location.

Adding the Snap-In
Registered snap-ins can be added using the Add-PSSnapIn cmdlet. If your cmdlet is named TestToys,
just run this:

PS C:\> add-pssnapin testtoys

That’s it—you should be able to run Get-PSSnapIn and see your new snap-in. To see the cmdlets
included in your snap-in run:

PS C:\> get-command -pssnapin testtoys

CommandType Name Definition
----------- ---- ----------
Cmdlet Ping-Computer Ping-Computer [-Name] <String> [-Verbose] [-Debu..

Creating PowerShell Cmdlets and Snap-Ins

545

If you want your snap-in to be available every time you start PowerShell, don’t forget to add it in your
profile.

Removing the Snap-In
If for some reason you need or want to remove the snap-in after it has been registered, the easy approach
is to use the installutil alias:

PS C:\> installutil /u "filepath\testtoys.dll"

If that fails, you might need to delete the registry entry under HKLM:\SOFTWARE\Microsoft\
PowerShell\1\PowerShellSnapIns and restart PowerShell.

Using the New Cmdlet
We’re going to read a list of computer names from a text file and pipe them to the Ping-Computer
cmdlet. The contents of the text file are as follows:

DON-LAPTOP
LOCALHOST
DON-PC
SERVER2

Of these, only the second and third names are actually reachable on our network. Here’s the cmdlet in
action:

PS C:\> get-content c:\computers.txt | ping-computer
Ping-Computer : An exception occurred during a Ping request.
At line:1 char:44
+ get-content c:\computers.txt | ping-computer <<<<

Oops. Well, not everything goes perfect the first time. Unfortunately, there’s no super-easy way to debug
cmdlets. You basically have to try and analyze what happened, modify the cmdlet, re-compile it (which
will require you to shut down PowerShell so that the snap-in DLL can be overwritten), and try again.

Debugging Cmdlets
After a bit of fussing, we got things working properly:

PS C:\> get-content c:\computers.txt | ping-computer
LOCALHOST
DON-PC

The problem, it turns out, is that the My.Computer.Ping() method will generate an exception if it’s
unable to resolve a name to an IP address. On our test network, which doesn’t use DNS, it wasn’t able to
resolve the first name to an IP address, so it wasn’t able to even try pinging it. We solved the problem by
simply adding some VB error trapping to our cmdlet, so that any exceptions wouldn’t cause it to quit:

 Protected Overrides Sub ProcessRecord()
 Try
 If My.Computer.Network.Ping(Address) Then
 WriteObject(Address)

546

Windows PowerShell: TFM • 2nd Edition

 End If
 Catch ex As Exception
 End Try
 End Sub

This isn’t a great practice, programming-wise; we should be checking to see what error occurred and
handling it, if possible. But we know that about the only thing that can go wrong is for the name-to-IP
address resolution to fail, and there’s nothing we can do about that if it happens—so we haven’t put any
“error handling” code in the Catch block.

Here’s the revised .VB file:

Imports System.Management.Automation

<Cmdlet(VerbsDiagnostic.Ping, "Computer", SupportsShouldProcess:=False)> _
Public Class PingComputerCmdlet
 Inherits Cmdlet

 Dim Address As String

 <Parameter(Position:=0, Mandatory:=True, ValueFromPipeline:=True)> _
 Public Property Name() As String
 Get
 Return Address
 End Get
 Set(ByVal value As String)
 Address=value
 End Set
 End Property

 Protected Overrides Sub ProcessRecord()
 Try
 If My.Computer.Network.Ping(Address) Then
 WriteObject(Address)
 End If
 Catch ex As Exception

 End Try

 End Sub

End Class

Making Help
By default, when someone uses the Get-Help cmdlet (or the Help function) to ask for help on your
cmdlets, PowerShell looks for an XML-formatted help file located in the same folder as your snap-in
DLL. This XML format is complicated, and it’s absolutely not worth your time to cobble one together
manually. Fortunately, a member of the Windows PowerShell team took the time to build a graphical
tool capable of creating PowerShell-compatible help files. Download it from http://www.wassimfayed.
com/
PowerShell/CmdletHelpEditor.zip, run it (be sure to read its documentation), and you’re ready to go.
Your snap-in has to be pretty much finished before you can begin authoring the Help file; the utility
looks at your snap-in and sets up appropriate sections for each cmdlet, each parameter, and so forth.

Creating PowerShell Cmdlets and Snap-Ins

547

It’s All in the Framework
While we certainly haven’t shown you every possible permutation of cmdlet development, we’ve defi-
nitely given you a kick-start. Hopefully, if you’re already experienced in VB or C#, you’ll have enough to
begin creating your own cmdlets and snap-ins and extending the capabilities of Windows PowerShell.

However, as you’ve seen here, the actual process of creating a cmdlet or snap-in is pretty straightfor-
ward. It’s the functionality of your cmdlets—the code that makes them do whatever it is you want them
to do—that’s complex. For that, we can’t provide a lot of help: You’ll need to dig into Microsoft .NET
Framework development much deeper than we can do in this administrator-focused book. We do know
that many administrators have some programming experience in their background, and that you may
already have some Framework familiarity. For those administrators, diving in and creating cmdlets
should be pretty simple now that you’ve seen how it’s done.

A Practical Example
Although the example we showed you is definitely practical, we want to do something a bit more com-
plicated to wrap up this chapter. Our goal is to redo our Ping-Computer cmdlet so that it outputs a
custom object type for each computer name provided to it. Each of those objects will expose a number
of properties, including the computer name that we attempted to ping, whether or not it was successful,
and other statistics. Such a custom object is more flexible because we’ll be outputting an object even if a
ping fails; this allows a subsequent pipeline cmdlet, such as Where-Object, to filter the results for what-
ever you have in mind at the time.

This is Rocket Science
Well, it’s not exactly rocket science, but this is a much more complicated and .NET Framework-
centric example. We won’t be explaining all of the underlying Framework concepts in exhaustive
detail, so if this is a bit over your head, that’s okay; you’re not missing anything that’s actually
important to the day-to-day operation of PowerShell. If you’re diving this far into cmdlet authoring,
we’re assuming that you have a good Framework grounding in the first place.

We’ll start by defining a new class named PingResult. In .NET, a class is basically the description of
what a given object will look like. In this case, we’ve simply defined four basic properties. Notice that
we declare an “internal” variable, whose names we start with an underscore (that’s our convention, not
something you have to do). These variables hold the actual property values; the four Property routines
provide a means of changing and retrieving those values.

Next up is our actual cmdlet class. You’ll notice that we’ve abandoned the special My object and
switched to using WMI to perform the ping; that’s because the WMI Win32_PingStatus class provides
more detailed information, rather than just a “success” or “failure” rating. Our cmdlet’s ProcessRecord()
subroutine is called once for each pipeline object passed into the cmdlet; for each one, it attempts to
ping the computer name provided. It constructs a new object of our PingResult type and populates the
object’s properties from values provided by the Win32_PingStatus class. Each PingResult object is writ-
ten to the output pipeline.

First up, the PingResult class:

548

Windows PowerShell: TFM • 2nd Edition

PingResult.vb

Public Class PingResult

'the following is one line
 Private _ComputerName As String, _StatusCode As Integer, _ResponseTime As Integer, _
ProtocolAddress As String

 Public Property ComputerName() As String
 Get
 Return _ComputerName
 End Get
 Set(ByVal value As String)
 _ComputerName = value
 End Set
 End Property

 Public Property StatusCode() As Integer
 Get
 Return _StatusCode
 End Get
 Set(ByVal value As Integer)
 _StatusCode = value
 End Set
 End Property

 Public Property ResponseTime() As Integer
 Get
 Return _ResponseTime
 End Get
 Set(ByVal value As Integer)
 _ResponseTime = value
 End Set
 End Property

 Public Property ProtocolAddress() As String
 Get
 Return _ProtocolAddress
 End Get
 Set(ByVal value As String)
 _ProtocolAddress = value
 End Set
 End Property

End Class

To add a class in PrimalScript, right-click on your workspace name, Select Add > Add New Item and
pick Class from the Code section. Here’s the revised cmdlet file:

PingComputerCmdlet.vb

Imports System.Management.Automation
Imports System.Management

<Cmdlet(VerbsDiagnostic.Ping, "Computer", SupportsShouldProcess:=True)> _
Public Class PingComputerCmd
 Inherits Cmdlet

 '<Parameter(Position:=0, Mandatory:=False)> _
 'Public Property Name() As String
 ' Get

Creating PowerShell Cmdlets and Snap-Ins

549

 ' Return ""
 ' End Get
 ' Set(ByVal value As String)
 ' End Set
 'End Property

 Private _Name As String
 <Parameter(Position:=0, Mandatory:=False, ValueFromPipeline:=True, _
 HelpMessage:="The name or IP address to ping")> _
 Public Property Name() As String
 Get
 Return _Name
 End Get
 Set(ByVal value As String)
 _Name = value
 End Set
 End Property

 Protected Overrides Sub ProcessRecord()
 Dim Result As New PingResult

 'define query
 Dim Searcher As New System.Management.ManagementObjectSearcher(_
 "SELECT * FROM Win32_PingStatus WHERE Address = '" & _Name & "'")

 'execute query
 Dim PResults As System.Management.ManagementObjectCollection
 PResults = Searcher.Get()

 'run through results
 Dim PResult As System.Management.ManagementObject
 For Each PResult In PResults
 Result.ComputerName = _Name
 Result.StatusCode = PResult.GetPropertyValue("StatusCode")
 Result.ProtocolAddress = PResult.GetPropertyValue("ProtocolAddress")
 Result.ResponseTime = PResult.GetPropertyValue("ResponseTime")
 WriteObject(Result)
 Next

 End Sub

End Class

Before you compile this, you’ll likely need to set Option Strict to Off.

When you use this new version, you can pipe in the contents of a file, or, as in this example, create a new
array of strings and pipe that into the cmdlet:

PS C:\> @("localhost","don-pc","mediaserver","testbed") | ping-computer

ComputerName StatusCode ResponseTime ProtocolAddress
------------ ---------- ------------ ---------------
localhost 0 0 ::1
don-pc 0 0 fe80::e468:3091:f2...
mediaserver 0 0 192.168.4.103
testbed 0 0

You’ll notice that the ProtocolAddress property contains the actual address that responded—in most
cases, those are IPv6 addresses, since those computers are newer versions of Windows (running
Windows Vista) that automatically configure themselves to use IPv6.

550

Windows PowerShell: TFM • 2nd Edition

Also notice the value of outputting objects from the cmdlet, rather than just simple strings. Now,
PowerShell’s formatting cmdlets can take over and create lists and tables automatically, using the
objects’ properties. Even Get-Member can help, as shown here, by displaying the properties. Notice the
TypeName: It consists of our snap-in’s name (PrimalToys), and the class name we created in VB:

PS C:\> $results = @("localhost","don-pc","mediaserver","testbed") | ping-computer
PS C:\> $results | gm

 TypeName: PrimalToys.PingResult

Name MemberType Definition
---- ---------- ----------
Equals Method System.Boolean Equals(Object obj)
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
get_ComputerName Method System.String get_ComputerName()
get_ProtocolAddress Method System.String get_ProtocolAddress()
get_ResponseTime Method System.Int32 get_ResponseTime()
get_StatusCode Method System.Int32 get_StatusCode()
set_ComputerName Method System.Void set_ComputerName(String value)
set_ProtocolAddress Method System.Void set_ProtocolAddress(String value)
set_ResponseTime Method System.Void set_ResponseTime(Int32 value)
set_StatusCode Method System.Void set_StatusCode(Int32 value)
ToString Method System.String ToString()
ComputerName Property System.String ComputerName {get;set;}
ProtocolAddress Property System.String ProtocolAddress {get;set;}
ResponseTime Property System.Int32 ResponseTime {get;set;}
StatusCode Property System.Int32 StatusCode {get;set;}

While we won’t pretend that creating cmdlets is easy, it is at least straightforward. Any complexity
comes entirely from the complexity of the Framework itself, and not from the very small amount of
overhead required to actually create a cmdlet or a snap-in.

VReference
Part V

Automatic Variables in PowerShell

553

Appendix A
Automatic Variables in PowerShell

PowerShell defines a number of automatic variables that you can use. Note that some of these are
context-dependent, meaning they’re only available in certain situations. Also, while the majority of these
are defined by PowerShell (meaning they’re available under any hosting application), some of these are
defined by PowerShell.exe and are only available to scripts running under that host, or under a host that
is fully emulating PowerShell.exe.

554

Windows PowerShell: TFM • 2nd Edition

Variable Purpose
$$ The last token of the last line received by the shell
$? $True is the last operation succeeded; otherwise, $False
$^ The first token of the last line received by the shell
$_ The current pipeline object (used in script blocks, filters, the

ForEach-Object cmdlet, and the Where-Object cmdlet)
$Args An array of the parameters passed to a function
$DebugPreference The action to take when information is written to the debug

pipeline (“Continue” means to display it; “SilentlyContinue”
suppresses it)

$Error A collection of objects for which an error occurred
$ErrorActionPreference The action to take when information is written to the error

pipeline (“Continue” means to display it; “SilentlyContinue”
suppresses it)

$False Boolean value FALSE
$foreach Refers to the enumerator in a foreach loop
$Home Specifies the user’s home directory; same as

%homedrive%%homepath%
$Input Contains the collection of pipeline objects sent to a script block
$LastExitCode The exit code of the last external executable that was run
$MaximumAliasCount The maximum number of aliases available
$MaximumDriveCount The maximum number of drives available
$MaximumFunctionCount The maximum number of functions available
$MaximumHistoryCount The maximum number of entries saved in the command history
$MaximumVariableCount The maximum number of variables available
$PsHome The folder where Windows PowerShell is installed
$Host Provides an interface to the hosting application
$OFS Output Field Separator: Use when converting an array to a

string; by default, is a space character
$ReportErrorShowExceptionClass When $True, shows the class name of displayed exceptions
$ReportErrorShowInnerException When $True, shows the chain of inner exceptions for displayed

exceptions
$ReportErrorShowSource When $True, shows the assembly name of displayed exceptions
$ReportErrorShowStackTrace When $True, shows the stack traces for displayed exceptions

$ShouldProcessPreference Specifies the action to take when a cmdlet is used with -confirm
$ShouldProcessReturnPreference Value returned by ShouldPolicy
$StackTrace Contains detailed stack trace information about the last error
$True The Boolean value TRUE
$VerbosePreference The action to take when information is written to the verbose

pipeline (“Continue” means to display it; “SilentlyContinue”
suppresses it)

$WarningPreference The action to take when information is written to the warning
pipeline (“Continue” means to display it; “SilentlyContinue”
suppresses it)

Common .NET Framework Data Types

555

Appendix B
Common .NET Framework Data Types

As we discussed throughout this book, PowerShell relies on the underlying .NET Framework types to
handle data manipulation. This is a benefit for you, because those underlying Framework types pack in a
lot of useful functionality. Our goal in this Appendix is to provide a quick reference to those types’ most
useful methods and properties—not a comprehensive reference, but rather a listing—with examples of
those properties and methods that an administrator will get the most use from.

In the reference tables that follow, method names are always followed by (), but property names are not.
That’s how you can tell the difference between a property and a method.

[Boolean] [Bool] • System.Boolean
Contains TRUE/FALSE values

Name Purpose Example
ToString() Returns a string representation of

the object; e.g., the word “TRUE”
or “FALSE.”

$var.ToString()

[Byte] • System.Byte
Contains byte values

Name Purpose Example
ToString() Returns a string representation of

the byte.
$var.ToString()

556

Windows PowerShell: TFM • 2nd Edition

[Char] • System.Char
Contains individual characters

Name Purpose Example
ToString() Returns a string representation

of the object; e.g., the character
itself

$var.ToString()

[DateTime] • System.DateTime
Contains date and time values—note that the methods and properties produce output based upon your
system’s regional settings. For the below example, assume that $d or $t contain a date, time, or date/time
value.

Name Purpose Example
Add() This method requires you to create instances of the Framework’s TimeSpan

class; instead, use one of the AddX() method below.
AddDays() Adds the specified number of

days
$d = $d.AddDays(2)

AddHours() Adds the specified number of
hours

$t = $t.AddHours(24)

AddMilliseconds() Adds the specified number of
milliseconds

$t = $t.AddMilliseconds(1000)

AddMinutes() Adds the specified number of
minutes

$t = $t.AddMinutes(-30)
Adding a negative number results in
subtraction

AddMonths() Adds the specified number of
months

$d = $d.AddMonths(6)

AddSeconds() Adds the specified number of
seconds

$t = $t.AddSeconds(60)

AddTicks() Adds the specified number of
ticks (a tick is a 100-nanosecond
unit)

$t = $t.AddTicks(100)

AddYears() Adds the specified number of
years

$d = $d.AddYears(100)

Date Extracts the date from the value $d.Date
DateTime Extracts the date and time from

the value
$d.DateTime

Day Extracts the day of the month
from the value

$d.Day

DayOfWeek Extracts the day of the week
from the value

$d.DayOfWeek

DayOfYear Extracts the day of the year
(Julian date) from the value

$d.DayOfYear

GetDateTimeFormats() Returns an array with all pos-
sible string representations of
the date

$d.GetDateTimeFormats()

Hour Extracts the hour from the value $d.Hour

Common .NET Framework Data Types

557

Name Purpose Example
IsDaylightSavingTime() Returns $True or $False if

Daylight Saving Time is active
$d.IsDaylightSavingTime()

Kind Indicates whether the time is
based on local time, Coordinated
Universal Time (UTC), or
neither

$d.Kind

Millisecond Extracts the milliseconds from
the value

$d.Millisecond

Minute Extracts the minutes from the
value

$d.Minute

Month Extracts the month from the
value

$d.Month

Second Extracts the seconds from the
value

$d.Second

Ticks Extracts the ticks from the value.
A tick is 100 nanoseconds.

$d.Ticks

TimeOfDay Extracts the time of day from
the value

$d.TimeOfDay

ToBinary() Returns a 64-bit integer value
representing the date

$d.ToBinary()

ToFileTime() Returns a Windows file time $d.ToFileTime()
ToFileTimeUtc() Returns a Windows file name

translated to Coordinated
Universal Time (UTC)

$d.ToFileTimeUtc()

ToLocalTime() Converts the time to local time $d.ToLocalTime()
ToLongDateString() Converts the value to a long date

string
$d.ToLongDateString()

ToLongTimeString() Converts the value to a long
time string

$d.ToLongTimeString()

ToOADate() Converts the value to an OLE
Automation date

$d.ToOADate()

ToShortTimeString() Converts the value to a short
time string

$d.ToShortTimeString()

ToString() Returns a generic string repre-
sentation of the date.

ToUniversalTime() Converts the value to
Coordinated Universal Time
(UTC)

$d.ToUniversalTime()

Year Extracts the year from the value $d.Year

[Decimal] • System.Decimal
Contains decimal values

Name Purpose Example
ToString() Returns a string representation of

the decimal
$var.ToString()

558

Windows PowerShell: TFM • 2nd Edition

[Double] • System.Double
Contains double-precision floating-point numeric values

Name Purpose Example
ToString() Returns a string representation of

the number
$var.ToString()

[Float] [Single] • System.Single
Contains single-precision floating-point numeric values

Name Purpose Example
ToString() Returns a string representation of

the number
$var.ToString()

 [Hashtable] • System.Collections.Hashtable
Contains associative arrays (also called dictionaries or hashtables)

Name Purpose Example
Add() Adds an element with the speci-

fied key and value
$ht.Add(“Key”,”Value”)

Clear() Clears the hashtable of all
elements

$ht.Clear()

Contains() Returns $True if the hashtable
contains the specified key

$ht.Contains(“MyKey”)

ContainsKey() Returns $True if the hashtable
contains the specified key

$ht.ContainsKey(“MyKey”)

ContainsValue() Returns $True if the hashtable
contains the specified value

$ht.ContainsValue(5)

Count The number of key/value pairs in
the hashtable

$ht.Count

IsFixedSize $True if the hashtable is a fixed
size

$ht.IsFixedSize

IsReadOnly $True if the hashtable is read-
only

$ht.IsReadOnly

Item Gets or sets the value associated
with the specified key

$ht.Item(“MyKey”) = “MyValue”
Write-Host $ht.Item(“MyOtherKey”)

Keys Gets an array of the hashtable’s
keys

$a = $ht.Keys

Remove() Removes the element having the
specified key

$ht.Remove(“MyKey”)

ToString() Returns a string representation
of the entire hashtable

$ht.ToString()

Values Gets an array of the hashtable’s
values

$a = $ht.Values

Common .NET Framework Data Types

559

[Int] • System.Int32
Contains 32-bit (regular) integer values

Name Purpose Example
ToString() Returns a string representation of

the number
$var.ToString()

[Long] • System.Int64
Contains 64-bit (long) integer values

Name Purpose Example
ToString() Returns a string representation of

the number
$var.ToString()

 [Regex] • System.Text.RegularExpressions.Regex
Contains regular expression strings; below examples assume $r contains a valid regex

Name Purpose Example
GetGroupNames() Returns an array of capturing

group names for the regex
$r.GetGroupNames()

GetGroupNumbers() Returns an array of capturing
group numbers that correspond
to the group names in an array

$r.GetGroupNumbers()

GroupNameFromNumber() Gets the group name that
matches the specified number

$r.GetGroupNameFromNumber(1)

GroupNumberFromName() Gets the group number that
matches the specified name

$r.GetGroupNumberFromName(0)

IsMatch()

Returns $True if a single
match is found

Returns $True if the specified
string matches the regex

Start the regex comparison at a
specified character position

Returns $True if the specified
string matches the specified
regex

$r.IsMatch(“Test”)

$r.IsMatch(“Test”,2)

$r.IsMatch(“Test”,”\w+”)

Match()

Returns the first match found

Returns a match where the spec-
ified string matches the regex

Start the regex comparison at a
specified character position

Returns a match where the spec-
ified string matches the specified
regex

$r.Match(“Test”)

$r.Match(“Test”,2)

$r.Match(“Test”,”\w+”)

560

Windows PowerShell: TFM • 2nd Edition

Name Purpose Example
Matches()

Returns an array of all matches
found

Returns a collection of matches
where the specified string
matches the regex

Start the regex comparison at a
specified character position

Returns a collection of matches
where the specified string
matches the specified regex

$r.Matches(“Test”)

$r.Matches(“Test”,2)

$r.Matches(“Test”,”\w+”)

Replace() Within the specified input
string, replace all strings that
match the regex with the speci-
fied replacement string

$r.Replace(“Input”,”Replace”)

Split()
ToString() Returns the regex expression as

a string
$r.ToString()

Options Returns the options that the
regex uses to operate

$r.Options

RightToLeft Returns $True if the regex
searches from right to left

$r.RightToLeft

[Scriptblock] • System.Management.Automation.ScriptBlock
Contains strings which are used as script blocks

Name Purpose Example
Invoke()
InvokeReturnAsIs()
ToString() Returns a string representation of

the script block
$var.ToString()

IsFilter

[String] • System.String
Contains True/False values. Examples below assume that $s contains “SAPIEN Press”

Name Purpose Example
Chars Converts the string into an array

of [char] objects
$c = $s.Chars

EndsWith() Returns $True if the string ends
with the specified character(s)

$s.EndsWith(“Press”)
$True

IndexOf() Returns the character position of
the specified string

$s.IndexOf(“SAP”)
0

Common .NET Framework Data Types

561

Name Purpose Example
IndexOfAny() Returns the index of the first

occurrence of any character in
the specified array

$a = @(“A”,”P”)
$s.IndexOfAny($a)
1

Insert() Inserts the specified string at the
specified index position

$s = $s.Insert(5,” Insert”)
$s
SAPIEN Insert Press

IsNormalized() Returns $True if the string is
in the “C” Unicode normalized
form

$s.IsNormalized()

LastIndexOf() Returns the last index position
of the specified string

$s.LastIndexOf(“s”)
11

LastIndexOfAny() Returns the last index position
of any character in the specified
array

$a = @(“r”,”e”)
$s.LastIndexOfAny($a)
9

Length Returns the length of the string $s.Length
12

Normalize() Returns a version of the string
which is in the normalized
Unicode form “C”

$s = $s.Normalize()

PadLeft() Adds the specified number of
spaces to the left of the string

$s.PadLeft(5)

PadRight() Adds the specified number of
spaces to the right of the string

$s.PadRight(5)

Remove() Deletes the specified number
of characters beginning at the
specified position

$s.Remove(0,7)
$s
Press

Split() Returns an array of strings, using
the specified character to split
the existing string into indi-
vidual elements

$t = “One,Two,Three,Four”
$t.Split(“,”)

Substring() Retrieve the specified number of
characters starting at the speci-
fied position

$s.Substring(2,7)
PIEN Pr

StartsWith() Returns $True if the string starts
with the specified character(s)

$s.StartsWith(“Press”)
False

ToCharArray() Converts the string into an array
of [char] objects

$c = $s.ToCharArray()

ToLower() Returns a lowercase version of
the string

$s.ToLower()
sapien press

ToUpper() Returns an uppercase version of
the string

$s.ToUpper()
SAPIEN PRESS

Trim() Removes whitespace from the
beginning and end of the string

$s = $s.Trim()

TrimEnd() Removes whitespace from the
end of the string

$s = $s.TrimEnd()

TrimStart() Removes whitespace from the
beginning of the string

$s = $s.TrimStart()

562

Windows PowerShell: TFM • 2nd Edition

We have omitted some of PowerShell’s types, such as [XML] and [WMI], because PowerShell provides
a better adaptation for these types of objects that you get just working with the Framework type. Refer
to the appropriate chapter on these technologies for more information. We’ve omitted the [ADSI] type
adapter here because it’s discussed more thoroughly in the chapters dealing with ADSI and directory
services.

Regular Expression Syntax

563

Appendix C
Regular Expression Syntax

PowerShell uses a fairly standard implementation of regular expression syntax; Web sites like www.
regegbuddy.com, www.regular-expressions.info, and www.regexlib.com provide tools, tutorials, and
examples that can be used in PowerShell without any major adjustments. This Appendix is not intended
as a tutorial; rather, it’s intended as a quick reference to the major syntax elements supported by
PowerShell. Our “Regular Expressions” chapter covers using regular expressions and provides several
real-world examples.

Standard Regular
Expressions
Format

Logic Example

value Match the exact character specified “book” -match “oo”
(matches “oo”)

. Match any single character “copy” -match “c..y”
(matches “copy”)

[value] Match at least one of the characters in the
brackets

“big” -match “b[iou]g”
(matches “big”)

[range] Match at least one of the characters within
the range; use – to specify a contiguous
range

“deal” -match “d[a-e]l”
matches (“deal”)

[^] Match any character except those in the
brackets

“hand” -match “h[^brt]nd”
matches (“hand”)

564

Windows PowerShell: TFM • 2nd Edition

Standard Regular
Expressions
Format

Logic Example

^ Anchor match to the beginning of the string “book” -match “^bo”
(matches “bo”)

$ Anchor match to the end of the string “book” -match “ok$”
(matches “ok”)

* Match zero or more instances of the preced-
ing character

“shaggy” -match “g*”
(matches “gg”)

? Match zero or one instance of the preceding
character

“hairy” -match “r?”
(matches “r”)

\ Match the character that follows as a literal
character (escaped)

“$5.00” -match “\$5”
(matches “$5”)

\w Match a word – any character except
whitespace

“SAPIEN” -match “\w”
(matches “S”)

+ Match one or more instances of the preced-
ing directive or character

“SAPIEN” -match “\w+”
(matches “SAPIEN”)

\W Match any non-word character (space, tab,
etc)

“One Two” -match “\W”
(matches the space)

\s Matches any whitespace character “One Two” -match “\s”
(matches the space)

\S Matches non-whitespace character “abcde” -match “\S+”
(matches “abcde”)

\d Matches any digit “abc123” -match “\d”
(matches “1”)

\D Matches any non-digit “abc123” -match “\D”
(matches “a”)

{n} Specify exactly n matches “abc” -match “\w{2}”
(matches “ab”)

{n,} Specify at least n matches “abc” -match “\w{2,} “
(matches “abc”)

{n,m} Specify at least n matches, but no more than
m matches

“abc” -match “\w{2,3}”
(matches “abc”)

Reading PowerShell’s Help

565

Appendix D
Reading PowerShell’s Help

By now you know how easy it is to ask PowerShell for help and how a well-written cmdlet is self-docu-
menting. But deciphering a help screen can be a little confusing to first-time PowerShell users. We want
to show you how easy it is to read a help screen.

Here’s what you might get when asking for help on the Get-Service cmdlet:

PS C:\ > help get-service

NAME
 Get-Service

SYNOPSIS
 Gets the services on the local computer.

SYNTAX
 Get-Service [[-name] <string[]>] [-include <string[]>] [-exclude <string[]>]
[<CommonParameters>]

 Get-Service -displayName <string[]> [-include <string[]>] [-exclude <string[]>]
[<CommonParameters>]

 Get-Service [-inputObject <ServiceController[]>] [-include <string[]>] [-exclude
<string[]>] [<CommonParameters>]

The Synopsis should be self-explanatory. But what about the Syntax? The first thing to notice is that
there are three different ways you can use Get-Service. Each version has its own syntax, although with
this cmdlet, they are very similar.

566

Windows PowerShell: TFM • 2nd Edition

Anything you see in square brackets is optional. You don’t have to specify it as a parameter. If it is a
required item—more on that in a bit—PowerShell will prompt you for a value like this:

PS C:\ > get-eventlog

cmdlet get-eventlog at command pipeline position 1
Supply values for the following parameters:
LogName:

When you see something like <string[]>, this is informing you of the expected type for that particular
parameter. Thus, the displayName parameter is expecting a string value:

-displayName <string[]>

Some PowerShell parameters are positional. That is, you don’t have to specify the parameter name.
PowerShell will determine the parameter property based on the position. Ever wonder why you can run
an expression like this without having to specify any parameters?

PS C:\ > get-service spooler

If you look again at the syntax for the first variation, notice that -name is in square brackets:

Get-Service [[-name] <string[]>]

This indicates that the parameter name is not required and is a positional parameter. The Get-Service
cmdlet only has one such parameter.

If you need a bit more clarification, look at the full help for a cmdlet:

PS C:\ > help get-service -full

In addition to the summary we’ve already looked at, you get full information about each parameter.
Here’s an excerpt for Get-Service:

PARAMETERS
 -name <string[]>
 Specifies the service names of services to be retrieved. Wildcards are permitted. By
 default, Get-Service gets all of the services on the computer.

 Required? false
 Position? 1
 Default value *
 Accept pipeline input? true (ByValue, ByPropertyName)
 Accept wildcard characters? true

 -include <string[]>
 Retrieves only the specified services. The value of this parameter qualifies the Name
 parameter. Enter a name element or pattern, such as "s*". Wildcards are permitted.

 Required? false
 Position? named
 Default value
 Accept pipeline input? false
 Accept wildcard characters? True

Reading PowerShell’s Help

567

Notice that these parameters are not required, which we already knew because they were enclosed in
square brackets.

The Name parameter has a position value of 1, which means the first string after the cmdlet name will
be treated as a service name. Again, this confirms what we already knew, because -name was shown in
square brackets in the help summary. The
-Include parameter is not positional:

 Position? named

The help syntax informs you that you must specify the parameter name.

Look at the default value for the -name parameter. Help tells you that it is the * wildcard. Finally, you
can also see that the parameter can accept pipelined input. Since all the parameter is expecting is a
string, you can run an expression like this:

PS C:\ > @("spooler","alerter","browser") | get-service

Status Name DisplayName
------ ---- -----------
Running Spooler Print Spooler
Stopped Alerter Alerter
Running Browser Computer Browser

Each array value is piped to Get-Service, which assumes the passed value is the name of a service.

The last piece of important information in PowerShell help is to look at what types of objects the cmd-
let can accept as input and what type of objects, if any, the cmdlet produces:

INPUT TYPE
 Object

RETURN TYPE
 System.ServiceProcess.ServiceController

This snippet from the Get-Service help shows that the cmdlet can accept any type of input object and
that it returns a ServiceController object. You can confirm that by running an expression like this:

PS C:\ > (get-service alerter).Gettype()

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
True False ServiceController System.ComponentModel.Component

With a little practice, you’ll be able to decipher the mysterious PowerShell help screens, which will make
you a more efficient PowerShell user.

Index

569

Index

A
access control lists (ACLs), permissions management

automating Cacls.exe, 355–357
Get-Access function, 358–361
Get-Owner function, 357–358
object hierarchy view, 353
removing a rule, 361–362
resetting, 353–355
Set-Owner function, 358
viewing, 351–353

ACLs (access control lists), permissions management
automating Cacls.exe, 355–357
Get-Access function, 358–361
Get-Owner function, 357–358
object hierarchy view, 353
removing a rule, 361–362
resetting, 353–355
Set-Owner function, 358
viewing, 351–353

Active Directory, Quest Management cmdlets, 485–488
Active Directory Services Interface (ADSI), 141

fundamentals, queries, 142
objects

retrieving, 142–148
searching for, 148–150
working with, 150–151

permissions, 353
VBScript, 288

Add-History cmdlet, 56, 89–90
AddToGroup.ps1, 410
administrative tasks

cmdlets
manipulating items on PSDrive, 45–47
navigating system, 41–45
PowerShell manipulation, 51–56
pre-packaged Windows cmdlets, 48–51
working with text data, 47–48

directory services, 401
[ADSI] type accelerator, 403–405
bulk-creating users, 406–408
computer account, 408–409
deleting users, 406
groups, 409–411
moving objects, 411
PasswordAge property, 405–406
searching for users, 411–413
WinNT:// provider, 411
WMI (Windows Management Instrumentation),

402–403
event logs, 363–367

backup, 370–372
clearing, 372–374
detailed information, 369–370
remote event logs, 367–368

file and folder management
attributes and properties, 315–318
copying files, 313–314

570

Windows PowerShell: TFM • 2nd Edition

creating directories, 322
creating text files, 307–308
deleting directories, 323–324
deleting files, 314
listing directories, 323
parsing text files, 308–313
paths, 318–322
reading text files, 308
renaming files, 314–315

non-scripted, 20–21
permissions

automating Cacls.exe, 355–357
Get-Access function, 358–361
Get-Owner function, 357–358
object hierarchy view, 353
removing a rule, 361–362
resetting, 353–355
Set-Owner function, 358
viewing, 351–353

PowerShell defined, 26
registry, 385–389

creating items, 389–390
remote registries, 392–399
removing items, 390
searching, 390–392

services, 345–346
change service logon account, 347–348
controlling on remote computer, 348
locating information with Get-WmiObject cmdlet,

346–347
service logon account password change, 349

systems with WMI
existing value examination, 328–329
listing available classes, 326
listing class properties, 327–328
practical examples, 334–336
remote management, 329–331
retrieving basic information, 325–326
Windows events, 336–341
[WMI] type, 331–333
[WMISearcher] type, 333–334

ADSI (Active Directory Services Interface), 141
fundamentals, queries, 142
objects

retrieving, 142–148
searching for, 148–150
working with, 150–151

permissions, 353
VBScript, 288

[ADSI] type accelerator, directory services, 403–405
Advanced VBScript for Microsoft Windows Administrators, 330
aliases

PowerShell, 27–29
Sort-Object cmdlet, 75

AliasProperty type extension, 441
AllSigned execution policy, 112
architectures, WMI (Windows Management Instrumentation),

129–130
argument numbers, 207
arithmetic operators, scripting, 196–199
arrays, 120

scripting, 174–177, 179–183
assemblies

loading into PowerShell, 498

.NET Framework, 121
assignment operators, scripting, 193–196
associative arrays, scripting

creating, 179–180
modifying and enumerating, 183
using, 180–183

attributes, file management, 315–318
automatic variables, 553–554
automating Cacls.exe, 355–357

B
backquotes, 96
backticks, 96
backup event logs, 370–372
BackupEventLog() method, 371
Backup-EventLogs.ps1, 372–373
backward compatibility, PowerShell, 29
base classes, 120
basic type extension files, extensible type system, 440
best practices

scopes, 421–422
scripting

comments, 298
filters versus functions, 301
formatting scripts, 297–298
function naming, 298–300
parameter declaration, 300–301
source control, 302–303
variable naming, 301–302

bitwise operators, scripting, 200
Blocktest.ps1, 248–249
Break statement, 244
built-in help, 20

PowerShell, 30–31
BulkCopy.ps1, 314
BulkRename.ps1, 315
Button control events, 517–518

C
CA (certification authorities), 110–111
Cacls.exe, automating, 355–357
call operators, scripting, 204–205
CategoryInfo errors, 261
certification authorities (CA), 110–111
ChangeACL.ps1, 354–355
check boxes, control events, 518
children (file system)

changing locations, 44–45
listing child items, 41–44

class libraries, .NET Framework, 494
classes

.NET Framework, 121, 494
using Framework class, 498–499
WMI (Windows Management Instrumentation)

fundamentals, 131
listing available, 326
property listing, 327–328
working with, 138–140

Clear-Host cmdlet, 53–54
Clear-Item cmdlet, 45

Index

571

Clear-Variable cmdlet, 55, 167–169
Cmd.exe, 290–291

For command, 291–292
environmental variables, 292
If comparisons, 292–293

cmdlets, 21, 26, 537–538
administrative tasks

manipulating items on PSDrive, 45–47
navigating system, 41–45
PowerShell manipulation, 51–56
pre-packaged Windows cmdlets, 48–51
working with text data, 47–48

aliases, 27–29
comparing objects and collections, 84–88
creating new

adding snap-in, 544–545
coding, 543–544
compiling snap-in, 544
debugging, 545–546
help, 546
input processing method override, 542–543
input validation in parameters, 541–542
naming, 539–540
parameters, 540–541
pipeline parameters, 542
practical example, 547–550
registering snap-in, 544
removing, 545
testing, 545

environment for creating, 538
exporting objects

ConvertTo-HTML cmdlet, 82–84
CSV (comma-separated value) file, 79–81
Export-CliXML cmdlet, 81–82

formatting text output, 63
Format-Custom cmdlet, 69–70
Format-List cmdlet, 64–65
Format-Table cmdlet, 65–67
Format-Wide cmdlet, 67–68
GroupBy parameter, 71–72
rules, 70–71

objects
filtering, 76–77
performing actions against, 77–78
selecting specific properties, 78–79
sorting, 73–76

parameters, 27
scripting, 258–259
snap-in creation, 538–539

CodePlex, 483
collections

comparing to objects, 84–88
objects, 31–33
regular expressions, 223

COM (Component Object Model), 120
objects, 425–426

accessing local computer, user, and domain, 427
automating Internet Explorer, 427
interactive character control, 427–428
mapping network drives and printers, 426–427
problems, 428
speech synthesis, 428

VBScript
GetObject(), 284

instantiating objects, 282–283
using objects, 283–284

combo boxes, control events, 520–521
command completion, 90–91
command lines

copy and paste, 90
history

manipulation, 56
typed commands, 89–90

instant expressions, 91–92
line editing, 90
parsing

line termination, 97–98
modes, 97
quotation marks, 95–97

tab completion, 90–91
command modes, command-line parsing, 97
commands, cmdlet manipulation, 55
comma-separated value (CSV) files

exporting objects, 79–81
importing users, 406–408

comments
scripting best practices, 298
VBScript, 284

Compare-Object cmdlet, 84–88
comparison operators, scripting, 208–212
Component Object Model (COM), 120

objects, 425–426
accessing local computer, user, and domain, 427
automating Internet Explorer, 427
interactive character control, 427–428
mapping network drives and printers, 426–427
problems, 428
speech synthesis, 428

VBScript
GetObject(), 284
instantiating objects, 282–283
using objects, 283–284

computers, account, 408–409
conditionally trusted scripts, 111
connection strings, 503
constructs, VBScript, 284
Continue statement, 244–245
control events, Windows Forms

Button, 517–518
check boxes, 518
combo boxes, 520–521
Form, 516–517
label, 517
list boxes, 519–520
radio buttons, 518–519
text boxes, 518

ConvertFrom-SecureString cmdlet, 54, 116
Convert-Path cmdlet, 319
ConvertTo-HTML cmdlet, 82–84
ConvertTo-Securestring cmdlet, 116
copying files, 313–314
Copy-Item cmdlet, 45
CPU, finding process by usage, 377–378
Create-ServerReport.ps1, 103
CreateUser.ps1, 404
Credential parameter, 314
cryptographic hashes, 111
CSV (comma-separated value) files

572

Windows PowerShell: TFM • 2nd Edition

exporting objects, 79–81
importing users, 406–408

Culture, host, 100–101
custom objects

creating, 447–448
function utilizing, 448–451
retrieving computer operating system information, 451–452

custom views, constructing own object format, 472–476
customizing PowerShell, 19
CustomObjectPing.ps1, 448–451

D
data, retrieving from Web, 529–530
data types, .NET Framework, 555–562
databases

Command object
creating, 504
executing, 505–506

computer inventory example, 506–510
connecting to, 503–504
SQL Server, 506

debug modes, 269–274
debugging

process, 267–269
techniques, 274–275

using nested prompts, 277–279
writing debugging information, 276–277
writing verbose information, 275–276

tracing and debug mode, 269–274
DebugTest.ps1, 270–273
Default Property Set type extension, 443
DELETE operation, 504
deleting

directories, 323–324
files, 314

depth, controlling object serialization, 459
deserialization, 453
difference sets, comparing objects, 84
digital signatures, 110–111
directories

creating, 322
deleting, 323–324
listing, 323
services, 401

[ADSI] type accelerator, 403–405
bulk-creating users, 406–408
computer account, 408–409
deleting users, 406
groups, 409–411
moving objects, 411
PasswordAge property, 405–406
searching for users, 411–413
WinNT:// provider, 411
WMI (Windows Management Instrumentation),

402–403
displaying progress meters, 92–94
Do Until statement, 241–242
Do While statement, 241
documentation, WMI (Windows Management

Instrumentation), 130–131
domain credentials, regular expressions, 229–230
dot sourcing, 159

dot sourcing scopes, 422–423
downloads, PowerShell, 18
drives, 19

ease of use, 40
extending functionality with providers, 39
mapping, 39

E
ecosystems, 479–480

CodePlex, 483
Full Armor’s WorkFlow Studio, 488
NetCmdlets, 491–492
PowerGagdets, LLC., 480
PowerShell Community Extensions, 481–482
PrimalScript, 480–481
Quest Active Directory Management cmdlets, 485–488
Quest PowerGUI, 483–485
SAPIEN Extensions, 482
SAPIEN PowerShell help, 483
SDM Software, 488–491

e-mail
address patterns, regular expressions, 226–228
sending from PowerShell, 499–500

encrypting file systems, 317
enumerating keys, remote registries, 393–394
enumerating values, remote registries, 394–396
environmental variables

Cmd.exe, 292
scripting, 169–170

error handling, 261–262
scripting

ErrorAction argument, 262
scopes, 263–264
throwing own exceptions, 264–265
trapping, 262–263
TrapTest.ps1, 265–266

VBScript, 286
ErrorDetails error, 262
errors, debugging

debug mode, 269–274
process, 267–269
techniques, 274–279

escape characters, scripting, 184–185
event arguments, Windows Forms, 526–528
event handlers, Windows Forms, 515–516
event logs

access remotely, 501
management, 363–367

backup, 370–372
clearing, 372–374
detailed information, 369–370
remote event logs, 367–368

events, Windows Forms, 511–512
exceptions, 261
execution policies, running scripts, 112
Export-CliXML cmdlet, 81–82
Export-CSV cmdlet, 79–81
exporting objects

ConvertTo-HTML cmdlet, 82–84
CSV (comma-separated value) file, 79–81
Export-CliXML cmdlet, 81–82

expression modes, 184

Index

573

command-line parsing, 97
expressions, 184

formatting, 235
Expresso Web site, 232
extensible type system, 439–440

basic type extension file, 440
creating type extensions, 440–441

AliasProperty, 441
Default Property Set, 443
NoteProperty, 442
ScriptMethod, 442–443
ScriptProperty, 441–442

importing type extension, 443–444
System.String type extension, 444–445

F
files

listing child items, 41–44
management

attributes and properties, 315–318
copying files, 313–314
creating directories, 322
creating text files, 307–308
deleting directories, 323–324
deleting files, 314
listing directories, 323
parsing text files, 308–313
paths, 318–322
reading text files, 308
renaming files, 314–315

navigating hierarchical object stores, 37–38
script, 155

filters
versus functions, 301
LDAP, 412
objects, cmdlets, 76–77
scripting, 256–258

FindUserDN.ps1, 413
folders

listing child items, 41–44
management

attributes and properties, 315–318
copying files, 313–314
creating directories, 322
creating text files, 307–308
deleting directories, 323–324
deleting files, 314
listing directories, 323
parsing text files, 308–313
paths, 318–322
reading text files, 308
renaming files, 314–315

For command, Cmd.exe, 291–292
For loops, 239–240
ForEach loop, 239
ForEach statement, 242–244
ForEachFile.ps1, 242
ForEachFruit.ps1, 242–243
ForEach-Object cmdlet, 77–78, 291

ForEach statement alias, 244
Form control event, 516–517
format operators, scripting, 205–208

Format-Custom cmdlet, 69–70
Format-List cmdlet, 64–65
Format-Table cmdlet, 65–67
formatting

directive, 207
expressions, 235
objects

constructing own, 467–476
importing format, 476–477
rules, 477

scripts, 297–298
text output

Format-Custom cmdlet, 69–70
Format-List cmdlet, 64–65
Format-Table cmdlet, 65–67
Format-Wide cmdlet, 67–68
GroupBy parameter, 71–72
rules, 70–71

Format-Wide cmdlet, 67–68
forms, creating, 512–513
Friedl, Jeffrey, Mastering Regular Expressions, 232
Full Armor’s WorkFlow Studio, 488
FullyQualifiedErrorID error, 262
functions

versus filters, 301
scripting, 249–250

best practices, 298–300
input arguments, 250–251
phases, 254––255
piping to, 253–254
returning a value, 251–253

VBScript, 285–286
Functiontest.ps1, 252

G
Get-Access function, 358–361
Get-Acl cmdlet, permissions management

automating Cacls.exe, 355–357
Get-Access function, 358–361
Get-Owner function, 357–358
object hierarchy view, 353
removing a rule, 361–362
resetting, 353–355
Set-Owner function, 358
viewing, 351–353

Get-ChildItem cmdlet, 41–44
Get-Command cmdlet, 55
Get-Content cmdlet, 47
Get-Credential cmdlet, 114
Get-Culture cmdlet, 100–101
Get-Eventlog cmdlet, 49–50, 363–367

backup, 370–372
clearing, 372–374
detailed information, 369–370
remote event logs, 367–368

Get-History cmdlet, 56, 89–90
Get-Item cmdlet, 45
GetLDAPUsers.ps1, 402
GetObject(), VBScript, 284
GetOSInfo.ps1, 451–452
Get-Owner function, 357–358
GetOwnerReport.ps1, 353

574

Windows PowerShell: TFM • 2nd Edition

Get-Process cmdlet, 48–49, 375–376
remote processes, 380–384
starting, 376–377
stopping local, 377
tasks, 377–380

Get-PSDrive cmdlet, 56
GetSecurityRSS.ps1, 532–533
Get-Service cmdlet, 49
Get-Variable cmdlet, 55, 163–165
Get-WmiObject cmdlet, 291

existing value examination, 328–329
listing available classes, 326
listing class properties, 327–328
locating service information, 346–347
practical examples, 334–336
remote management, 329–331
retrieving basic information, 325–326
Windows events, 336–341
[WMI] type, 331–333
[WMISearcher] type, 333–334

gibibytes, 91
global scope, scripting, 157
graphical environments, 25
GroupBy parameter, formatting cmdlets, 71–72
groups, directory services, 409–411

H
help, deciphering, 565–567
Help cmdlet, 20, 30–31
hierarchical object stores, navigating, 37–38
Hill, Keith, 534
history, command lines, 89–90
host, 99–100

Culture, 100–101
user interface (UI)

changing Window title, 103–104
color change, 104
constructing prompts, 106–107
nested prompts, 105–106
quitting PowerShell, 106
reading lines and keys, 101–103
window size and buffer change, 104–105

hosting application. See host

I
If comparisons, Cmd.exe, 292–293
IIS log files, parsing text files, 309–310
Import-CliXML cmdlet, 454
Import-CSV cmdlet, 80
inheritance, 120

serialization directives, 460–463
INI files, parsing text files, 310–313
input

accepting, 54
arguments, scripting functions, 250–251

INSERT operation, 504
Internet Explorer, automating, 427
InventoryProgress.ps1, 93–94
InvocationInfo error, 262
Invoke-History cmdlet, 56

Invoke-Item cmdlet, 45
IP addresses, regular expressions, 230–232

J–L
Join-Path cmdlet, 321–322

kibibytes, 91

label control events, 517
LastAccessTime property, 317
LDAP filters, 412
line terminations, parsing command lines, 97–98
list boxes, control events, 519–520
list views, constructing own object format, 469–470
listing directories, 323
listing services, 343
lists, 120
ListWinNT.ps1, 411
ListWMIProperties.ps1, 327
ListWMIValues.ps1, 328–329
LiveSearch.ps1, 535–536
local processes, stopping, 377
local scopes, 158
logic errors, 267
logical operators, scripting, 199–200
logical structures, scripting

Break statement, 244
Continue statement, 244–245
ForEach statement, 242–244
If statement, 234–237
Switch statement, 237–239
While statement, 240–242

loops
scripting, 233, 239–240
VBScript, 284

M
Makecert, problems running, 113
management

directory services, 401
[ADSI] type accelerator, 403–405
bulk-creating users, 406–408
computer account, 408–409
deleting users, 406
groups, 409–411
moving objects, 411
PasswordAge property, 405–406
searching for users, 411–413
WinNT:// provider, 411
WMI (Windows Management Instrumentation),

402–403
event logs, 363–367

backup, 370–372
clearing, 372–374
detailed information, 369–370
remote event logs, 367–368

files and folders
attributes and properties, 315–318
copying files, 313–314
creating directories, 322

Index

575

creating text files, 307–308
deleting directories, 323–324
deleting files, 314
listing directories, 323
parsing text files, 308–313
paths, 318–322
reading text files, 308
renaming files, 314–315

permissions
automating Cacls.exe, 355–357
Get-Access function, 358–361
Get-Owner function, 357–358
object hierarchy view, 353
removing a rule, 361–362
resetting, 353–355
Set-Owner function, 358
viewing, 351–353

processes, 375–376
remote processes, 380–384
starting, 376–377
stopping local, 377
tasks, 377–380

registry, 385–389
creating items, 389–390
remote registries, 392–399
removing items, 390
searching, 390–392

services, 345–346
change service logon account, 347–348
controlling on remote computer, 348
locating information with Get-WmiObject cmdlet,

346–347
service logon account password change, 349

systems with WMI
existing value examination, 328–329
listing available classes, 326
listing class properties, 327–328
practical examples, 334–336
remote management, 329–331
retrieving basic information, 325–326
Windows events, 336–341
[WMI] type, 331–333
[WMISearcher] type, 333–334

mapping drives, 39
Mastering Regular Expressions, 232
Measure-Command cmdlet, 55
memory, finding process by usage, 378
methods

.NET Framework, 120
scripting objects, 187–189
structure, 121

mibibytes, 91
Microsoft .NET Framework. See .NET Framework
modes, parsing command lines, 97
modularization, 247, 259
modules, 247
Move-Item cmdlet, 45

N
/n Software NetCmdlets, 491–492
named captures, 217
namespaces, .NET Framework, 494

navigation
hierarchical object stores, 37–38
PowerShell, 29
Windows system with cmdlets

changing location, 44–45
listing child items, 41–44

NegativeMatchingTest.ps1, 228–229
nested prompts, 105–106

debugging techniques, 277–279
scopes, 423

.NET Framework
data types, 555–562
defined, 493–494
essentials, 119–120

assemblies, 121
classes, 121
reflection, 120

PowerShell’s adaptation, 494–495
details, 495–498
useful techniques, 499–502
using objects directly, 498–499

variables as objects, 122–123
precautions, 126–127
types, 123–126

Windows PoweShell installation, 17–18
NetCmdlets, 491–492
New-Item cmdlet, 45
New-PSDrive cmdlet, 56
New-Service cmdlet, 49
New-Variable cmdlet, 55, 167
*nix operating systems, 25, 293–295
non-termination errors, 261
NoteProperty type extension, 442
notification icons, 501–502

O
object-oriented frameworks, 120
object-oriented PowerShell, 31–33
objects, 21

ADSI (Active Directory Services Interface)
retrieving, 142–148
searching for, 148–150
working with, 150–151

cmdlets
filtering, 76–77
performing actions against, 77–78
selecting specific properties, 78–79
sorting, 73–76

collections, 31–33
COM (Component Object Model), 425–426

accessing local computer, user, and domain, 427
automating Internet Explorer, 427
GetObject(), 284
instantiating objects, 282–283
interactive character control, 427–428
mapping network drives and printers, 426–427
problems, 428
speech synthesis, 428
using objects, 283–284

comparing to collections, 84–88
custom

creating, 447–448

576

Windows PowerShell: TFM • 2nd Edition

function utilizing, 448–451
retrieving computer operating system information,

451–452
directory services, 411
exporting

ConvertTo-HTML cmdlet, 82–84
CSV (comma-separated value) file, 79–81
Export-CliXML cmdlet, 81–82

formatting, 465–467
constructing own, 467–476
importing format, 476–477
rules, 477

scripting
methods, 187–189
properties, 187
variables as, 190–192

serialization, 453–454
creating directives, 455–463
exporting to XML, 455
future remote management role, 463

WMI (Windows Management Instrumentation)
retrieving, 133–136
working with, 136–138

$OFS variable, scripting, 178–179
On Error Resume Next statement, VBScript, 286
operators

scripting
arithmetic, 196–199
assignment, 193–196
bitwise, 200
call, 204–205
comparison, 208–212
format, 205–208
logical, 199–200
Rang (...), 203–204
replace, 200–202
type, 202–203

VBScript, 285
Out-Default cmdlet, 52, 62
Out-File cmdlet, 52
Out-Host cmdlet, 52, 54
Out-Null cmdlet, 52
Out-Printer cmdlet, 52
output

creating, 51–53
text formatting cmdlets, 63

Format-Custom cmdlet, 69–70
Format-List cmdlet, 64–65
Format-Table cmdlet, 65–67
Format-Wide cmdlet, 67–68
GroupBy parameter, 71–72
rules, 70–71

Out-String cmdlet, 52

P
parameters

ConvertTo-HTML cmdlet, 83
creating cmdlets, 540–541
declaration, 300–301
PowerShell, 27
Write-Progress cmdlet, 93

parsing

command lines
line termination, 97–98
modes, 97
quotation marks, 95–97

text files, 308–309
IIS log files, 309–310
INI files, 310–313

PasswordAge property, 405–406
passwords, SecureString objects, 116–118
paths, 318–319

Convert-Path cmdlet, 319
Join-Path cmdlet, 321–322
Resolve-Path cmdlet, 320–321
Split-Path cmdlet, 319–320
Test-Path cmdlet, 319

pausing scripts, 92
permissions, management

automating Cacls.exe, 355–357
Get-Access function, 358–361
Get-Owner function, 357–358
object hierarchy view, 353
removing a rule, 361–362
resetting, 353–355
Set-Owner function, 358
viewing, 351–353

phone numbers, regular expressions, 230
PingComputerCmdlet.vb, 548–550
PingFunction.ps1, 447–448
PingResult.vb, 548
pipelines, 21, 57–58

enable powerful one-line text, 60–61
enable simple output redirection, 62
end of, 62
locating cmdlets accepting input, 59–60
objects from cmdlet to cmdlet, 58–59

PowerGagdets, LLC., 480
PowerGUI, 483–485
PowerShell

additional resources, 35
aliases, 27–29
backward compatibility, 29
built-in help, 30–31
dangers, 33–34
defined, 25–26
host. See host
navigation, 29
object-oriented, 31–33
operating, 26–27
parameters, 27
scripts, 29–30
seven-step speed start

built-in help, 20
customizing shell, 19
drives, 19
familiar tasks, 19
non-scripting administrative tasks, 20–21
pipeline, 21
Windows installation, 17–18

time investment, 34
variables, 30

PowerShell Community Extensions, 481–482
PowerShell.exe, 26
precedence, arithmetic operators, 197
PrimalScript, 28, 480–481

Index

577

principle of least privilege, 114
private keys, 111
ProcessCPU.ps1, 236
processes, management, 375–376

remote processes, 380–384
starting, 376–377
stopping local, 377
tasks, 377–380

profiles, scripts, 156
progress meters, displaying, 92–94
properties

file management, 315–318
.NET Framework, 120

objects
converting to text, 58
selecting specific, 78–79

scripting objects, 187
serialization, 459–460

provides, extending PowerShell functionality, 39
PSADAPTED object view, 495
PSBASE object view, 495
PSDrives

additional hierarchical stores, 38
cmdlet manipulation, 56
ease of use, 40
extending functionality with providers, 39
mapping, 39
navigating hierarchical object store, 37–38

PSEXTENDED object view, 495
PSOBJECT object view, 495
public keys, 111

Q–R
qualifiers, regular expressions, 214
Quest Active Directory Management cmdlets, 485–488
Quest PowerGUI, 483–485
quitting PowerShell, 106
quotation marks, parsing command lines, 95–97

radio buttons, control events, 518–519
Rang (...) operators, scripting, 203–204
Read-Host cmdlet, 54, 116
reading text files, 308
read-only properties, 187
read-write properties, 187
reference sets, comparing objects, 84
references

automatic variables, 553–554
.NET Framework data types, 555–562
reading help, 565–567
regular expression syntax, 563–564

reflection, .NET Framework, 120
RegEx Buddy Web site, 232
Regex Coach Web site, 232
Regex object, 222–226
registry, management, 385–389

creating items, 389–390
remote registries, 392–399
removing items, 390
searching, 390–392

Regular Expression Workbench 3.1 Web site, 232
regular expressions

character groupings, 220
scripting

e-mail address pattern, 226–228
IP addresses, 230–232
matching telephone number, 230
qualifiers, 214
reference, 232
Regex object, 222–226
Select-String cmdlet, 220–222
special characters, 213–214
string with out spaces, 228–230

syntax, 563–564
unicode character sets, 219

remote computers, WMI (Windows Management
Instrumentation), security, 131–132

remote event logs, accessing, 501
remote processes, 380–384
remote registries

enumerating keys, 393–394
enumerating values, 394–396
modifying, 398–399
searching, 396–398
StdRegProv class, 392–393

RemoteSigned execution policy, 112
Remove-Item cmdlet, 45
Remove-PSDrive cmdlet, 56
Remove-Variable cmdlet, 55, 169
Rename-Item cmdlet, 45
renaming files, 314–315
rendering streams, 52
replace operators, scripting, 200–202
resetting permissions, 353–355
Resolve-Path cmdlet, 320–321
Restart-Service cmdlet, 345
Restricted execution policy, 112
Resume-Service cmdlet, 49
rules

formatting cmdlets, 70–71
scopes, 418–419

S
SAPIEN Extensions, 482
SAPIEN PowerShell help, 483
SAPIEN PrimalScript Web site, 28
scopes

best practices, 421–422
dot sourcing, 422–423
error handling, 263–264
nested prompts, 423
rules, 418–419
scope-aware elements, 418
scripting, 157–159
specifying, 420
tracing complicated nested scopes, 423–424
types, 417

script blocks, 247–249
scripting, 155

arrays, 174–177
associative arrays, 179–183
basics, 156–157
best practices

comments, 298

578

Windows PowerShell: TFM • 2nd Edition

filters versus functions, 301
formatting scripts, 297–298
function naming, 298–300
parameter declaration, 300–301
source control, 302–303
variable naming, 301–302

cmdlets, 258–259
error handling, 261–262

ErrorAction argument, 262
scopes, 263–264
throwing own exceptions, 264–265
trapping, 262–263
TrapTest.ps1, 265–266

escape characters, 184–185
filters, 256–258
functions, 249–250

versus filters, 256–258
input arguments, 250–251
phases, 254–255
piping to, 253–254
returning a value, 251–253

logical structures, 233
Break statement, 244
Continue statement, 244–245
ForEach statement, 242–244
If statement, 234–237
Switch statement, 237–239
While statement, 240–242

loops, 233, 239–240
modularization tricks, 259
objects

methods, 187–189
properties, 187
variables as, 190–192

operators
arithmetic, 196–199
assignment, 193–196
bitwise, 200
call, 204–205
comparison, 208–212
format, 205–208
logical, 199–200
Rang (...), 203–204
replace, 200–202
type, 202–203

profiles, 156
regular expressions

e-mail address pattern, 226–228
IP addresses, 230–232
matching telephone number, 230
qualifiers, 214
reference, 232
Regex object, 222–226
Select-String cmdlet, 220–222
special characters, 213–214
string with out spaces, 228–230
writing, 214–220

scope, 157–159
script blocks, 247–249
snap-ins, 258–259
variables, 161–163

Clear-Variable cmdlet, 167–169
environmental, 169–170
Get-Variable cmdlet, 163–165

New-Variable cmdlet, 167
$OFS, 178–179
Remove-Variable cmdlet, 169
Set-Variable cmdlet, 165–167
types, 170–174

ScriptingAnswers Web site, 133
ScriptMethod type extension, 442–443
ScriptProperty type extension, 441–442
Script1.ps1, 264
Script2.ps1, 264
scripts

AddToGroup.ps1, 410
Blocktest.ps1, 248–249
BulkCopy.ps1, 314
BulkRename.ps1, 315
ChangeACL.ps1, 354–355
Create-ServerReport.ps1, 103
CreateUser.ps1, 404
CustomObjectPing.ps1, 448–451
DebugTest.ps1, 270–273
files, 155
FindUserDN.ps1, 413
ForEachFile.ps1, 242
ForEachFruit.ps1, 242–243
Functiontest.ps1, 252
GetLDAPUsers.ps1, 402
GetOSInfo.ps1, 451–452
GetOwnerReport.ps1, 353
GetSecurityRSS.ps1, 532–533
InventoryProgress.ps1, 93–94
ListWinNT.ps1, 411
ListWMIProperties.ps1, 327
ListWMIValues.ps1, 328–329
LiveSearch.ps1, 535–536
NegativeMatchingTest.ps1, 228–229
pausing, 92
PingComputerCmdlet.vb, 548–550
PingFunction.ps1, 447–448
PingResult.vb, 548
PowerShell, 29–30
ProcessCPU.ps1, 236
profiles, 156
safe Internet download, 115–116
scope, 157
Script1.ps1, 264
Script2.ps1, 264
SearchForAllUsersAdvanced.ps1, 412–413
SearchForAllUsers.ps1, 412
security

digital signatures, 110–111
execution policies, 112
reasons not running, 109–110
signing scripts, 112–113
trusted scripts, 111–112

Service2HTML.ps1, 83–84
SetPermswithCACLS.ps1, 355–356
SPInventoryToAccess.ps1, 506–510
StringTypeExtensin.ps1xml, 444–445
SwitchContinue.ps1, 245
SwitchNoContinue.ps1, 244–245
TrapTest.ps1, 265–266
TrickyDebugging.ps1, 267–268
WinForms1.ps1, 521–525
WinForms2.ps1, 525–526

Index

579

WMIReport.ps1, 330
XMLInventory.ps1, 436–437

SDM Software, 488–491
SearchForAllUsersAdvanced.ps1, 412–413
SearchForAllUsers.ps1, 412
SecureString objects, 116–118
security

alternate credentials, 113–114
context, 113
PowerShell dangers, 114–116
principal, 114
running scripts

digital signatures, 110–111
execution policies, 112
reasons not running, 109–110
signing scripts, 112–113
trusted scripts, 111–112

SecureString objects, 116–118
SELECT operation, 504
Select-String cmdlet, 47, 220–222
self-signed certificates, 112
serialization

directives, 454
objects, 453–454

creating directives, 455–463
exporting to XML, 455
future remote management role, 463

Service2HTML.ps1, 83–84
ServicePack.ps1, 289
ServicePack2.ps1, 289–290
ServicePack3.ps1, 290
ServicePack.vbs, 288–289
services

directories, 401
[ADSI] type accelerator, 403–405
bulk-creating users, 406–408
computer account, 408–409
deleting users, 406
groups, 409–411
moving objects, 411
PasswordAge property, 405–406
searching for users, 411–413
WinNT:// provider, 411
WMI (Windows Management Instrumentation),

402–403
listing, 343
management, 345–346

change service logon account, 347–348
controlling on remote computer, 348
locating information with Get-WmiObject cmdlet,

346–347
service logon account password change, 349

Restart-Service cmdlet, 345
starting, 343–344
stopping, 344
suspending and resuming, 344–345

Set-Item cmdlet, 45
Set-Owner function, 358
SetPermswithCACLS.ps1, 355–356
sets, comparing objects, 84
Set-Service cmdlet, 49
Set-Variable cmdlet, 55, 165–167
shotgun debugging, 269
signing scripts, 112–113

snap-ins
cmdlets, environment for creating, 538
scripting, 258–259

sorting objects, cmdlets, 73–76
Sort-Object cmdlet, 73–76
source controls, 302–303
SPInventoryToAccess.ps1, 506–510
Split-Path cmdlet, 319–320
starting services, 343–344
Start-Service cmdlet, 49
Start-Sleep cmdlet, 92
Start-Transcript cmdlet, 94
StdRegProv class, remote registries, 392–393
stopping services, 344
Stop-Process cmdlet, 49, 58–59
Stop-Service cmdlet, 49
Stop-Transcript cmdlet, 94
string objects, 120, 123
strings

serializing objects, 456–457
specifying String output, 457–458

suspending services, 344–345
Suspend-Service cmdlet, 49
Switch statement, 237–239
SwitchContinue.ps1, 245
SwitchNoContinue.ps1, 244–245
syntax errors, 267
system classes, 136
system management, WMI (Windows Management

Instrumentation)
existing value examination, 328–329
listing available classes, 326
listing class properties, 327–328
practical examples, 334–336
remote management, 329–331
retrieving basic information, 325–326
Windows events, 336–341
[WMI] type, 331–333
[WMISearcher] type, 333–334

System.Net.Dns class, 500
System.String type extension, 444–445

T
tab completion, command lines, 90–91
table views, constructing own object format, 470–472
TargetObject errors, 261
telephone numbers, regular expressions, 230
templates, 120
termination errors, 261
Test-Path cmdlet, 319
text

administrative tasks, cmdlets, 47–48
formatting output cmdlets, 63

Format-Custom cmdlet, 69–70
Format-List cmdlet, 64–65
Format-Table cmdlet, 65–67
Format-Wide cmdlet, 67–68
GroupBy parameter, 71–72
rules, 70–71

text boxes, control events, 518
text files

creating, 307–308

580

Windows PowerShell: TFM • 2nd Edition

parsing, 308–309
IIS log files, 309–310
INI files, 310–313

reading, 308
third-party extensions, 479–480

CodePlex, 483
Full Armor’s WorkFlow Studio, 488
NetCmdlets, 491–492
PowerGagdets, LLC., 480
PowerShell Community Extensions, 481–482
PrimalScript, 480–481
Quest Active Directory Management cmdlets, 485–488
Quest PowerGUI, 483–485
SAPIEN Extensions, 482
SAPIEN PowerShell help, 483
SDM Software, 488–491

ToString() method, 203
Trace-Command cmdlet, 55, 273
tracing, debug mode, 269–274
transcripts, 94
trap handlers, 262–263
TrapTest.ps1, 265–266
TrickyDebugging.ps1, 267–268
trusted root CAs, 110
trusted scripts, 111–112
type extensions, extensible type system

AliasProperty, 441
Default Property Set, 443
importing, 443–444
NoteProperty, 442
ScriptMethod, 442–443
ScriptProperty, 441–442

type libraries, 120
type operators, scripting, 202–203
Types.ps1xml file, 439

U
UI (user interface), host

changing Window title, 103–104
color change, 104
constructing prompts, 106–107
nested prompts, 105–106
quitting PowerShell, 106
reading lines and keys, 101–103
window size and buffer change, 104–105

unary operators, arithmetic operators, 198–199
unicode character sets, regular expressions, 219
Unrestricted execution policy, 112
untrusted scripts, 111
UPDATE operation, 504
updates, PowerShell, 18
user interface (UI), host

changing Window title, 103–104
color change, 104
constructing prompts, 106–107
nested prompts, 105–106
quitting PowerShell, 106
reading lines and keys, 101–103
window size and buffer change, 104–105

users
bulk-creating, 406–408
deleting, 406

searching for, 411–413

V
variables, 553–554

arithmetic operators, 197–198
environmental

Cmd.exe, 292
scripting, 169–170

naming, 301–302
.NET Framework, 122–123

precautions, 126–127
types, 123–126

as objects, 190–192
PowerShell, 30, 54–55
scripting, 161–163

Clear-Variable cmdlet, 167–169
Get-Variable cmdlet, 163–165
New-Variable cmdlet, 167
$OFS, 178–179
Remove-Variable cmdlet, 169
Set-Variable cmdlet, 165–167
types, 170–174

VBScript, 282
VBScript, 281–282

ADSI (Active Directory Services Interface), 288
COM objects

GetObject(), 284
instantiating objects, 282–283
using objects, 283–284

comments, 284
constructs, 284
error handling, 286
functions, 285–286
loops, 284
operators, 285
PowerShell change, 288–290
special values, 285
Sub constructs, 286
tasks, 288
type conversion, 285
variables, 282
WMI (Windows Management Instrumentation), 286–288,

330
verbose information, debugging techniques, 275–276
verbs, function naming, 298–300
viewing permissions, 351–353

W
Wbemtest, WMI (Windows Management Instrumentation),

132–133
Web

proxy server Web connection, 533–534
retrieving data, 529–530
services, 534
URL request, 530
Windows Live Search, 534–536
XMLdata, 530–533

Web services description language (WSDL), 534
Where-Object cmdlet, 76–77
While statement, 240–242

Index

581

wide views, constructing own object format, 468–469
Windows

cmdlets administrative tasks, 48–51
PowerShell installation, 17–18

Windows Forms
adding controls, 514–515
control events

Button, 517–518
check boxes, 518
combo boxes, 520–521
Form, 516–517
label, 517
list boxes, 519–520
radio buttons, 518–519
text boxes, 518

creating forms, 512–513
displaying forms, 520
event arguments, 526–528
event handlers, 515–516
events, 511–512
.NET Framework documentation, 512
sample script, 520–526

Windows Live Search, 534–536
Windows Management Instrumentation (WMI)

classes
fundamentals, 131
working with, 138–140

directory services, 402–403
fundamentals

architecture, 129–130
documentation, 130–131
remote computer security, 131–132
Wbemtest, 132–133

objects
retrieving, 133–136
working with, 136–138

system management
existing value examination, 328–329
listing available classes, 326
listing class properties, 327–328
practical examples, 334–336
remote management, 329–331
retrieving basic information, 325–326
Windows events, 336–341
[WMI] type, 331–333
[WMISearcher] type, 333–334

VBScript, 286–288, 330
WinForms

adding controls, 514–515
control events

Button, 517–518
check boxes, 518
combo boxes, 520–521
Form, 516–517
label, 517
list boxes, 519–520
radio buttons, 518–519
text boxes, 518

creating forms, 512–513
displaying forms, 520
event arguments, 526–528
event handlers, 515–516
events, 511–512
.NET Framework documentation, 512

sample script, 520–526
WinForms1.ps1, 521–525
WinForms2.ps1, 525–526
WinNT:// provider, 411
[WMI] type, 331–333
WMI (Windows Management Instrumentation)

classes
fundamentals, 131
working with, 138–140

directory services, 402–403
fundamentals

architecture, 129–130
documentation, 130–131
remote computer security, 131–132
Wbemtest, 132–133

objects
retrieving, 133–136
working with, 136–138

system management
existing value examination, 328–329
listing available classes, 326
listing class properties, 327–328
practical examples, 334–336
remote management, 329–331
retrieving basic information, 325–326
Windows events, 336–341
[WMI] type, 331–333
[WMISearcher] type, 333–334

VBScript, 286–288
WMIReport.ps1, 330
[WMISearcher] type, 333–334
WorkFlow Studio, 488
Write-Debug cmdlet, 51, 275–276
Write-Error cmdlet, 51
Write-Host cmdlet, 51
Write-Output cmdlet, 51–52
Write-Progress cmdlet, 52, 92–94
Write-Verbose cmdlet, 52, 275–276
Write-Warning cmdlet, 52
WSDL (Web services description language), 534

X–Y–Z
XML data, Web, 530–533
XML documents

basic manipulation, 430–433
example of use, 433–437
PowerShell use, 429–430

XMLInventory.ps1, 436–437

	Cover
	Title
	Copyright
	Foreword
	About the Authors
	Acknowledgements
	Contents
	Windows PowerShell Seven-Step Speed Start
	1. Installing Windows PowerShell
	Framework First
	Download and Install the Shell

	2. Customizing the Shell
	3. Performing Some Familiar Tasks in the New Shell
	4. Working with More Drives than C:
	5. Finding Help at Your Fingertips
	6. Performing Real Administrative Tasks Without Scripting
	7. Taking a Peek at the Pipeline
	Ready for More?

	Windows PowerShell Architecture and Overview
	What Is PowerShell, and Why Should I Care?
	How Do I Use PowerShell?
	Parameters
	Aliases
	Backward-Compatible
	Navigation
	Scripting
	Variables
	Built-in Help
	Object Oriented
	Danger! Danger! Danger!
	Bottom Line: Do I Need to Know All This?
	Is PowerShell a Good Investment of My Time?
	Where Do I Go from Here?
	Help and Additional Resources

	PowerShell Drives
	Navigating a Hierarchical Object Store
	More Stores than Just the File System
	Mapping Drives
	More Providers!
	PSDrives = Ease of Use

	Key Cmdlets for Windows Administration
	Cmdlets for Navigating Your System
	Listing Child Items
	Changing Location

	Cmdlets for Working with Items
	Cmdlets for Working with Text Data
	Cmdlets for Working with Windows
	Cmdlets for Working with PowerShell
	Creating Output
	Clearing the Console
	Accepting Input
	Working with Variables
	Working with Commands
	Working with Command-Line History
	Working with PSDrives

	The PowerShell Pipeline
	Piping Objects from Cmdlet to Cmdlet
	Finding Cmdlets That Accept Pipeline Input
	The Pipeline Enables Powerful One-Liners
	The Pipeline Enables Simple Output Redirection
	The End of the (Pipe)line

	Cmdlets to Group, Sort, Format, Export, and More
	Formatting
	Format-List
	Format-Table
	Format-Wide
	Format-Custom
	Formatting Rules Overview: When Does PowerShell Use a List or Table?
	GroupBy

	Sort-Object: Sorting Objects
	Where-Object: Filtering Objects
	ForEach-Object: Performing Actions Against Each Object
	Select-Object: Choosing Specific Object Properties
	Exporting
	Export-CSV
	Export-CliXML
	ConvertTo-HTML

	Comparing Objects and Collections

	Practical Tips and Tricks
	Using the Command Line
	Command History
	Line Editing
	Copy and Paste
	Tab Completion
	Instant Expressions

	Pausing a Script
	Displaying a Progress Meter
	Keeping a Transcript

	PowerShell Command-Line Parsing
	Quotation Marks
	Parsing Modes
	Line Termination

	Working with the PowerShell Host
	Culture Clash
	Using the UI and RawUI
	Reading Lines and Keys
	Changing the Window Title
	Changing Colors
	Changing Window Size and Buffer

	Nested Prompts
	Quitting PowerShell
	Prompting the User to Make a Choice

	Security Features
	Why Won’t My Scripts Run?
	When Scripts Don’t Run
	Digital Signatures
	Trusted Scripts
	Execution Policies
	Signing Scripts

	Alternate Credentials
	Is PowerShell Dangerous?
	Safer Scripts from the Internet

	Passwords and Secure Strings

	The Microsoft .NET Framework:An Overview for PowerShell Users
	Microsoft .NET Framework Essentials
	Reflection
	Assemblies
	Classes

	Variables as Objects
	Variable Types
	Variable Precautions
	.NET Conclusion

	Using WMI in Windows PowerShell
	WMI Fundamentals
	WMI Architecture
	WMI Documentation
	Working with WMI Classes
	Remote Computers, Security, and WMI
	Using Wbemtest
	So What Can You Do with WMI?

	Retrieving WMI Objects
	Working with WMI Objects
	Working Directly with Classes

	Using ADSI in Windows PowerShell
	ADSI Fundamentals
	ADSI Queries
	Using ADSI Objects

	Retrieving ADSI Objects
	Searching for ADSI Objects
	Working with ADSI Objects

	Scripting Overview
	Script Files
	Profiles
	Scripting Basics
	Scope

	Variables, Arrays, and Escape Characters
	Variables
	Get-Variable
	Set-Variable
	New-Variable
	Clear-Variable
	Remove-Variable

	Environment Variables
	Variable Types
	Variable Precautions

	Arrays
	$OFS

	Associative Arrays
	Creating an Associative Array
	Using an Associative Array
	Programmatically Modifying and Enumerating an Associative Array

	Escape Characters

	Objects
	Properties
	Methods
	Variables as Objects

	Operators
	Assignment Operators
	Arithmetic Operators
	Precedence
	Variables
	Unary Operators

	Logical Operators
	Bitwise Operators
	Special Operators
	Replace Operator
	Type
	Range Operator (..)
	Call Operators (&)
	Format Operator (-f)

	Comparison Operators

	Regular Expressions
	Writing Regular Expressions
	Select-String
	Regex Object
	Regular Expression Examples
	E-mail Address
	String with No Spaces
	Domain Credential
	Telephone Number
	IP Address

	Regular Expression Reference

	Loops and Decision-Making Constructs
	If
	Switch
	For
	While
	Do While
	Do Until

	ForEach
	Break
	Continue

	Script Blocks, Functions, and Filters
	Script Blocks
	Functions
	Input Arguments
	Returning a Value
	Piping to Functions
	Function Phases

	Filters
	Functions vs. Filters

	Cmdlets and Snap-ins
	Modularization Tricks

	Error Handling
	Error Actions
	Trapping Errors
	Trap Scope
	Throwing Your Own Exceptions
	Tips for Error Trapping

	The PowerShell Debugger and Debugging Techniques
	The Debugging Process
	Debug Mode and Tracing
	Debugging Techniques
	Writing Verbose Information
	Writing Debugging Information
	Using Nested Prompts

	PowerShell for VBScript, Cmd.exe, and *nix Users
	If You’re Used to VBScript…
	Variables
	COM Objects
	Comments
	Loops and Constructs
	Type Conversion
	Operators and Special Values
	Functions and Subs
	Error Handling
	Windows Management Instrumentation
	Active Directory Services Interface
	Common Tasks in VBScript
	PowerShell Paradigm Change

	If You’re Used to Cmd.exe
	For
	Working with Environment Variables
	“If” Comparisons

	If You’re Used to *nix

	Best Practices for Scripting
	Script Formatting
	Comments
	Script and Function Naming
	Parameter Declaration
	Functions vs. Filters
	Variable Naming
	Use Source Control

	Managing Files and Folders
	Creating Text Files
	Reading Text Files
	Parsing Text Files
	Parsing IIS Log Files
	Parsing INI Files

	Copying Files
	Deleting Files
	Renaming Files
	File Attributes and Properties
	Working with Paths
	Test-Path
	Convert-Path
	Split-Path
	Resolve-Path
	Join-Path

	Creating Directories
	Listing Directories
	Deleting Directories

	Managing Systems by Using WMI
	Retrieving Basic Information
	Listing Available Classes
	Listing Properties of a Class
	Examining Existing Values
	Remote Management
	The [WMI] Type
	The [WMISearcher] Type
	Practical Examples
	WMI Events and PowerShell

	Managing Services
	Listing Services
	Starting Services
	Stopping Services
	Suspending and Resuming Services
	Restarting-Services
	Managing Services
	Get Service Information with Get-WmiObject
	Change Service Logon Account
	Controlling Services on Remote Computers
	Change Service Logon Account Password

	Managing Permissions
	Viewing Permissions
	Viewing Permissions for an Entire Object Hierarchy
	Changing Permissions
	Automating Cacls.exe to Change Permissions
	Complex Permissions in PowerShell
	Get Owner
	Set Owner
	Retrieving Access Control
	Removing a rule

	Managing Event Logs
	Working with Remote Event Logs
	Event Log Information
	Backup Event Logs
	Clearing Event Logs

	Managing Processes
	Starting a Process
	Stopping Local Processes
	Process Tasks
	Find Top 10 Processes by CPU Usage
	Find Top 10 Processes by Memory Usage
	Find Top 10 Longest Running Processes
	Find Process Details
	Find Process Owners

	Remote Processes
	Creating a Remote Process
	Stopping Remote Process

	Managing the Registry
	Creating Registry Items
	Removing Registry Items
	Searching the Registry
	Working with Remote Registries
	Enumerating Keys
	Enumerating Values
	Searching the Registry
	Modifying the Registry

	Managing Directory Services
	Working with the Directory via WMI
	Working with Users by Using the [ADSI] Type Accelerator
	Getting Password Age
	Deleting Users
	Bulk-Creating Users
	Working with Computers
	Delete Computer Accounts

	Working with Groups
	Moving Objects
	WinNT:// Provider
	Searching for Users

	Scope in Windows PowerShell
	Types of Scope
	Scope-Aware Elements
	Scope Rules
	Specifying Scope
	Best Practices for Scope
	Dot Sourcing
	Nested Prompts
	Tracing Complicated Nested Scopes

	Working with COM Objects
	Practical Examples of Using COM
	Mapping Network Drives and Printers
	Accessing Local Domain, Site, Forest, and Logon Information
	Automating Internet Explorer
	Controlling an Interactive Character
	Making Your Computer Talk

	Issues with COM in PowerShell

	Working with XML Documents
	What PowerShell Does with XML
	Basic XML Manipulation
	A Practical Example

	The PowerShell Extensible Type System
	The Basic Type Extension File
	Creating Type Extensions
	AliasProperty
	ScriptProperty
	NoteProperty
	ScriptMethod
	Default Property Set

	Importing Your Type Extensions
	A Practical Example

	Creating Custom Objects
	Custom Object Creation
	Using Custom Objects
	A Practical Example

	Object Serialization
	Why Export Objects to XML?
	Creating Serialization Directives
	Serializing as a String
	Specifying a String Source
	Controlling Serialization Depth
	Serializing Only Specific Properties
	Controlling the Inheritance of Serialization Directives

	Serialization: Now and Tomorrow

	Creating Custom Formats
	Examining the Formatting Format
	Constructing Your Own Format
	Wide Views
	List Views
	Table Views
	Custom Views

	Importing Your Format
	Formatting Rules

	The PowerShell Ecosystem: Third-Party Extensions
	PowerGagdets
	PrimalScript
	PowerShell Community Extensions
	SAPIEN Extensions for Windows PowerShell
	SAPIEN’s PowerShell Help
	CodePlex
	Quest PowerGUI
	Quest Cmdlets for Active Directory Management
	Full Armor
	SDM Software
	/n Software

	The .NET Framework for Windows Administrators
	What is the Framework?
	PowerShell’s Framework Adaptation
	Adaptation Details
	Using Framework Objects Directly
	Loading Assemblies into PowerShell
	Using a Framework Class

	Fun (and Useful) Tricks With the .NET Framework
	Sending E-Mail
	Resolving Names by Using DNS
	Accessing Remote Event Logs
	Making a Notification Icon

	Reading and Writing Information in Databases
	Connecting to a Database
	Building a Command
	Executing the Command and Working with the Results
	The SQL Server Difference
	A Practical Example

	Working with Windows Forms
	Caveats, Restrictions, and Can’t-Dos
	Introducing Events
	PowerShell and Events
	But First…You Need to Read the Docs

	Creating a Form
	Adding Controls
	Creating Event Handlers
	Useful Control Events and Properties
	Forms
	Labels
	Buttons
	Text Boxes
	Check Boxes
	Radio Buttons
	List Boxes
	Combo Boxes

	Displaying Forms
	A Practical Example
	Working with Event Arguments

	Working with the Web
	Retrieving Data from the Web
	A Simple Request
	Working with XML Data from the Web
	Using a Proxy Server for Web Connections
	Working with “Real” Web Services
	A Practical Example

	Creating PowerShell Cmdlets and Snap-Ins
	Some Terminology and the Basic Process
	Getting Started: You Need an Environment
	Creating a New Snap-In
	Creating a New Cmdlet
	Naming Your Cmdlet
	Creating Cmdlet Parameters
	Input Validation in Parameters
	Pipeline Parameters
	Overriding an Input Processing Method
	Coding the Cmdlet
	Compiling the Snap-In
	Registering the Snap-In
	Adding the Snap-In
	Removing the Snap-In
	Using the New Cmdlet
	Debugging Cmdlets
	Making Help

	It’s All in the Framework
	A Practical Example

	Automatic Variables in PowerShell
	Common .NET Framework Data Types
	Regular Expression Syntax
	Reading PowerShell’s Help
	Index
	ADSI_book_AD
	Community_AD
	Live!_AD
	PS2007_AD
	Resource_Kits_AD
	University_Videos_AD
	WNWC_book_AD
	WSH_book_AD

